Changes for page Code description
Last modified by galluzziandrea on 2022/06/20 12:33
From version 8.1
edited by galluzziandrea
on 2021/12/09 14:58
on 2021/12/09 14:58
Change comment:
There is no comment for this version
To version 20.1
edited by galluzziandrea
on 2022/01/27 17:12
on 2022/01/27 17:12
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 6 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -323,6 +323,208 @@ 323 323 endbuild = time.time() 324 324 {{/code}} 325 325 326 -=== Results===326 +=== [[image:image-20220127165908-2.png||height="659" width="1149"]] === 327 327 328 +=== Connecting the network nodes: neuronal populations, Poisson processes and spike detectors === 329 + 330 +{{code language="python"}} 331 +#############################------------------------------------------------------------------------ 332 +print("Connecting ") 333 +#############################------------------------------------------------------------------------ 334 + 335 +startconnect = time.time() 336 +Connessioni=[] 337 +Medie=[] 338 + 339 +#create and define the connections between the populations of neurons and the poisson generators 340 +#and between the populations of neurons and the spike detectors with the parameters extracted from the.ini files 341 + 342 +for i in range(0,int(InfoBuild[0])): 343 + nest.Connect(NoisePop[i], NeuronPop[i], syn_spec={'synapse_model': 'static_synapse_hpc', 344 + 'delay': dt, 345 + 'weight': nest.math.redraw(nest.random.normal(mean=float(InfoConnectNoise[i+1][0]), 346 + std=(float(InfoConnectNoise[i+1][1])*float(InfoConnectNoise[i+1][0]))), 347 + min=0., max=float('Inf')) 348 + }) 349 + nest.Connect(NeuronPop[i][:int(InfoBuild[i+1][0])], DetectorPop[i], syn_spec={"weight": 1.0, "delay": dt}) 350 + 351 +#create and define the connections between the populations of neurons with the parameters extracted from the.ini files 352 + 353 +for i in range(0,len(InfoConnectPop[1:])): 354 + 355 + conn=nest.Connect(NeuronPop[int(InfoConnectPop[i+1][1])], NeuronPop[int(InfoConnectPop[i+1][0])], 356 + {'rule': 'pairwise_bernoulli', 357 + 'p':float(InfoConnectPop[i+1][2]) }, 358 + syn_spec={'synapse_model': 'static_synapse_hpc', 359 + 'delay':nest.math.redraw(nest.random.exponential(beta=float(1./(2.99573227355/(float(InfoConnectPop[i+1][4])-float(InfoConnectPop[i+1][3]))))), 360 + min= numpy.max([dt,float(1./float(InfoConnectPop[i+1][4]))]), 361 + max= float(1./(float(InfoConnectPop[i+1][3])-dt/2))), 362 + 363 + 'weight':nest.random.normal(mean=float(InfoConnectPop[i+1][6]), 364 + std=math.fabs(float(InfoConnectPop[i+1][6])*float(InfoConnectPop[i+1][7])))}) 365 + 366 + 367 +endconnect = time.time() 368 +{{/code}} 369 + 370 +=== === 371 + 372 +=== === 373 + 374 +=== [[image:image-20220127170722-1.png]] === 375 + 376 +=== Simulating: neuronal time evolution. === 377 + 378 +=== === 379 + 380 +{{code language="python"}} 381 + #############################------------------------------------------------------------------------ 382 + print("Simulating") 383 + #############################------------------------------------------------------------------------ 384 + ################################################################################################################################################################### 385 + if Salva: 386 + print("I m going to save the data") 387 + #x=str(iterazioni) 388 + f = open(FileName,"w") 389 + if len(InfoProtocol): 390 + print("I m going to split the simulation") 391 + tempo=0 392 + for contatore in range(0,len(InfoProtocol)): 393 + appoggio1=int((tempo+InfoProtocol[contatore][0])/1000.) 394 + appoggio2=int(tempo/1000.) 395 + appoggio3=tempo+InfoProtocol[contatore][0] 396 + if (appoggio1-appoggio2)>=1: 397 + T1=(1+appoggio2)*1000-tempo 398 + nest.Simulate(T1) 399 + #Save the Data!!!! 400 + ########################################################### 401 + Equilibri=[] 402 + for i in range(0,int(InfoBuild[0])): 403 + Equilibri.append([]) 404 + a=nest.GetStatus(DetectorPop[i])[0]["events"]["times"] 405 + if len(a)>0: 406 + Trange=(1000*int(numpy.min(a)/1000.),1000*int(numpy.min(a)/1000.)+1000) 407 + hist,Tbin=numpy.histogram(a,200,(Trange[0],Trange[1])) 408 + Equilibri[i]=hist*1000./(5.*int(InfoBuild[i+1][0])) 409 + else: 410 + Trange=(1000*int(tempo/1000.),1000*int(tempo/1000.)+1000) 411 + hist=numpy.zeros(200) 412 + Tbin=numpy.linspace(Trange[0],Trange[1],num=201) 413 + Equilibri[i]=hist 414 + nest.SetStatus(DetectorPop[i],{'n_events':0}) 415 + for j in range(0,len(hist)): 416 + f.write(str(Tbin[j])+" ") 417 + for i in range(0,int(InfoBuild[0])): 418 + f.write(str(Equilibri[i][j])+" ") 419 + f.write("\n ") 420 + ########################################################### 421 + tempo=tempo+T1 422 + for contatore2 in range(1,(appoggio1-appoggio2)): 423 + nest.Simulate(1000.) 424 + #Save the Data!!!! 425 + ########################################################### 426 + Equilibri=[] 427 + for i in range(0,int(InfoBuild[0])): 428 + Equilibri.append([]) 429 + a=nest.GetStatus(DetectorPop[i])[0]["events"]["times"] 430 + if len(a)>0: 431 + Trange=(1000*int(numpy.min(a)/1000.),1000*int(numpy.min(a)/1000.)+1000) 432 + hist,Tbin=numpy.histogram(a,200,(Trange[0],Trange[1])) 433 + Equilibri[i]=hist*1000./(5.*int(InfoBuild[i+1][0])) 434 + else: 435 + Trange=(1000*int(tempo/1000.),1000*int(tempo/1000.)+1000) 436 + hist=numpy.zeros(200) 437 + Tbin=numpy.linspace(Trange[0],Trange[1],num=201) 438 + Equilibri[i]=hist 439 + nest.SetStatus(DetectorPop[i],{'n_events':0}) 440 + for j in range(0,len(hist)): 441 + f.write(str(Tbin[j])+" ") 442 + for i in range(0,int(InfoBuild[0])): 443 + f.write(str(Equilibri[i][j])+" ") 444 + f.write("\n ") 445 + tempo=tempo+1000. 446 + T2=appoggio3-tempo 447 + nest.Simulate(T2); 448 + tempo=tempo+T2; 449 + else: 450 + nest.Simulate(InfoProtocol[contatore][0]) 451 + temp=InfoProtocol[contatore][0] 452 + tempo=tempo+temp 453 + if InfoProtocol[contatore][2]==4: 454 + nest.SetStatus(NoisePop[InfoProtocol[contatore][1]],params={"rate": float(InfoBuild[1+InfoProtocol[contatore][1]][2]*InfoProtocol[contatore][3])}) 455 + if InfoProtocol[contatore][2]==12: 456 + nest.SetStatus(NeuronPop[InfoProtocol[contatore][1]], params={"b": float(InfoProtocol[contatore][3])}) 457 + else: 458 + nest.Simulate(simtime) 459 + tempo=simtime 460 + if (simtime-tempo)>0.: 461 + nest.Simulate(simtime-tempo) 462 + 463 + 464 + endsimulate = time.time() 465 + f.close() 466 + else: 467 + if len(InfoProtocol): 468 + tempo=0 469 + for contatore in range(0,len(InfoProtocol)): 470 + nest.Simulate(InfoProtocol[contatore][0]) 471 + temp=InfoProtocol[contatore][0] 472 + tempo=tempo+temp 473 + if InfoProtocol[contatore][2]==4: 474 + nest.SetStatus(NoisePop[InfoProtocol[contatore][1]],params={"rate": float(InfoBuild[1+InfoProtocol[contatore][1]][2]*InfoProtocol[contatore][3])}) 475 + #print "Population:", InfoProtocol[contatore][1] ,";Parameter:", InfoProtocol[contatore][2] ,"; Value: ",InfoProtocol[contatore][3] 476 + if InfoProtocol[contatore][2]==12: 477 + nest.SetStatus(NeuronPop[InfoProtocol[contatore][1]], params={"b": float(InfoProtocol[contatore][3])}) 478 + #print "Population:", InfoProtocol[contatore][1] ,";Parameter:", InfoProtocol[contatore][2] ,"; Value: ",InfoProtocol[contatore][3] 479 + 480 + else: 481 + nest.Simulate(simtime) 482 + tempo=simtime 483 + if (simtime-tempo)>0.: 484 + nest.Simulate(simtime-tempo) 485 + endsimulate = time.time() 486 + 487 + 488 + ################################################################################################################################################################### 489 + 490 + #############################------------------------------------------------------------------------ 491 + #print some information from the simulation 492 + #############################------------------------------------------------------------------------ 493 + 494 + num_synapses = nest.GetDefaults('static_synapse_hpc')["num_connections"] 495 + build_time = endbuild - startbuild 496 + connect_time = endconnect - startconnect 497 + sim_time = endsimulate - endconnect 498 + 499 + N_neurons=0 500 + for i in range(0,int(InfoBuild[0])): 501 + N_neurons=N_neurons+int(InfoBuild[i+1][0]) 502 + 503 + print(" Network simulation (Python) neuron type:",InfoPerseo[0]) 504 + print("Number of neurons : {0}".format(N_neurons)) 505 + print("Number of synapses: {0}".format(num_synapses)) 506 + print("Building time : %.2f s" % build_time) 507 + print("Connecting time : %.2f s" % connect_time) 508 + print("Simulation time : %.2f s" % sim_time) 509 + 510 +Fine=time.time() 511 +print ("Total Simulation time : %.2f s" % (Fine-Inizio)) 512 +{{/code}} 513 + 514 +=== === 515 + 516 +=== === 517 + 518 +(% class="wikigeneratedid" %) 519 +=== [[image:image-20220127171242-1.png]] === 520 + 521 +=== Results: === 522 + 523 +the output of this simulationo is... 524 + 525 + 526 + 527 + 528 + 529 + 328 328 ==== ====
- image-20220127165822-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.galluzziandrea - Size
-
... ... @@ -1,0 +1,1 @@ 1 +237.6 KB - Content
- image-20220127165908-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.galluzziandrea - Size
-
... ... @@ -1,0 +1,1 @@ 1 +106.6 KB - Content
- image-20220127170104-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.galluzziandrea - Size
-
... ... @@ -1,0 +1,1 @@ 1 +149.6 KB - Content
- image-20220127170155-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.galluzziandrea - Size
-
... ... @@ -1,0 +1,1 @@ 1 +280.0 KB - Content
- image-20220127170722-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.galluzziandrea - Size
-
... ... @@ -1,0 +1,1 @@ 1 +220.5 KB - Content
- image-20220127171242-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.galluzziandrea - Size
-
... ... @@ -1,0 +1,1 @@ 1 +301.3 KB - Content
- Introduction (path and modules):
- Check where I am and place myself in the right folder:
- Import the modules necessary for the simulation:
- Define necessary classes to import the Initialization Files:
- Import the initialization files:
- Defining general and nest.kernel parameters
- Building the network: neuronal populations , Poisson processes and spike detectors
- Connecting the network nodes: neuronal populations, Poisson processes and spike detectors
- Simulating: neuronal time evolution.
- Results: