Wiki source code of QUINT: Workflow for Quantification and Spatial Analysis of Features in Histological Images From Rodent Brain
Last modified by puchades on 2022/11/02 10:16
Hide last authors
author | version | line-number | content |
---|---|---|---|
![]() |
63.1 | 1 | (% class="box infomessage" %) |
2 | ((( | ||
![]() |
85.1 | 3 | ==== This collab describes the use of the desktop version of the QUINT workflow. The integrated QUINT online service will soon be available [[here.>>https://wiki.ebrains.eu/bin/view/Collabs/quint-demo/]] ==== |
![]() |
72.2 | 4 | ))) |
![]() |
63.1 | 5 | |
![]() |
72.2 | 6 | [[image:QUINT_workflow_Plaques.png||height="470" style="float:left" width="1277"]] |
![]() |
63.1 | 7 | |
![]() |
72.2 | 8 | == == |
![]() |
63.1 | 9 | |
![]() |
72.2 | 10 | == == |
![]() |
63.1 | 11 | |
![]() |
72.2 | 12 | == == |
![]() |
65.1 | 13 | |
![]() |
72.2 | 14 | == == |
![]() |
65.1 | 15 | |
![]() |
66.1 | 16 | == == |
17 | |||
18 | == == | ||
19 | |||
20 | == == | ||
21 | |||
22 | == == | ||
23 | |||
24 | == == | ||
25 | |||
![]() |
72.2 | 26 | |
27 | ==== Online documentation ==== | ||
28 | |||
![]() |
82.1 | 29 | [[QUINT workflow user documentation>>https://quint-workflow.readthedocs.io]] |
30 | |||
![]() |
72.2 | 31 | [[QuickNII user documentation>>https://quicknii.readthedocs.io/en/latest/index.html]] |
32 | |||
33 | [[VisuAlign user documentation>>https://visualign.readthedocs.io/en/latest/index.html]] | ||
34 | |||
![]() |
83.1 | 35 | [[Ilastik user documentation>>https://quint-workflow.readthedocs.io]] |
![]() |
72.2 | 36 | |
![]() |
78.1 | 37 | [[Nutil user documentation>>https://nutil.readthedocs.io/en/latest/index.html]] |
![]() |
72.2 | 38 | |
![]() |
79.1 | 39 | [[MeshView user documentation>>https://meshview-for-brain-atlases.readthedocs.io]] |
![]() |
78.1 | 40 | |
![]() |
66.1 | 41 | == == |
42 | |||
![]() |
49.1 | 43 | == (% style="color:#c0392b" %)**Description**(%%) == |
![]() |
8.1 | 44 | |
![]() |
62.2 | 45 | **The QUINT workflow enables an atlas-based analysis of extracted features from histological image sections from the rodent brain by using 3D reference atlases. ** |
![]() |
1.1 | 46 | |
![]() |
62.2 | 47 | **Examples of use are cell counting and spatial distributions, determination of projection areas in connectivity experiments, and exploration of pathological hallmarks in brain-disease models. Integration of various data to the same reference space enables new exploration strategies and reuse of experimental data.** |
![]() |
50.1 | 48 | |
![]() |
62.2 | 49 | The workflow is built on the following open-access software. |
![]() |
50.1 | 50 | |
![]() |
62.2 | 51 | * [[(% style="color:#2980b9" %)//ilastik//>>doc:.3\. Image segmentation with ilastik.WebHome]](%%) allows the extraction of labelled features such as cells, by using machine-learning image segmentation. |
![]() |
36.2 | 52 | * [[(% style="color:#2980b9" %)//QuickNII//>>doc:.Image registration to reference atlas using QuickNII.WebHome]](%%) generates custom-angle slices from volumetric brain atlases to match the proportions and cutting plane of histological sections. |
![]() |
62.2 | 53 | * //[[(% style="color:#3498db" %)VisuAlign>>doc:.Image registration to reference atlas using QuickNII.WebHome]]//(%%) is then used for non-linear alignment of the reference-atlas slice to the section image. |
![]() |
36.2 | 54 | * (% style="color:#2980b9" %)//Nutil//(%%) enables image [[transformations>>doc:.1\. Preparing the images.WebHome]], in addition to [[quantification and spatial analysis>>doc:.4\. Quantification and spatial analysis with Nutil.WebHome]] of features by drawing on the output of //ilastik// and //QuickNII//. |
![]() |
1.1 | 55 | |
![]() |
62.2 | 56 | In combination, the tools facilitate semi-automated quantification, eliminating the need for more time-consuming methods such as stereological analysis with manual delineation of brain regions. |
![]() |
9.1 | 57 | |
![]() |
76.1 | 58 | [[[[image:Youtube_QUINT.PNG||height="281" style="float:right" width="499"]]>>https://www.youtube.com/watch?v=8oeg3qTzLnE]] |
![]() |
31.1 | 59 | |
![]() |
76.1 | 60 | [[[[image:Quint tutorial video pic.png||height="300" style="float:left" width="487"]]>>https://www.youtube.com/watch?v=n-gQigcGMJ0]] |
![]() |
31.1 | 61 | |
62 | |||
63 | |||
64 | |||
65 | |||
66 | |||
67 | |||
68 | |||
![]() |
44.1 | 69 | |
70 | |||
71 | |||
![]() |
43.2 | 72 | QUINT workflow video |
![]() |
30.2 | 73 | |
![]() |
71.2 | 74 | |
![]() |
52.1 | 75 | == (% style="color:#c0392b" %)**Workflow highlights**(%%) == |
![]() |
14.1 | 76 | |
![]() |
55.1 | 77 | (% class="box successmessage" %) |
78 | ((( | ||
![]() |
62.2 | 79 | The semi-automated QUINT workflow uses open-access software that can be operated without any scripting knowledge. |
![]() |
55.1 | 80 | ))) |
![]() |
15.1 | 81 | |
82 | ((( | ||
![]() |
55.1 | 83 | (% class="box successmessage" %) |
84 | ((( | ||
![]() |
62.2 | 85 | Because the quantifications are performed in regions defined by a reference atlas, the region definitions are standardised, allowing comparisons of data from different laboratories. |
![]() |
55.1 | 86 | ))) |
![]() |
15.1 | 87 | |
88 | ==== (% style="color:#c0392b" %)**References**(%%) ==== | ||
89 | |||
![]() |
57.1 | 90 | * Yates SC et al. (2019) QUINT: Workflow for Quantification and Spatial Analysis of Features in Histological Images From Rodent Brain. Front. Neuroinform. 13:75. doi: [[10.3389/fninf.2019.00075>>https://www.frontiersin.org/articles/10.3389/fninf.2019.00075/full]] |
![]() |
53.2 | 91 | * Groeneboom NE, Yates SC, Puchades MA and Bjaalie JG (2020) Nutil: A Pre- and Post-processing Toolbox for Histological Rodent Brain Section Images. //Front. Neuroinform.// 14:37. doi: [[10.3389/fninf.2020.00037>>https://www.frontiersin.org/articles/10.3389/fninf.2020.00037/full]] |
![]() |
56.1 | 92 | * Berg S, Kutra D, Kroeger T, et al. & Kreshuk A (2019) ilastik: interactive machine learning for (bio)image analysis. Nat Methods. 16:1226-1232. doi: [[10.1038/s41592-019-0582-9>>https://www.nature.com/articles/s41592-019-0582-9]] |
![]() |
54.1 | 93 | * ((( |
94 | Puchades MA et al. (2019) Spatial registration of serial microscopic brain images to three-dimensional reference atlases with the QuickNII tool. PlosOne. 14(5): e0216796. doi: [[10.1371/journal.pone.0216796>>https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216796]] | ||
95 | ))) | ||
96 | |||
![]() |
58.1 | 97 | ==== ==== |
![]() |
14.1 | 98 | ))) |