Version 76.1 by sharoncy on 2022/02/11 11:24

Show last authors
1 (% class="box infomessage" %)
2 (((
3 ==== This collab is describing the use of the desktop version of the QUINT workflow. The integrated QUINT online service will soon be available [[here.>>https://wiki.ebrains.eu/bin/edit/Collabs/quint-demo/WebHome]] ====
4 )))
5
6 [[image:QUINT_workflow_Plaques.png||height="470" style="float:left" width="1277"]]
7
8 == ==
9
10 == ==
11
12 == ==
13
14 == ==
15
16 == ==
17
18 == ==
19
20 == ==
21
22 == ==
23
24 == ==
25
26
27 ==== Online documentation ====
28
29 [[QuickNII user documentation>>https://quicknii.readthedocs.io/en/latest/index.html]]
30
31 [[VisuAlign user documentation>>https://visualign.readthedocs.io/en/latest/index.html]]
32
33 [[Ilastik user documentation>>https://nutil.readthedocs.io/en/latest/Ilastik.html]]
34
35 [[Nutil user documentation>>https://nutil.readthedocs.io/en/latest/index.html]]                                  
36
37 == ==
38
39 == (% style="color:#c0392b" %)**Description**(%%) ==
40
41 **The QUINT workflow enables an atlas-based analysis of extracted features from histological image sections from the rodent brain by using 3D reference atlases. **
42
43 **Examples of use are cell counting and spatial distributions, determination of projection areas in connectivity experiments, and exploration of pathological hallmarks in brain-disease models. Integration of various data to the same reference space enables new exploration strategies and reuse of experimental data.**
44
45 The workflow is built on the following open-access software.
46
47 * [[(% style="color:#2980b9" %)//ilastik//>>doc:.3\. Image segmentation with ilastik.WebHome]](%%) allows the extraction of labelled features such as cells, by using machine-learning image segmentation.
48 * [[(% style="color:#2980b9" %)//QuickNII//>>doc:.Image registration to reference atlas using QuickNII.WebHome]](%%) generates custom-angle slices from volumetric brain atlases to match the proportions and cutting plane of histological sections.
49 * //[[(% style="color:#3498db" %)VisuAlign>>doc:.Image registration to reference atlas using QuickNII.WebHome]]//(%%) is then used for non-linear alignment of the reference-atlas slice to the section image.
50 * (% style="color:#2980b9" %)//Nutil//(%%) enables image [[transformations>>doc:.1\. Preparing the images.WebHome]], in addition to [[quantification and spatial analysis>>doc:.4\. Quantification and spatial analysis with Nutil.WebHome]] of features by drawing on the output of //ilastik// and //QuickNII//.
51
52 In combination, the tools facilitate semi-automated quantification, eliminating the need for more time-consuming methods such as stereological analysis with manual delineation of brain regions.
53
54
55 [[[[image:Youtube_QUINT.PNG||height="281" style="float:right" width="499"]]>>https://www.youtube.com/watch?v=8oeg3qTzLnE]]
56
57 [[[[image:Quint tutorial video pic.png||height="300" style="float:left" width="487"]]>>https://www.youtube.com/watch?v=n-gQigcGMJ0]]
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79 QUINT workflow video
80
81
82 == (% style="color:#c0392b" %)**Workflow highlights**(%%) ==
83
84 (% class="box successmessage" %)
85 (((
86 The semi-automated QUINT workflow uses open-access software that can be operated without any scripting knowledge.
87 )))
88
89 (((
90 (% class="box successmessage" %)
91 (((
92 Because the quantifications are performed in regions defined by a reference atlas, the region definitions are standardised, allowing comparisons of data from different laboratories.
93 )))
94
95 ==== (% style="color:#c0392b" %)**References**(%%) ====
96
97 * Yates SC et al. (2019) QUINT: Workflow for Quantification and Spatial Analysis of Features in Histological Images From Rodent Brain. Front. Neuroinform. 13:75. doi: [[10.3389/fninf.2019.00075>>https://www.frontiersin.org/articles/10.3389/fninf.2019.00075/full]]
98 * Groeneboom NE, Yates SC, Puchades MA and Bjaalie JG (2020) Nutil: A Pre- and Post-processing Toolbox for Histological Rodent Brain Section Images. //Front. Neuroinform.// 14:37. doi: [[10.3389/fninf.2020.00037>>https://www.frontiersin.org/articles/10.3389/fninf.2020.00037/full]]
99 * Berg S, Kutra D, Kroeger T, et al. & Kreshuk A (2019) ilastik: interactive machine learning for (bio)image analysis. Nat Methods. 16:1226-1232. doi: [[10.1038/s41592-019-0582-9>>https://www.nature.com/articles/s41592-019-0582-9]]
100 * (((
101 Puchades MA et al. (2019) Spatial registration of serial microscopic brain images to three-dimensional reference atlases with the QuickNII tool. PlosOne. 14(5): e0216796. doi: [[10.1371/journal.pone.0216796>>https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216796]]
102 )))
103
104 ==== ====
105 )))