Version 84.1 by puchades on 2022/11/02 10:14

Show last authors
1 (% class="box infomessage" %)
2 (((
3 ==== This collab describes the use of the desktop version of the QUINT workflow. The integrated QUINT online service will soon be available [[here.>>https://wiki.ebrains.eu/bin/edit/Collabs/quint-demo/]] ====
4 )))
5
6 [[image:QUINT_workflow_Plaques.png||height="470" style="float:left" width="1277"]]
7
8 == ==
9
10 == ==
11
12 == ==
13
14 == ==
15
16 == ==
17
18 == ==
19
20 == ==
21
22 == ==
23
24 == ==
25
26
27 ==== Online documentation ====
28
29 [[QUINT workflow user documentation>>https://quint-workflow.readthedocs.io]]
30
31 [[QuickNII user documentation>>https://quicknii.readthedocs.io/en/latest/index.html]]
32
33 [[VisuAlign user documentation>>https://visualign.readthedocs.io/en/latest/index.html]]
34
35 [[Ilastik user documentation>>https://quint-workflow.readthedocs.io]]
36
37 [[Nutil user documentation>>https://nutil.readthedocs.io/en/latest/index.html]] 
38
39 [[MeshView user documentation>>https://meshview-for-brain-atlases.readthedocs.io]]                               
40
41 == ==
42
43 == (% style="color:#c0392b" %)**Description**(%%) ==
44
45 **The QUINT workflow enables an atlas-based analysis of extracted features from histological image sections from the rodent brain by using 3D reference atlases. **
46
47 **Examples of use are cell counting and spatial distributions, determination of projection areas in connectivity experiments, and exploration of pathological hallmarks in brain-disease models. Integration of various data to the same reference space enables new exploration strategies and reuse of experimental data.**
48
49 The workflow is built on the following open-access software.
50
51 * [[(% style="color:#2980b9" %)//ilastik//>>doc:.3\. Image segmentation with ilastik.WebHome]](%%) allows the extraction of labelled features such as cells, by using machine-learning image segmentation.
52 * [[(% style="color:#2980b9" %)//QuickNII//>>doc:.Image registration to reference atlas using QuickNII.WebHome]](%%) generates custom-angle slices from volumetric brain atlases to match the proportions and cutting plane of histological sections.
53 * //[[(% style="color:#3498db" %)VisuAlign>>doc:.Image registration to reference atlas using QuickNII.WebHome]]//(%%) is then used for non-linear alignment of the reference-atlas slice to the section image.
54 * (% style="color:#2980b9" %)//Nutil//(%%) enables image [[transformations>>doc:.1\. Preparing the images.WebHome]], in addition to [[quantification and spatial analysis>>doc:.4\. Quantification and spatial analysis with Nutil.WebHome]] of features by drawing on the output of //ilastik// and //QuickNII//.
55
56 In combination, the tools facilitate semi-automated quantification, eliminating the need for more time-consuming methods such as stereological analysis with manual delineation of brain regions.
57
58 [[[[image:Youtube_QUINT.PNG||height="281" style="float:right" width="499"]]>>https://www.youtube.com/watch?v=8oeg3qTzLnE]]
59
60 [[[[image:Quint tutorial video pic.png||height="300" style="float:left" width="487"]]>>https://www.youtube.com/watch?v=n-gQigcGMJ0]]
61
62
63
64
65
66
67
68
69
70
71
72 QUINT workflow video
73
74
75 == (% style="color:#c0392b" %)**Workflow highlights**(%%) ==
76
77 (% class="box successmessage" %)
78 (((
79 The semi-automated QUINT workflow uses open-access software that can be operated without any scripting knowledge.
80 )))
81
82 (((
83 (% class="box successmessage" %)
84 (((
85 Because the quantifications are performed in regions defined by a reference atlas, the region definitions are standardised, allowing comparisons of data from different laboratories.
86 )))
87
88 ==== (% style="color:#c0392b" %)**References**(%%) ====
89
90 * Yates SC et al. (2019) QUINT: Workflow for Quantification and Spatial Analysis of Features in Histological Images From Rodent Brain. Front. Neuroinform. 13:75. doi: [[10.3389/fninf.2019.00075>>https://www.frontiersin.org/articles/10.3389/fninf.2019.00075/full]]
91 * Groeneboom NE, Yates SC, Puchades MA and Bjaalie JG (2020) Nutil: A Pre- and Post-processing Toolbox for Histological Rodent Brain Section Images. //Front. Neuroinform.// 14:37. doi: [[10.3389/fninf.2020.00037>>https://www.frontiersin.org/articles/10.3389/fninf.2020.00037/full]]
92 * Berg S, Kutra D, Kroeger T, et al. & Kreshuk A (2019) ilastik: interactive machine learning for (bio)image analysis. Nat Methods. 16:1226-1232. doi: [[10.1038/s41592-019-0582-9>>https://www.nature.com/articles/s41592-019-0582-9]]
93 * (((
94 Puchades MA et al. (2019) Spatial registration of serial microscopic brain images to three-dimensional reference atlases with the QuickNII tool. PlosOne. 14(5): e0216796. doi: [[10.1371/journal.pone.0216796>>https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216796]]
95 )))
96
97 ==== ====
98 )))