Changes for page SGA2 SP3 UC002 KR3.2 - Slow Wave Analysis Pipeline
Last modified by robing on 2022/03/25 09:55
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Objects (1 modified, 2 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. denker1 +XWiki.robing - Content
-
... ... @@ -74,10 +74,12 @@ 74 74 75 75 * **Run the notebook** 76 76 In the jupyter hub, navigate to //drive/My Libraries/My Library/pipeline/showcase_notebooks/run_snakemake_in_collab.ipynb//, or where you copied the //pipeline// folder to. 77 -Follow the notebook to install the required packages into your Python kernel, set the output path, and execute the pipeline with snakemake 77 +Follow the notebook to install the required packages into your Python kernel, set the output path, and execute the pipeline with snakemake. 78 78 79 79 === ii) Local execution === 80 80 81 +//tested only with Mac OS and Linux!// 82 + 81 81 * **Get the code** 82 82 The source code of the pipeline is available via Github: [[INM-6/wavescalephant>>https://github.com/INM-6/wavescalephant]] and can be cloned to your machine ([[how to get started with Github>>https://guides.github.com/activities/hello-world/]]). 83 83 ... ... @@ -86,6 +86,10 @@ 86 86 In the wavescalephant git repository, there is an environment file ([[pipeline/environment.yaml>>https://drive.ebrains.eu/smart-link/1a0b15bb-be87-46ee-b838-4734bc320d20/]]) specifying the required packages and versions. To build the environment, we recommend using conda ([[how to get started with conda>>https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html]]). 87 87 ##conda env create ~-~-file environment.yaml 88 88 conda activate wavescalephant_env## 91 + 92 +Make sure that neo and elephant were installed as their Github development version, and if necessary add them manually to the environment. 93 +##pip install git+https:~/~/github.com/NeuralEnsemble/elephant.git 94 +pip install git+https:~/~/github.com/NeuralEnsemble/python-neo.git## 89 89 90 90 ))) 91 91 * **Edit the settings** ... ... @@ -113,8 +113,20 @@ 113 113 114 114 All results are stored in the path specified in the //settings.py// file. The folder structure reflects the structuring of the pipeline into stages and blocks. All intermediate results are stored as //.nix// files using the [[Neo data format>>https://neo.readthedocs.io/en/stable/]] and can be loaded with ##neo.NixIO('/path/to/file.nix').read_block()##. Additionally, most blocks produce a figure, and each stage a report file, to give an overview of the execution log, parameters, intermediate results, and to help with debugging. The final stage (//stage05_wave_characterization//) stores the results as[[ //pandas.DataFrames//>>https://pandas.pydata.org/]] in //.csv// files, separately for each measure as well as in a combined dataframe for all measures. 115 115 116 - ==Outlook==122 +**Examples of the output figures (for IDIBAPS dataset)** 117 117 124 +* Stage 01 - [[example signal traces and metadata>>https://drive.ebrains.eu/smart-link/cf2fa914-260d-4d61-a2da-03ea07b7f9be/]] 125 +* Stage 02 - [[background substraction>>https://drive.ebrains.eu/smart-link/586d2f3c-591b-4dfb-94ee-8c0e28050dc4/]] 126 +* Stage 02 - [[logMUA estimation>>https://drive.ebrains.eu/smart-link/c92e4b0c-0938-44e8-9f8d-00522796b2fd/]] 127 +* Stage 02 - [[processed signal trace>>https://drive.ebrains.eu/smart-link/26ed27c6-de56-4b48-a57b-f70aab629197/]] 128 +* Stage 03 - [[amplitude distribution>>https://drive.ebrains.eu/smart-link/8ba80293-ba75-4a37-8a8f-05d44cf6f65c/]] 129 +* Stage 03 - [[UP state detection>>https://drive.ebrains.eu/smart-link/ab172be0-178e-4153-a3e6-b4bace32dd50/]] 130 +* Stage 04 - [[trigger clustering>>https://drive.ebrains.eu/smart-link/4a1f0169-8b43-49ce-80c8-f2fa0f4d50d3/]] 131 +* Stage 05 - [[planar velocities>>https://drive.ebrains.eu/smart-link/f4de8073-cb40-47a7-bc82-f97d36dbae25/]] 132 +* Stage 05 - [[directionality>>https://drive.ebrains.eu/smart-link/5485032d-0121-4cde-9ea2-3e0af3f12178/]] 133 + 134 +=== Outlook === 135 + 118 118 * Using the **KnowledgeGraph API **to insert data directly from the Knowledge Graph into the pipeline and also register and store the corresponding results as Analysis Objects. Such Analysis Objects are to incorporate **Provenance Tracking, **using [[fairgraph>>https://github.com/HumanBrainProject/fairgraph]],** **to record the details of the processing and analysis steps. 119 119 * Adding support for the pipeline to make use of **HPC** resources when running on the collab. 120 120 * Further extending the available **methods** to address a wider variety of analysis objectives and support the processing of other datatypes. Additional documentation and guides should also make it easier for non-developers to contribute new method blocks.
- Collaboratory.Apps.Collab.Code.CollabClass[0]
-
- Public
-
... ... @@ -1,1 +1,1 @@ 1 - No1 +Yes
- XWiki.XWikiRights[3]
-
- Allow/Deny
-
... ... @@ -1,0 +1,1 @@ 1 +Allow - Levels
-
... ... @@ -1,0 +1,1 @@ 1 +view - Users
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.XWikiGuest
- XWiki.XWikiRights[4]
-
- Allow/Deny
-
... ... @@ -1,0 +1,1 @@ 1 +Allow - Groups
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.XWikiAllGroup - Levels
-
... ... @@ -1,0 +1,1 @@ 1 +view