Changes for page SGA3 D1.5 Showcase 1
Last modified by gorkazl on 2023/11/13 14:27
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. fousekjan1 +XWiki.gorkazl - Content
-
... ... @@ -51,9 +51,8 @@ 51 51 52 52 * [[virtual_ageing/notebooks/1_BNM_for_resting_state.ipynb>>https://lab.ch.ebrains.eu/user-redirect/lab/tree/shared/SGA3%20D1.2%20Showcase%201/virtual_ageing/notebooks/1_BNM_for_resting_state.ipynb]] 53 53 54 +[[image:image-20220103100841-2.png]] 54 54 55 -[[image:https://wiki.ebrains.eu/bin/download/Collabs/sga3-d1-2-showcase-1/WebHome/image-20220103100841-2.png?rev=1.1||alt="image-20220103100841-2.png"]] 56 - 57 57 === Virtual ageing trajectories === 58 58 59 59 The second steps shows the investigation of virtual ageing trajectory for each subject. In this context, we are going to show: ... ... @@ -66,13 +66,13 @@ 66 66 67 67 * [[virtual_ageing/notebooks/2_virtual_ageing_trajectories.ipynb>>https://lab.ch.ebrains.eu/user-redirect/lab/tree/shared/SGA3%20D1.2%20Showcase%201/virtual_ageing/notebooks/2_virtual_ageing_trajectories.ipynb]] 68 68 69 -[[image: https://wiki.ebrains.eu/bin/download/Collabs/sga3-d1-2-showcase-1/WebHome/image-20220103101022-3.png?rev=1.1||alt="image-20220103101022-3.png"]]68 +[[image:image-20220103101022-3.png]] 70 70 71 71 === Inference with SBI === 72 72 73 73 The last step of the inter-individual variability workflow employs Simulation Based Inference for estimation of the full posterior values of the parameters. Here, a deep neural estimator is trained to provide a relationship between the parameters of a model (black box simulator) and selected descriptive statistics of the observed data. 74 74 75 -[[image: https://wiki.ebrains.eu/bin/download/Collabs/sga3-d1-2-showcase-1/WebHome/image-20220103104332-4.png?width=418&height=418&rev=1.1||alt="image-20220103104332-4.png"]]74 +[[image:image-20220103104332-4.png||height="418" width="418"]] 76 76 77 77 Link to the notebook: 78 78 ... ... @@ -94,17 +94,18 @@ 94 94 95 95 * [[regional_variability/notebooks/1_load_data.ipynb>>https://lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/SGA3%20D1.2%20Showcase%201/regional_variability/notebooks/1_load_data.ipynb]] 96 96 97 -[[image:https://wiki.ebrains.eu/bin/download/Collabs/sga3-d1-2-showcase-1/WebHome/download%20-%202022-02-10T130815.902.png?rev=1.1||alt="region-wise gene expression heterogeneity"]] 96 +(% style="text-align:center" %) 97 +[[image:download - 2022-02-10T130815.902.png||alt="region-wise gene expression heterogeneity"]] 98 98 99 99 === Fitting model parameters with regional bias === 100 100 101 -A series of simulations of the whole-brain network model are launched in the EBRAINS HPC facilities in order to identify the optimal model parameters leading to simulated resting-state brain activity that best resembles the empirically observed activity. In this branch of the showcase, brain regions are simulated using the mean-field AdEx population model; specifically modified to account for the regional densities of GABAa and AMPA neuroreceptors. See the details in thefollowing document.101 +A series of simulations of the whole-brain network model are launched in the EBRAINS HPC facilities in order to identify the optimal model parameters leading to simulated resting-state brain activity that best resembles the empirically observed activity. In this branch of the showcase, brain regions are simulated using the mean-field AdEx population model; specifically modified to account for the regional densities of GABAa and AMPA neuroreceptors. See the details following document. 102 102 103 103 Link to the notebook: 104 104 105 105 * [[regional_variability/notebooks/2_parameter_swep.ipynb>>https://lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/SGA3%20D1.2%20Showcase%201/regional_variability/notebooks/2_parameter_swep.ipynb]] 106 106 107 -[[image: https://wiki.ebrains.eu/bin/download/Collabs/sga3-d1-2-showcase-1/WebHome/download%20-%202022-02-10T131102.033.png?rev=1.1||alt="regional bias vs goodness of fit"]]107 +[[image:download - 2022-02-10T131102.033.png||alt="regional bias vs goodness of fit"]] 108 108 ))) 109 109 110 110