Changes for page Code description
Last modified by galluzziandrea on 2022/06/20 12:33
From version 7.1
edited by galluzziandrea
on 2021/12/09 14:49
on 2021/12/09 14:49
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 8 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. galluzziandrea1 +XWiki.mattia - Content
-
... ... @@ -235,9 +235,297 @@ 235 235 # [.....],[],...] 236 236 {{/code}} 237 237 238 +=== [[image:image-20220127173048-1.png||height="508" width="948"]] === 238 238 240 +=== Defining general and nest.kernel parameters === 239 239 242 +{{code language="python"}} 243 +#############################------------------------------------------------------------------------ 244 +#Clean the Network 245 +#############################------------------------------------------------------------------------ 246 +nest.ResetKernel() 240 240 241 -=== Results === 248 +#############################------------------------------------------------------------------------ 249 +#insert the introductory parameters of the simulation 250 +#############################------------------------------------------------------------------------ 242 242 252 + 253 +dt = 0.1 # the resolution in ms 254 +StartMisure=0. # start time of measurements 255 +simtime = int(float(InfoPerseo[3])) # Simulation time in ms (200 s) 256 +if simtime<=StartMisure: # If the simulation time is less than StartMisure, it is increased by StartMisure 257 + simtime=simtime+StartMisure 258 +start=0.0 # start time of poissonian processes 259 +origin=0.0 # temporal origin 260 + 261 +#############################------------------------------------------------------------------------ 262 +# Kernel parameters 263 +#############################------------------------------------------------------------------------ 264 +LNT=multiprocessing.cpu_count(); 265 +nest.SetKernelStatus({"local_num_threads": LNT}) 266 +nest.SetKernelStatus({"resolution": dt, "print_time": True, 267 + "overwrite_files": True}) 268 + 269 +#############################------------------------------------------------------------------------ 270 +#"randomize" the seeds of the random generators 271 +#############################------------------------------------------------------------------------ 272 + 273 +#msd = int(math.fabs(time.process_time()*1000)) 274 +#N_vp = nest.GetKernelStatus(['total_num_virtual_procs'])[0] 275 +#pyrngs = [numpy.random.RandomState(s) for s in range(msd, msd+N_vp)] 276 +#nest.SetKernelStatus({"grng_seed" : msd+N_vp}) 277 +#nest.SetKernelStatus({"rng_seeds" : list(range(msd+N_vp+1, msd+2*N_vp+1))}) 278 +{{/code}} 279 + 280 +=== Building the network: neuronal populations , Poisson processes and spike detectors === 281 + 282 +{{code language="python"}} 283 +#############################------------------------------------------------------------------------ 284 +print("Building network") 285 +#############################------------------------------------------------------------------------ 286 + 287 +startbuild = time.time() #initialize the calculation of the time used to simulate 288 + 289 +NeuronPop=[] 290 +NoisePop=[] 291 +DetectorPop=[] 292 + 293 +#define and initialize the populations of neurons with the parameters extracted from the.ini files 294 +for i in range(1,int(InfoBuild[0])+1): 295 + if int(InfoBuild[i][7])==0: 296 + app=float(InfoBuild[i][5]) 297 + else: 298 + app=0. 299 + app2= nest.Create("aeif_psc_exp", int(InfoBuild[i][0]),params={"C_m": 1.0, 300 + "g_L": 1.0/float(InfoBuild[i][3]), 301 + "t_ref": float(InfoBuild[i][6]), 302 + "E_L": 0.0, 303 + "V_reset": float(InfoBuild[i][5]), 304 + "V_m": app, 305 + "V_th": float(InfoBuild[i][4]), 306 + "Delta_T": 0., 307 + "tau_syn_ex": 1.0, 308 + "tau_syn_in": 1.0, 309 + "a": 0.0, 310 + "b": float(InfoBuild[i][10]), 311 + "tau_w": float(InfoBuild[i][9]), 312 + "V_peak":float(InfoBuild[i][4])+10.0}) 313 + NeuronPop.append(app2) 314 + 315 +#define and initialize the poisson generators and the spike detectors with the parameters extracted from the.ini files 316 + 317 +for i in range(1,int(InfoBuild[0])+1): 318 + app3= nest.Create("poisson_generator",params={"rate": float(InfoBuild[i][1]*InfoBuild[i][2]), 319 + 'origin':0., 320 + 'start':start}) 321 + NoisePop.append(app3) 322 + app4 = nest.Create("spike_recorder",params={ "start":StartMisure}) 323 + DetectorPop.append(app4) 324 + 325 +endbuild = time.time() 326 +{{/code}} 327 + 328 +=== [[image:image-20220127165908-2.png||height="659" width="1149"]] === 329 + 330 +=== Connecting the network nodes: neuronal populations, Poisson processes and spike detectors === 331 + 332 +{{code language="python"}} 333 +#############################------------------------------------------------------------------------ 334 +print("Connecting ") 335 +#############################------------------------------------------------------------------------ 336 + 337 +startconnect = time.time() 338 +Connessioni=[] 339 +Medie=[] 340 + 341 +#create and define the connections between the populations of neurons and the poisson generators 342 +#and between the populations of neurons and the spike detectors with the parameters extracted from the.ini files 343 + 344 +for i in range(0,int(InfoBuild[0])): 345 + nest.Connect(NoisePop[i], NeuronPop[i], syn_spec={'synapse_model': 'static_synapse_hpc', 346 + 'delay': dt, 347 + 'weight': nest.math.redraw(nest.random.normal(mean=float(InfoConnectNoise[i+1][0]), 348 + std=(float(InfoConnectNoise[i+1][1])*float(InfoConnectNoise[i+1][0]))), 349 + min=0., max=float('Inf')) 350 + }) 351 + nest.Connect(NeuronPop[i][:int(InfoBuild[i+1][0])], DetectorPop[i], syn_spec={"weight": 1.0, "delay": dt}) 352 + 353 +#create and define the connections between the populations of neurons with the parameters extracted from the.ini files 354 + 355 +for i in range(0,len(InfoConnectPop[1:])): 356 + 357 + conn=nest.Connect(NeuronPop[int(InfoConnectPop[i+1][1])], NeuronPop[int(InfoConnectPop[i+1][0])], 358 + {'rule': 'pairwise_bernoulli', 359 + 'p':float(InfoConnectPop[i+1][2]) }, 360 + syn_spec={'synapse_model': 'static_synapse_hpc', 361 + 'delay':nest.math.redraw(nest.random.exponential(beta=float(1./(2.99573227355/(float(InfoConnectPop[i+1][4])-float(InfoConnectPop[i+1][3]))))), 362 + min= numpy.max([dt,float(1./float(InfoConnectPop[i+1][4]))]), 363 + max= float(1./(float(InfoConnectPop[i+1][3])-dt/2))), 364 + 365 + 'weight':nest.random.normal(mean=float(InfoConnectPop[i+1][6]), 366 + std=math.fabs(float(InfoConnectPop[i+1][6])*float(InfoConnectPop[i+1][7])))}) 367 + 368 + 369 +endconnect = time.time() 370 +{{/code}} 371 + 372 +=== === 373 + 374 +=== === 375 + 376 +=== [[image:image-20220127170722-1.png]] === 377 + 378 +=== Simulating: neuronal time evolution. === 379 + 380 +=== === 381 + 382 +{{code language="python"}} 383 + #############################------------------------------------------------------------------------ 384 + print("Simulating") 385 + #############################------------------------------------------------------------------------ 386 + ################################################################################################################################################################### 387 + if Salva: 388 + print("I m going to save the data") 389 + #x=str(iterazioni) 390 + f = open(FileName,"w") 391 + if len(InfoProtocol): 392 + print("I m going to split the simulation") 393 + tempo=0 394 + for contatore in range(0,len(InfoProtocol)): 395 + appoggio1=int((tempo+InfoProtocol[contatore][0])/1000.) 396 + appoggio2=int(tempo/1000.) 397 + appoggio3=tempo+InfoProtocol[contatore][0] 398 + if (appoggio1-appoggio2)>=1: 399 + T1=(1+appoggio2)*1000-tempo 400 + nest.Simulate(T1) 401 + #Save the Data!!!! 402 + ########################################################### 403 + Equilibri=[] 404 + for i in range(0,int(InfoBuild[0])): 405 + Equilibri.append([]) 406 + a=nest.GetStatus(DetectorPop[i])[0]["events"]["times"] 407 + if len(a)>0: 408 + Trange=(1000*int(numpy.min(a)/1000.),1000*int(numpy.min(a)/1000.)+1000) 409 + hist,Tbin=numpy.histogram(a,200,(Trange[0],Trange[1])) 410 + Equilibri[i]=hist*1000./(5.*int(InfoBuild[i+1][0])) 411 + else: 412 + Trange=(1000*int(tempo/1000.),1000*int(tempo/1000.)+1000) 413 + hist=numpy.zeros(200) 414 + Tbin=numpy.linspace(Trange[0],Trange[1],num=201) 415 + Equilibri[i]=hist 416 + nest.SetStatus(DetectorPop[i],{'n_events':0}) 417 + for j in range(0,len(hist)): 418 + f.write(str(Tbin[j])+" ") 419 + for i in range(0,int(InfoBuild[0])): 420 + f.write(str(Equilibri[i][j])+" ") 421 + f.write("\n ") 422 + ########################################################### 423 + tempo=tempo+T1 424 + for contatore2 in range(1,(appoggio1-appoggio2)): 425 + nest.Simulate(1000.) 426 + #Save the Data!!!! 427 + ########################################################### 428 + Equilibri=[] 429 + for i in range(0,int(InfoBuild[0])): 430 + Equilibri.append([]) 431 + a=nest.GetStatus(DetectorPop[i])[0]["events"]["times"] 432 + if len(a)>0: 433 + Trange=(1000*int(numpy.min(a)/1000.),1000*int(numpy.min(a)/1000.)+1000) 434 + hist,Tbin=numpy.histogram(a,200,(Trange[0],Trange[1])) 435 + Equilibri[i]=hist*1000./(5.*int(InfoBuild[i+1][0])) 436 + else: 437 + Trange=(1000*int(tempo/1000.),1000*int(tempo/1000.)+1000) 438 + hist=numpy.zeros(200) 439 + Tbin=numpy.linspace(Trange[0],Trange[1],num=201) 440 + Equilibri[i]=hist 441 + nest.SetStatus(DetectorPop[i],{'n_events':0}) 442 + for j in range(0,len(hist)): 443 + f.write(str(Tbin[j])+" ") 444 + for i in range(0,int(InfoBuild[0])): 445 + f.write(str(Equilibri[i][j])+" ") 446 + f.write("\n ") 447 + tempo=tempo+1000. 448 + T2=appoggio3-tempo 449 + nest.Simulate(T2); 450 + tempo=tempo+T2; 451 + else: 452 + nest.Simulate(InfoProtocol[contatore][0]) 453 + temp=InfoProtocol[contatore][0] 454 + tempo=tempo+temp 455 + if InfoProtocol[contatore][2]==4: 456 + nest.SetStatus(NoisePop[InfoProtocol[contatore][1]],params={"rate": float(InfoBuild[1+InfoProtocol[contatore][1]][2]*InfoProtocol[contatore][3])}) 457 + if InfoProtocol[contatore][2]==12: 458 + nest.SetStatus(NeuronPop[InfoProtocol[contatore][1]], params={"b": float(InfoProtocol[contatore][3])}) 459 + else: 460 + nest.Simulate(simtime) 461 + tempo=simtime 462 + if (simtime-tempo)>0.: 463 + nest.Simulate(simtime-tempo) 464 + 465 + 466 + endsimulate = time.time() 467 + f.close() 468 + else: 469 + if len(InfoProtocol): 470 + tempo=0 471 + for contatore in range(0,len(InfoProtocol)): 472 + nest.Simulate(InfoProtocol[contatore][0]) 473 + temp=InfoProtocol[contatore][0] 474 + tempo=tempo+temp 475 + if InfoProtocol[contatore][2]==4: 476 + nest.SetStatus(NoisePop[InfoProtocol[contatore][1]],params={"rate": float(InfoBuild[1+InfoProtocol[contatore][1]][2]*InfoProtocol[contatore][3])}) 477 + #print "Population:", InfoProtocol[contatore][1] ,";Parameter:", InfoProtocol[contatore][2] ,"; Value: ",InfoProtocol[contatore][3] 478 + if InfoProtocol[contatore][2]==12: 479 + nest.SetStatus(NeuronPop[InfoProtocol[contatore][1]], params={"b": float(InfoProtocol[contatore][3])}) 480 + #print "Population:", InfoProtocol[contatore][1] ,";Parameter:", InfoProtocol[contatore][2] ,"; Value: ",InfoProtocol[contatore][3] 481 + 482 + else: 483 + nest.Simulate(simtime) 484 + tempo=simtime 485 + if (simtime-tempo)>0.: 486 + nest.Simulate(simtime-tempo) 487 + endsimulate = time.time() 488 + 489 + 490 + ################################################################################################################################################################### 491 + 492 + #############################------------------------------------------------------------------------ 493 + #print some information from the simulation 494 + #############################------------------------------------------------------------------------ 495 + 496 + num_synapses = nest.GetDefaults('static_synapse_hpc')["num_connections"] 497 + build_time = endbuild - startbuild 498 + connect_time = endconnect - startconnect 499 + sim_time = endsimulate - endconnect 500 + 501 + N_neurons=0 502 + for i in range(0,int(InfoBuild[0])): 503 + N_neurons=N_neurons+int(InfoBuild[i+1][0]) 504 + 505 + print(" Network simulation (Python) neuron type:",InfoPerseo[0]) 506 + print("Number of neurons : {0}".format(N_neurons)) 507 + print("Number of synapses: {0}".format(num_synapses)) 508 + print("Building time : %.2f s" % build_time) 509 + print("Connecting time : %.2f s" % connect_time) 510 + print("Simulation time : %.2f s" % sim_time) 511 + 512 +Fine=time.time() 513 +print ("Total Simulation time : %.2f s" % (Fine-Inizio)) 514 +{{/code}} 515 + 516 +=== === 517 + 518 +=== === 519 + 520 +=== [[image:image-20220127171242-1.png]] === 521 + 522 +=== Results: === 523 + 524 +[[the output of this simulation is...>>https://drive.ebrains.eu/smart-link/215f8213-17e3-468b-b573-e6eaf49d315e/]] 525 + 526 + 527 + 528 + 529 + 530 + 243 243 ==== ====
- CorticalField_t=80_DeepSpontPlanar.mp4
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.galluzziandrea - Size
-
... ... @@ -1,0 +1,1 @@ 1 +3.4 MB - Content
- image-20220127165822-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.galluzziandrea - Size
-
... ... @@ -1,0 +1,1 @@ 1 +237.6 KB - Content
- image-20220127165908-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.galluzziandrea - Size
-
... ... @@ -1,0 +1,1 @@ 1 +106.6 KB - Content
- image-20220127170104-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.galluzziandrea - Size
-
... ... @@ -1,0 +1,1 @@ 1 +149.6 KB - Content
- image-20220127170155-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.galluzziandrea - Size
-
... ... @@ -1,0 +1,1 @@ 1 +280.0 KB - Content
- image-20220127170722-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.galluzziandrea - Size
-
... ... @@ -1,0 +1,1 @@ 1 +220.5 KB - Content
- image-20220127171242-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.galluzziandrea - Size
-
... ... @@ -1,0 +1,1 @@ 1 +301.3 KB - Content
- image-20220127173048-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.galluzziandrea - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- Introduction (path and modules):
- Check where I am and place myself in the right folder:
- Import the modules necessary for the simulation:
- Define necessary classes to import the Initialization Files:
- Import the initialization files:
- Defining general and nest.kernel parameters
- Building the network: neuronal populations , Poisson processes and spike detectors
- Connecting the network nodes: neuronal populations, Poisson processes and spike detectors
- Simulating: neuronal time evolution.
- Results: