Changes for page Code description
Last modified by galluzziandrea on 2022/06/20 12:33
From version 7.1
edited by galluzziandrea
on 2021/12/09 14:49
on 2021/12/09 14:49
Change comment:
There is no comment for this version
To version 14.1
edited by galluzziandrea
on 2022/01/27 17:01
on 2022/01/27 17:01
Change comment:
Uploaded new attachment "image-20220127170104-1.png", version {1}
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 3 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -235,9 +235,290 @@ 235 235 # [.....],[],...] 236 236 {{/code}} 237 237 238 +=== Defining general and nest.kernel parameters === 238 238 240 +{{code language="python"}} 241 +#############################------------------------------------------------------------------------ 242 +#Clean the Network 243 +#############################------------------------------------------------------------------------ 244 +nest.ResetKernel() 239 239 246 +#############################------------------------------------------------------------------------ 247 +#insert the introductory parameters of the simulation 248 +#############################------------------------------------------------------------------------ 240 240 241 -=== Results === 242 242 251 +dt = 0.1 # the resolution in ms 252 +StartMisure=0. # start time of measurements 253 +simtime = int(float(InfoPerseo[3])) # Simulation time in ms (200 s) 254 +if simtime<=StartMisure: # If the simulation time is less than StartMisure, it is increased by StartMisure 255 + simtime=simtime+StartMisure 256 +start=0.0 # start time of poissonian processes 257 +origin=0.0 # temporal origin 258 + 259 +#############################------------------------------------------------------------------------ 260 +# Kernel parameters 261 +#############################------------------------------------------------------------------------ 262 +LNT=multiprocessing.cpu_count(); 263 +nest.SetKernelStatus({"local_num_threads": LNT}) 264 +nest.SetKernelStatus({"resolution": dt, "print_time": True, 265 + "overwrite_files": True}) 266 + 267 +#############################------------------------------------------------------------------------ 268 +#"randomize" the seeds of the random generators 269 +#############################------------------------------------------------------------------------ 270 + 271 +#msd = int(math.fabs(time.process_time()*1000)) 272 +#N_vp = nest.GetKernelStatus(['total_num_virtual_procs'])[0] 273 +#pyrngs = [numpy.random.RandomState(s) for s in range(msd, msd+N_vp)] 274 +#nest.SetKernelStatus({"grng_seed" : msd+N_vp}) 275 +#nest.SetKernelStatus({"rng_seeds" : list(range(msd+N_vp+1, msd+2*N_vp+1))}) 276 +{{/code}} 277 + 278 +=== Building the network: neuronal populations , Poisson processes and spike detectors === 279 + 280 +{{code language="python"}} 281 +#############################------------------------------------------------------------------------ 282 +print("Building network") 283 +#############################------------------------------------------------------------------------ 284 + 285 +startbuild = time.time() #initialize the calculation of the time used to simulate 286 + 287 +NeuronPop=[] 288 +NoisePop=[] 289 +DetectorPop=[] 290 + 291 +#define and initialize the populations of neurons with the parameters extracted from the.ini files 292 +for i in range(1,int(InfoBuild[0])+1): 293 + if int(InfoBuild[i][7])==0: 294 + app=float(InfoBuild[i][5]) 295 + else: 296 + app=0. 