Last modified by robing on 2022/03/25 09:55

From version 64.1
edited by robing
on 2020/04/29 13:47
Change comment: There is no comment for this version
To version 76.1
edited by robing
on 2020/05/24 19:24
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -9,11 +9,11 @@
9 9  
10 10  Robin Gutzen^^1^^, Giulia De Bonis^^2^^, Elena Pastorelli^^2,3^^, Cristiano Capone^^2^^,
11 11  
12 -Chiara De Luca^^2,3^^, Michael Denker^^1^^, Sonja Grün^^1^^,
12 +Chiara De Luca^^2,3^^, Michael Denker^^1^^, Sonja Grün^^1,4^^,
13 13  
14 -Pier Stanislao Paolucci^^2^^, Andrew Davison^^4^^
14 +Pier Stanislao Paolucci^^2^^, Andrew Davison^^5^^
15 15  
16 -Experiments: Anna Letizia Allegra Mascaro^^5,6^^, Francesco Resta^^5^^, Francesco Saverio Pavone^^5^^, Maria-Victoria Sanchez-Vives^^7,8^^
16 +Experiments: Anna Letizia Allegra Mascaro^^6,7^^, Francesco Resta^^6^^, Francesco Saverio Pavone^^6^^, Maria-Victoria Sanchez-Vives^^8,9^^
17 17  
18 18  ,,1) Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany,,
19 19  
... ... @@ -21,15 +21,17 @@
21 21  
22 22  ,,3) Ph.D. Program in Behavioural Neuroscience, “Sapienza” University of Rome, Rome, Italy,,
23 23  
24 -,,4) Unité de Neurosciences, Information et Complexité, Neuroinformatics Group, CNRS FRE 3693, Gif-sur-Yvette, France,,
24 +,,4) Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany,,
25 25  
26 -,,5) European Laboratory for Non-linear Spectroscopy (LENS), (% style="--darkreader-inline-color:inherit; color:inherit" %)University of Florence, Florence, Italy(%%),,
26 +,,5) Unit de Neurosciences, Information et Complexité, Neuroinformatics Group, CNRS FRE 3693, Gif-sur-Yvette, France,,
27 27  
28 -,,6) Istituto di Neuroscienze, CNR, Pisa, Italy,,
28 +,,6) European Laboratory for Non-linear Spectroscopy (LENS), (% style="--darkreader-inline-color:inherit; color:inherit" %)University of Florence, Florence, Italy(%%),,
29 29  
30 -,,7) Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,,
30 +,,7) Istituto di Neuroscienze, CNR, Pisa, Italy,,
31 31  
32 -,,8) Institució Catalana de Recerca i Estudis Avanc ̨ats (ICREA), Barcelona, Spain,,
32 +,,8) Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,,
33 +
34 +,,9) Institució Catalana de Recerca i Estudis Avanc ̨ats (ICREA), Barcelona, Spain,,
33 33  )))
34 34  )))
35 35  
... ... @@ -39,11 +39,8 @@
39 39  (((
40 40  == Flexible workflows to generate multi-scale analysis scenarios ==
41 41  
42 -This Collab is aimed at experimental and computational neuroscientists interested in the usage of the [[Neo>>https://neo.readthedocs.io/en/stable/]] and [[Elephant>>https://elephant.readthedocs.io/en/latest/]] tools in performing data analysis of spiking data.
43 -Here, the collab illustrates the tool usage with regards to the SGA2-SP3-UC002 KR3.2, investigating sleep, anesthesia, and the transition to wakefulness: see Chapter 1 and Figure 2  of SGA2[[ Deliverable D3.2.1.>>https://drive.ebrains.eu/smart-link/17ac0d6e-e050-4a49-8ca2-e223b70a3121/]], for an overview of the scientific motivations and a description of the UseCase workflow; Chapter 2 (same document) for an introduction to KR3.2; Chapter 3, for a description of the mice ECoG data sets; Chapter 5, about the Slow Wave Analysis Pipeline and Chapter 6 for the mice wide-field GECI data)
44 +This collab illustrates the usage of the [[Neo>>https://neo.readthedocs.io/en/stable/]] and [[Elephant>>https://elephant.readthedocs.io/en/latest/]] tools in performing data analysis with regards to the SGA2-SP3-UC002 KR3.2, investigating sleep, anesthesia, and the transition to wakefulness: see Chapter 1 and Figure 2  of SGA2[[ Deliverable D3.2.1.>>https://drive.ebrains.eu/smart-link/17ac0d6e-e050-4a49-8ca2-e223b70a3121/]], for an overview of the scientific motivations and a description of the UseCase workflow; Chapter 2 (same document) for an introduction to KR3.2; Chapter 3, for a description of the mice ECoG data sets; Chapter 5, about the Slow Wave Analysis Pipeline and Chapter 6 for the mice wide-field GECI data). For details on the datasets used in this collab, please see the References below.
44 44  
45 -[[image:https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png||height="35" width="35"]][[INM-6/wavescalephant>>https://github.com/INM-6/wavescalephant]]
46 -
47 47  == How the pipeline works ==
48 48  
49 49  The design of the pipeline aims at interfacing a variety of general and specific analysis and processing steps in a flexible modular manner. Hence, it enables the pipeline to adapt to diverse types of data (e.g., electrical ECoG, or optical Calcium Imaging recordings) and to different analysis questions. This makes the analyses a) more reproducible and b) comparable amongst each other since they rely on the same stack of algorithms and any differences in the analysis are fully transparent.
... ... @@ -75,15 +75,12 @@
75 75  
76 76  * **Run the notebook**
77 77  In the jupyter hub, navigate to //drive/My Libraries/My Library/pipeline/showcase_notebooks/run_snakemake_in_collab.ipynb//, or where you copied the //pipeline// folder to.
78 -Follow the notebook to install the required packages into your Python kernel, set the output path, and execute the pipeline with snakemake.
79 -
80 -* **Coming soon**
81 -** Use of KnowledgeGraph API
82 -** Provenance Tracking
83 -** HPC support
77 +Follow the notebook to install the required packages into your Python kernel, set the output path, and execute the pipeline with snakemake
84 84  
85 85  === ii) Local execution ===
86 86  
81 +//tested only with Linux!//
82 +
87 87  * **Get the code**
88 88  The source code of the pipeline is available via Github: [[INM-6/wavescalephant>>https://github.com/INM-6/wavescalephant]] and can be cloned to your machine ([[how to get started with Github>>https://guides.github.com/activities/hello-world/]]).
89 89  
... ... @@ -119,6 +119,26 @@
119 119  
120 120  All results are stored in the path specified in the //settings.py// file. The folder structure reflects the structuring of the pipeline into stages and blocks. All intermediate results are stored as //.nix// files using the [[Neo data format>>https://neo.readthedocs.io/en/stable/]] and can be loaded with ##neo.NixIO('/path/to/file.nix').read_block()##. Additionally, most blocks produce a figure, and each stage a report file, to give an overview of the execution log, parameters, intermediate results, and to help with debugging. The final stage (//stage05_wave_characterization//) stores the results as[[ //pandas.DataFrames//>>https://pandas.pydata.org/]] in //.csv// files, separately for each measure as well as in a combined dataframe for all measures.
121 121  
118 +**Examples of the output figures (for IDIBAPS dataset)**
119 +
120 +* Stage 01 - [[example signal traces and metadata>>https://drive.ebrains.eu/smart-link/cf2fa914-260d-4d61-a2da-03ea07b7f9be/]]
121 +* Stage 02 - [[background substraction>>https://drive.ebrains.eu/smart-link/586d2f3c-591b-4dfb-94ee-8c0e28050dc4/]]
122 +* Stage 02 - [[logMUA estimation>>https://drive.ebrains.eu/smart-link/c92e4b0c-0938-44e8-9f8d-00522796b2fd/]]
123 +* Stage 02 - [[processed signal trace>>https://drive.ebrains.eu/smart-link/26ed27c6-de56-4b48-a57b-f70aab629197/]]
124 +* Stage 03 - [[amplitude distribution>>https://drive.ebrains.eu/smart-link/8ba80293-ba75-4a37-8a8f-05d44cf6f65c/]]
125 +* Stage 03 - [[UP state detection>>https://drive.ebrains.eu/smart-link/ab172be0-178e-4153-a3e6-b4bace32dd50/]]
126 +* Stage 04 - [[trigger clustering>>https://drive.ebrains.eu/smart-link/4a1f0169-8b43-49ce-80c8-f2fa0f4d50d3/]]
127 +* Stage 05 - [[planar velocities>>https://drive.ebrains.eu/smart-link/f4de8073-cb40-47a7-bc82-f97d36dbae25/]]
128 +* Stage 05 - [[directionality>>https://drive.ebrains.eu/smart-link/5485032d-0121-4cde-9ea2-3e0af3f12178/]]
129 +
130 +=== Outlook ===
131 +
132 +* Using the **KnowledgeGraph API **to insert data directly from the Knowledge Graph into the pipeline and also register and store the corresponding results as Analysis Objects. Such Analysis Objects are to incorporate **Provenance Tracking, **using [[fairgraph>>https://github.com/HumanBrainProject/fairgraph]],** **to record the details of the processing and analysis steps.
133 +* Adding support for the pipeline to make use of **HPC** resources when running on the collab.
134 +* Further extending the available **methods** to address a wider variety of analysis objectives and support the processing of other datatypes. Additional documentation and guides should also make it easier for non-developers to contribute new method blocks.
135 +* Extending the **application** of the pipeline to the analysis of other types of activity waves and oscillations.
136 +* Integrating and co-developing new features of the underlying **software tools **[[Elephant>>https://elephant.readthedocs.io/en/latest/]], [[Neo>>https://neo.readthedocs.io/en/stable/]], [[Nix>>https://github.com/G-Node/nix]], [[Snakemake>>https://snakemake.readthedocs.io/en/stable/]].
137 +
122 122  == References ==
123 123  
124 124  * [[Celotto, Marco, et al. "Analysis and Model of Cortical Slow Waves Acquired with Optical Techniques." //Methods and Protocols// 3.1 (2020): 14.>>https://doi.org/10.3390/mps3010014]]
... ... @@ -127,14 +127,21 @@
127 127  * [[Sanchez-Vives, M. (2020). "Propagation modes of slow waves in mouse cortex".  //EBRAINS//>>https://doi.org/10.25493/WKA8-Q4T]]
128 128  * [[Sanchez-Vives, M. (2019). "Cortical activity features in transgenic mouse models of cognitive deficits (Fragile X Syndrome).//" EBRAINS//>>https://doi.org/10.25493/ANF9-EG3]]
129 129  
130 -== License (to discuss) ==
146 +Code developed at:
131 131  
132 -All text and example data in this collab is licensed under Creative Commons CC-BY 4.0 license. Software code is licensed under a modified BSD license.
148 +[[image:https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png||height="35" width="35"]][[INM-6/wavescalephant>>https://github.com/INM-6/wavescalephant]]
133 133  
150 +== License ==
151 +
152 +Text is licensed under the Creative Commons CC-BY 4.0 license. LENS data is licensed under the Creative Commons CC-BY-NC-ND 4.0 license. IDIBAPS data is licensed under the Creative Commons CC-BY-NC-SA 4.0 license. Software code is licensed under GNU General Public License v3.0.
153 +
134 134  [[image:https://i.creativecommons.org/l/by/4.0/88x31.png||style="float:left"]]
135 135  
136 -== ==
156 +[[image:https://licensebuttons.net/l/by-nc-sa/4.0/88x31.png||alt="https://i.creativecommons.org/l/by/4.0/88x31.png" style="float:left"]]
137 137  
158 +[[image:https://licensebuttons.net/l/by-nc-nd/4.0/88x31.png||alt="https://i.creativecommons.org/l/by/4.0/88x31.png" style="float:left"]]
159 +
160 +
138 138  == Acknowledgments ==
139 139  
140 140  This open source software code was developed in part or in whole in the Human Brain Project, funded from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 785907 (Human Brain Project SGA2).
... ... @@ -144,12 +144,12 @@
144 144  )))
145 145  
146 146  
147 -== Executing the pipeline ==
170 +== ==
148 148  
149 149  (% class="col-xs-12 col-sm-4" %)
150 150  (((
151 151  {{box title="**Contents**"}}
152 -{{toc/}}
175 +{{toc depth="3"/}}
153 153  {{/box}}
154 154  
155 155  
Collaboratory.Apps.Collab.Code.CollabClass[0]
Description
... ... @@ -1,1 +1,1 @@
1 -Space for developing and hosting a showcase pipeline for performing reproducible and adaptable analysis with the focus of slow cortical waves.
1 +Use Case SGA2-SP3-002 KR3.2: Integrating multi-scale data and the output of simulations in a reproducible and adaptable pipeline
XWiki.XWikiRights[3]
Allow/Deny
... ... @@ -1,0 +1,1 @@
1 +Allow
Levels
... ... @@ -1,0 +1,1 @@
1 +view
Users
... ... @@ -1,0 +1,1 @@
1 +XWiki.XWikiGuest