Version 14.1 by mhashemi on 2024/11/27 18:07

Hide last authors
mhashemi 9.1 1 {{{Virtual Brain Models imply latent nonlinear state space models
2 driven by noise and network input, necessitating advanced probabilistic
mhashemi 10.1 3 machine learning techniques for widely applicable Bayesian estimation.
mhashemi 9.1 4 Here we present Simulation-based Inference on Virtual Brain Models (SBI-VBMs),
5 and demonstrate that training deep neural networks on both spatio-temporal and
6 functional features allows for accurate estimation of generative parameters in brain disorders.
mhashemi 1.1 7
mhashemi 13.2 8 }}}
mhashemi 1.1 9
10
mhashemi 13.1 11
mhashemi 13.2 12 Code: [[https:~~/~~/github.com/ins-amu/SBI-VBMs>>https://github.com/ins-amu/SBI-VBMs]]
13
mhashemi 8.1 14 (% style="text-align: justify;" %)
mhashemi 7.1 15 Ref: [[https:~~/~~/iopscience.iop.org/article/10.1088/2632-2153/ad6230>>https://iopscience.iop.org/article/10.1088/2632-2153/ad6230]]