297 + app2= nest.Create("aeif_psc_exp", int(InfoBuild[i][0]),params={"C_m": 1.0, 298 + "g_L": 1.0/float(InfoBuild[i][3]), 299 + "t_ref": float(InfoBuild[i][6]), 300 + "E_L": 0.0, 301 + "V_reset": float(InfoBuild[i][5]), 302 + "V_m": app, 303 + "V_th": float(InfoBuild[i][4]), 304 + "Delta_T": 0., 305 + "tau_syn_ex": 1.0, 306 + "tau_syn_in": 1.0, 307 + "a": 0.0, 308 + "b": float(InfoBuild[i][10]), 309 + "tau_w": float(InfoBuild[i][9]), 310 + "V_peak":float(InfoBuild[i][4])+10.0}) 311 + NeuronPop.append(app2) 312 + 313 +#define and initialize the poisson generators and the spike detectors with the parameters extracted from the.ini files 314 + 315 +for i in range(1,int(InfoBuild[0])+1): 316 + app3= nest.Create("poisson_generator",params={"rate": float(InfoBuild[i][1]*InfoBuild[i][2]), 317 + 'origin':0., 318 + 'start':start}) 319 + NoisePop.append(app3) 320 + app4 = nest.Create("spike_recorder",params={ "start":StartMisure}) 321 + DetectorPop.append(app4) 322 + 323 +endbuild = time.time() 324 +{{/code}} 325 + 326 +(% class="wikigeneratedid" %) 327 +=== [[image:image-20220127165908-2.png||height="659" width="1149"]] === 328 + 329 +=== Connecting the network nodes: neuronal populations, Poisson processes and spike detectors === 330 + 331 +{{code language="python"}} 332 +#############################------------------------------------------------------------------------ 333 +print("Connecting ") 334 +#############################------------------------------------------------------------------------ 335 + 336 +startconnect = time.time() 337 +Connessioni=[] 338 +Medie=[] 339 + 340 +#create and define the connections between the populations of neurons and the poisson generators 341 +#and between the populations of neurons and the spike detectors with the parameters extracted from the.ini files 342 + 343 +for i in range(0,int(InfoBuild[0])): 344 + nest.Connect(NoisePop[i], NeuronPop[i], syn_spec={'synapse_model': 'static_synapse_hpc', 345 + 'delay': dt, 346 + 'weight': nest.math.redraw(nest.random.normal(mean=float(InfoConnectNoise[i+1][0]), 347 + std=(float(InfoConnectNoise[i+1][1])*float(InfoConnectNoise[i+1][0]))), 348 + min=0., max=float('Inf')) 349 + }) 350 + nest.Connect(NeuronPop[i][:int(InfoBuild[i+1][0])], DetectorPop[i], syn_spec={"weight": 1.0, "delay": dt}) 351 + 352 +#create and define the connections between the populations of neurons with the parameters extracted from the.ini files 353 + 354 +for i in range(0,len(InfoConnectPop[1:])): 355 + 356 + conn=nest.Connect(NeuronPop[int(InfoConnectPop[i+1][1])], NeuronPop[int(InfoConnectPop[i+1][0])], 357 + {'rule': 'pairwise_bernoulli', 358 + 'p':float(InfoConnectPop[i+1][2]) }, 359 + syn_spec={'synapse_model': 'static_synapse_hpc', 360 + 'delay':nest.math.redraw(nest.random.exponential(beta=float(1./(2.99573227355/(float(InfoConnectPop[i+1][4])-float(InfoConnectPop[i+1][3]))))), 361 + min= numpy.max([dt,float(1./float(InfoConnectPop[i+1][4]))]), 362 + max= float(1./(float(InfoConnectPop[i+1][3])-dt/2))), 363 + 364 + 'weight':nest.random.normal(mean=float(InfoConnectPop[i+1][6]), 365 + std=math.fabs(float(InfoConnectPop[i+1][6])*float(InfoConnectPop[i+1][7])))}) 366 + 367 + 368 +endconnect = time.time() 369 +{{/code}} 370 + 371 +=== === 372 + 373 +=== === 374 + 375 +=== Simulating: neuronal time evolution. === 376 + 377 +=== === 378 + 379 +{{code language="python"}} 380 + #############################------------------------------------------------------------------------ 381 + print("Simulating") 382 + #############################------------------------------------------------------------------------ 383 + ################################################################################################################################################################### 384 + if Salva: 385 + print("I m going to save the data") 386 + #x=str(iterazioni) 387 + f = open(FileName,"w") 388 + if len(InfoProtocol): 389 + print("I m going to split the simulation") 390 + tempo=0 391 + for contatore in range(0,len(InfoProtocol)): 392 + appoggio1=int((tempo+InfoProtocol[contatore][0])/1000.) 393 + appoggio2=int(tempo/1000.) 394 + appoggio3=tempo+InfoProtocol[contatore][0] 395 + if (appoggio1-appoggio2)>=1: 396 + T1=(1+appoggio2)*1000-tempo 397 + nest.Simulate(T1) 398 + #Save the Data!!!! 399 + ########################################################### 400 + Equilibri=[] 401 + for i in range(0,int(InfoBuild[0])): 402 + Equilibri.append([]) 403 + a=nest.GetStatus(DetectorPop[i])[0]["events"]["times"] 404 + if len(a)>0: 405 + Trange=(1000*int(numpy.min(a)/1000.),1000*int(numpy.min(a)/1000.)+1000) 406 + hist,Tbin=numpy.histogram(a,200,(Trange[0],Trange[1])) 407 + Equilibri[i]=hist*1000./(5.*int(InfoBuild[i+1][0])) 408 + else: 409 + Trange=(1000*int(tempo/1000.),1000*int(tempo/1000.)+1000) 410 + hist=numpy.zeros(200) 411 + Tbin=numpy.linspace(Trange[0],Trange[1],num=201) 412 + Equilibri[i]=hist 413 + nest.SetStatus(DetectorPop[i],{'n_events':0}) 414 + for j in range(0,len(hist)): 415 + f.write(str(Tbin[j])+" ") 416 + for i in range(0,int(InfoBuild[0])): 417 + f.write(str(Equilibri[i][j])+" ") 418 + f.write("\n ") 419 + ########################################################### 420 + tempo=tempo+T1 421 + for contatore2 in range(1,(appoggio1-appoggio2)): 422 + nest.Simulate(1000.) 423 + #Save the Data!!!! 424 + ########################################################### 425 + Equilibri=[] 426 + for i in range(0,int(InfoBuild[0])): 427 + Equilibri.append([]) 428 + a=nest.GetStatus(DetectorPop[i])[0]["events"]["times"] 429 + if len(a)>0: 430 + Trange=(1000*int(numpy.min(a)/1000.),1000*int(numpy.min(a)/1000.)+1000) 431 + hist,Tbin=numpy.histogram(a,200,(Trange[0],Trange[1])) 432 + Equilibri[i]=hist*1000./(5.*int(InfoBuild[i+1][0])) 433 + else: 434 + Trange=(1000*int(tempo/1000.),1000*int(tempo/1000.)+1000) 435 + hist=numpy.zeros(200) 436 + Tbin=numpy.linspace(Trange[0],Trange[1],num=201) 437 + Equilibri[i]=hist 438 + nest.SetStatus(DetectorPop[i],{'n_events':0}) 439 + for j in range(0,len(hist)): 440 + f.write(str(Tbin[j])+" ") 441 + for i in range(0,int(InfoBuild[0])): 442 + f.write(str(Equilibri[i][j])+" ") 443 + f.write("\n ") 444 + tempo=tempo+1000. 445 + T2=appoggio3-tempo 446 + nest.Simulate(T2); 447 + tempo=tempo+T2; 448 + else: 449 + nest.Simulate(InfoProtocol[contatore][0]) 450 + temp=InfoProtocol[contatore][0] 451 + tempo=tempo+temp 452 + if InfoProtocol[contatore][2]==4: 453 + nest.SetStatus(NoisePop[InfoProtocol[contatore][1]],params={"rate": float(InfoBuild[1+InfoProtocol[contatore][1]][2]*InfoProtocol[contatore][3])}) 454 + if InfoProtocol[contatore][2]==12: 455 + nest.SetStatus(NeuronPop[InfoProtocol[contatore][1]], params={"b": float(InfoProtocol[contatore][3])}) 456 + else: 457 + nest.Simulate(simtime) 458 + tempo=simtime 459 + if (simtime-tempo)>0.: 460 + nest.Simulate(simtime-tempo) 461 + 462 + 463 + endsimulate = time.time() 464 + f.close() 465 + else: 466 + if len(InfoProtocol): 467 + tempo=0 468 + for contatore in range(0,len(InfoProtocol)): 469 + nest.Simulate(InfoProtocol[contatore][0]) 470 + temp=InfoProtocol[contatore][0] 471 + tempo=tempo+temp 472 + if InfoProtocol[contatore][2]==4: 473 + nest.SetStatus(NoisePop[InfoProtocol[contatore][1]],params={"rate": float(InfoBuild[1+InfoProtocol[contatore][1]][2]*InfoProtocol[contatore][3])}) 474 + #print "Population:", InfoProtocol[contatore][1] ,";Parameter:", InfoProtocol[contatore][2] ,"; Value: ",InfoProtocol[contatore][3] 475 + if InfoProtocol[contatore][2]==12: 476 + nest.SetStatus(NeuronPop[InfoProtocol[contatore][1]], params={"b": float(InfoProtocol[contatore][3])}) 477 + #print "Population:", InfoProtocol[contatore][1] ,";Parameter:", InfoProtocol[contatore][2] ,"; Value: ",InfoProtocol[contatore][3] 478 + 479 + else: 480 + nest.Simulate(simtime) 481 + tempo=simtime 482 + if (simtime-tempo)>0.: 483 + nest.Simulate(simtime-tempo) 484 + endsimulate = time.time() 485 + 486 + 487 + ################################################################################################################################################################### 488 + 489 + #############################------------------------------------------------------------------------ 490 + #print some information from the simulation 491 + #############################------------------------------------------------------------------------ 492 + 493 + num_synapses = nest.GetDefaults('static_synapse_hpc')["num_connections"] 494 + build_time = endbuild - startbuild 495 + connect_time = endconnect - startconnect 496 + sim_time = endsimulate - endconnect 497 + 498 + N_neurons=0 499 + for i in range(0,int(InfoBuild[0])): 500 + N_neurons=N_neurons+int(InfoBuild[i+1][0]) 501 + 502 + print(" Network simulation (Python) neuron type:",InfoPerseo[0]) 503 + print("Number of neurons : {0}".format(N_neurons)) 504 + print("Number of synapses: {0}".format(num_synapses)) 505 + print("Building time : %.2f s" % build_time) 506 + print("Connecting time : %.2f s" % connect_time) 507 + print("Simulation time : %.2f s" % sim_time) 508 + 509 +Fine=time.time() 510 +print ("Total Simulation time : %.2f s" % (Fine-Inizio)) 511 +{{/code}} 512 + 513 +=== === 514 + 515 +=== Results: === 516 + 517 +the output of this simulationo is... 518 + 519 + 520 + 521 + 522 + 523 + 243 243 ==== ====
- image-20220127165822-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.galluzziandrea - Size
-
... ... @@ -1,0 +1,1 @@ 1 +237.6 KB - Content
- image-20220127165908-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.galluzziandrea - Size
-
... ... @@ -1,0 +1,1 @@ 1 +106.6 KB - Content
- image-20220127170104-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.galluzziandrea - Size
-
... ... @@ -1,0 +1,1 @@ 1 +149.6 KB - Content
- Introduction (path and modules):
- Check where I am and place myself in the right folder:
- Import the modules necessary for the simulation:
- Define necessary classes to import the Initialization Files:
- Import the initialization files:
- Defining general and nest.kernel parameters
- Building the network: neuronal populations , Poisson processes and spike detectors
- Connecting the network nodes: neuronal populations, Poisson processes and spike detectors
- Simulating: neuronal time evolution.
- Results: