Version 14.2 by mhashemi on 2024/11/27 18:08

Hide last authors
mhashemi 14.2 1 Virtual Brain Models imply latent nonlinear state space models
mhashemi 9.1 2 driven by noise and network input, necessitating advanced probabilistic
mhashemi 14.2 3 machine learning techniques for widely applicable Bayesian estimation.
4 Here we present Simulation-based Inference on Virtual Brain Models (SBI-VBMs),
5 and demonstrate that training deep neural networks on both spatio-temporal and
mhashemi 9.1 6 functional features allows for accurate estimation of generative parameters in brain disorders.
mhashemi 1.1 7
8
9
mhashemi 13.1 10
mhashemi 13.2 11 Code: [[https:~~/~~/github.com/ins-amu/SBI-VBMs>>https://github.com/ins-amu/SBI-VBMs]]
12
mhashemi 8.1 13 (% style="text-align: justify;" %)
mhashemi 7.1 14 Ref: [[https:~~/~~/iopscience.iop.org/article/10.1088/2632-2153/ad6230>>https://iopscience.iop.org/article/10.1088/2632-2153/ad6230]]