Wiki source code of Code description
Version 20.1 by galluzziandrea on 2022/01/27 17:12
Show last authors
author | version | line-number | content |
---|---|---|---|
1 | == Introduction (path and modules): == | ||
2 | |||
3 | First of all we check the path and import the necessary modules . | ||
4 | |||
5 | === Check where I am and place myself in the right folder: === | ||
6 | |||
7 | {{code language="python"}} | ||
8 | # Import the os module | ||
9 | import os | ||
10 | |||
11 | #Print the current working directory | ||
12 | print("Current working directory: {0}".format(os.getcwd())) | ||
13 | |||
14 | # Change the current working directory | ||
15 | os.chdir('/mnt/user/shared/Slow waves in fading anesthesia/Nest3Python3') | ||
16 | |||
17 | # Print the current working directory | ||
18 | print("Current working directory: {0}".format(os.getcwd())) | ||
19 | {{/code}} | ||
20 | |||
21 | === Import the modules necessary for the simulation: === | ||
22 | |||
23 | {{code language="python"}} | ||
24 | import nest | ||
25 | import time | ||
26 | from numpy import exp | ||
27 | import numpy | ||
28 | import math | ||
29 | import random | ||
30 | import multiprocessing | ||
31 | Inizio=time.time() | ||
32 | print('tempo di Inizio:',Inizio) | ||
33 | {{/code}} | ||
34 | |||
35 | === === | ||
36 | |||
37 | === Define necessary classes to import the Initialization Files: === | ||
38 | |||
39 | {{code language="python" title=" "}} | ||
40 | class ImportIniLIFCA(): | ||
41 | #initialize the information to look for in perseo.ini | ||
42 | inf=["NeuronType", #still fixed value | ||
43 | "DelayDistribType", #still fixed value | ||
44 | "SynapticExtractionType", #still fixed value | ||
45 | "Life"] | ||
46 | |||
47 | def __init__(self,files): | ||
48 | self.files=files | ||
49 | |||
50 | def FilesControllo(self): | ||
51 | import sys | ||
52 | for i in range(0,len(self.files)): | ||
53 | if self.FileControllo(self.files[i]): | ||
54 | sys.exit(0) | ||
55 | |||
56 | def FileControllo(self,file1): | ||
57 | try: | ||
58 | f1=open(file1,"r") | ||
59 | f1.close() | ||
60 | return 0 | ||
61 | except ValueError: | ||
62 | print("ValueError") | ||
63 | return 1 | ||
64 | except IOError as err: | ||
65 | print("OS error: {0}".format(err)) | ||
66 | return 1 | ||
67 | except: | ||
68 | print("Unexpected error:", sys.exc_info()[0]) | ||
69 | return 1 | ||
70 | |||
71 | def Estrai_inf(self,stampa=0): | ||
72 | |||
73 | InfoPerseo=self.EstraiInfoPerseo() #extract info from perseo.ini | ||
74 | AppoggioTempM=self.EstraiInfoModuli() #extract info from modules.ini | ||
75 | AppoggioTempC=self.EstraiInfoConnectivity() #extract info from connectivity.ini | ||
76 | AppoggioTempP=self.EstraiProtocol() #extract info from protocol.ini | ||
77 | |||
78 | def getKey(item): | ||
79 | return item[0] | ||
80 | InfoProtocol=AppoggioTempP | ||
81 | # I convert the extracted information into a suitable format from tuple to list | ||
82 | |||
83 | InfoBuildT=[AppoggioTempM[0]] | ||
84 | for i in range(0,AppoggioTempM[0]): | ||
85 | app1=[int(AppoggioTempM[2][i][0])] | ||
86 | app=(app1+list(AppoggioTempM[2][i][3:9])+list(AppoggioTempM[2][i][12])+list(AppoggioTempM[2][i][9:12])) | ||
87 | InfoBuildT.append(app) | ||
88 | del app | ||
89 | |||
90 | InfoBuild=[float(InfoBuildT[0])] | ||
91 | for i in range(0,int(InfoBuildT[0])): | ||
92 | app=[] | ||
93 | for j in range(0,11): | ||
94 | app.append(float(InfoBuildT[i+1][j])) | ||
95 | InfoBuild=InfoBuild+[app] | ||
96 | del app | ||
97 | |||
98 | InfoConnectPop=[AppoggioTempM[0]] | ||
99 | for i in range(0,len(AppoggioTempC[1][:])): | ||
100 | app=list(AppoggioTempC[1][i]) | ||
101 | InfoConnectPop.append(app) | ||
102 | del app | ||
103 | |||
104 | InfoConnectNoise=[AppoggioTempM[0]] | ||
105 | for i in range(0,AppoggioTempM[0]): | ||
106 | app=list(AppoggioTempM[2][i][1:3]) | ||
107 | InfoConnectNoise.append(app) | ||
108 | |||
109 | |||
110 | if stampa==1: #Print on screen of saved data | ||
111 | for i,j in enumerate(InfoPerseo): | ||
112 | print(self.inf[i],"=",j) | ||
113 | print("\n") | ||
114 | print("the network consists of ", AppoggioTempM[0], " neuronal population" ) | ||
115 | print(AppoggioTempM[1]) | ||
116 | for i in range(0,AppoggioTempM[0]): | ||
117 | print(AppoggioTempM[2][i]) | ||
118 | print("\n") | ||
119 | print(AppoggioTempC[0]) | ||
120 | for i in range(0,AppoggioTempM[0]**2): | ||
121 | print(AppoggioTempC[1][i]) | ||
122 | print("\n") | ||
123 | for i in InfoProtocol: | ||
124 | print("SET_PARAM"+str(i)) | ||
125 | |||
126 | |||
127 | return InfoPerseo,InfoBuild,InfoConnectPop,InfoConnectNoise,InfoProtocol | ||
128 | |||
129 | def EstraiProtocol(self): | ||
130 | import string | ||
131 | f1=open(self.files[3],"r") | ||
132 | ProtocolList= [] | ||
133 | for x in f1.readlines(): | ||
134 | y=x.split() | ||
135 | if len(y): | ||
136 | if x[0]!="#" and y[0]=="SET_PARAM": | ||
137 | try: | ||
138 | ProtocolList.append([float(y[1]),int(y[2]),float(y[3]),float(y[4])]) | ||
139 | except ValueError: | ||
140 | pass | ||
141 | f1.close() | ||
142 | return ProtocolList | ||
143 | |||
144 | def EstraiInfoPerseo(self): | ||
145 | import string | ||
146 | f1=open(self.files[0],"r") | ||
147 | InfList= [] | ||
148 | for x in f1.readlines(): | ||
149 | y=x.split() | ||
150 | if len(y): | ||
151 | if x[0]!="#": | ||
152 | for findinf in self.inf: | ||
153 | try: | ||
154 | temp=y.index(findinf) | ||
155 | InfList.append(y[temp+2]) | ||
156 | except ValueError: | ||
157 | pass | ||
158 | f1.close() | ||
159 | return InfList | ||
160 | |||
161 | def EstraiInfoModuli(self): | ||
162 | import string | ||
163 | f1=open(self.files[2],"r") | ||
164 | NumPop=0 | ||
165 | for i,x in enumerate(f1.readlines()): | ||
166 | y=x.split() | ||
167 | if len(y): | ||
168 | if x[0]!="#": | ||
169 | NumPop=NumPop+1 | ||
170 | if i==2: | ||
171 | ParamList=[] | ||
172 | for j in range(1,14): | ||
173 | ParamList.append(y[j]) | ||
174 | f1.close() | ||
175 | PopsParamList=[] | ||
176 | f1=open(self.files[2],"r") | ||
177 | x=f1.readlines() | ||
178 | for j in range(0,NumPop): | ||
179 | appo=x[4+j]; | ||
180 | PopsParamList.append(appo.split()) | ||
181 | f1.close() | ||
182 | return NumPop,ParamList,PopsParamList | ||
183 | |||
184 | def EstraiInfoConnectivity(self): | ||
185 | import string | ||
186 | f1=open(self.files[1],"r") | ||
187 | PopConParamList=[] | ||
188 | for i,x in enumerate(f1.readlines()): | ||
189 | y=x.split() | ||
190 | if len(y): | ||
191 | if x[0]!="#": | ||
192 | PopConParamList.append(y) | ||
193 | if i==1: | ||
194 | ParamList=[] | ||
195 | for j in range(1,9): | ||
196 | ParamList.append(y[j]) | ||
197 | f1.close() | ||
198 | return ParamList,PopConParamList | ||
199 | {{/code}} | ||
200 | |||
201 | === Import the initialization files: === | ||
202 | |||
203 | in this section we... | ||
204 | |||
205 | {{code language="python"}} | ||
206 | Salva=1 | ||
207 | file1="perseo35.ini" | ||
208 | file2="c_cortsurf_Pot1.43PotStr148v3.ini" | ||
209 | file3="m_cortsurf_Pot1.43.ini" | ||
210 | file4="ProtocolExploration36.ini" | ||
211 | files=[file1,file2,file3,file4] | ||
212 | #define the name of the Output file | ||
213 | FileName="dati/Rates_Nest_Run_Milano_Test36_13x13_"+str(nest.Rank())+"_Pot1.43PotStr148v3Long3.dat" | ||
214 | #check the existence of the files being read | ||
215 | ImpFil=ImportIniLIFCA(files); | ||
216 | ImpFil.FilesControllo() | ||
217 | |||
218 | #extract the information of interest from the files.ini and transfer them to the files: | ||
219 | #InfoPerseo,InfoBuild,InfoConnectPop,InfoConnectNoise | ||
220 | |||
221 | stampa=0; #stampa=1 print output simulation data on screen stampa=0 dont | ||
222 | InfoPerseo,InfoBuild,InfoConnectPop,InfoConnectNoise,InfoProtocol=ImpFil.Estrai_inf(stampa) | ||
223 | |||
224 | # InfoPerseo=["NeuronType","DelayDistribType","SynapticExtractionType","Life" ] | ||
225 | # InfoBuild=[numero di popolazioni, | ||
226 | # [N,C_ext,\nu_ext,\tau,\tetha,H,\tau_arp,NeuronInitType,\alpha_c,\tau_c,g_c], | ||
227 | # [.....],[],...] | ||
228 | # InfoConnectPop=[numero di popolazioni, | ||
229 | # [post,pre,c,Dmin,Dmax,syn typ,J,DJ], | ||
230 | # [.....],[],...] | ||
231 | # InfoConnectNoise=[numero di popolazioni, | ||
232 | # [J_ext,DJ_ext], | ||
233 | # [.....],[],...] | ||
234 | # InfoProtocol=[[time,population,param_num,value], | ||
235 | # [.....],[],...] | ||
236 | {{/code}} | ||
237 | |||
238 | === Defining general and nest.kernel parameters === | ||
239 | |||
240 | {{code language="python"}} | ||
241 | #############################------------------------------------------------------------------------ | ||
242 | #Clean the Network | ||
243 | #############################------------------------------------------------------------------------ | ||
244 | nest.ResetKernel() | ||
245 | |||
246 | #############################------------------------------------------------------------------------ | ||
247 | #insert the introductory parameters of the simulation | ||
248 | #############################------------------------------------------------------------------------ | ||
249 | |||
250 | |||
251 | dt = 0.1 # the resolution in ms | ||
252 | StartMisure=0. # start time of measurements | ||
253 | simtime = int(float(InfoPerseo[3])) # Simulation time in ms (200 s) | ||
254 | if simtime<=StartMisure: # If the simulation time is less than StartMisure, it is increased by StartMisure | ||
255 | simtime=simtime+StartMisure | ||
256 | start=0.0 # start time of poissonian processes | ||
257 | origin=0.0 # temporal origin | ||
258 | |||
259 | #############################------------------------------------------------------------------------ | ||
260 | # Kernel parameters | ||
261 | #############################------------------------------------------------------------------------ | ||
262 | LNT=multiprocessing.cpu_count(); | ||
263 | nest.SetKernelStatus({"local_num_threads": LNT}) | ||
264 | nest.SetKernelStatus({"resolution": dt, "print_time": True, | ||
265 | "overwrite_files": True}) | ||
266 | |||
267 | #############################------------------------------------------------------------------------ | ||
268 | #"randomize" the seeds of the random generators | ||
269 | #############################------------------------------------------------------------------------ | ||
270 | |||
271 | #msd = int(math.fabs(time.process_time()*1000)) | ||
272 | #N_vp = nest.GetKernelStatus(['total_num_virtual_procs'])[0] | ||
273 | #pyrngs = [numpy.random.RandomState(s) for s in range(msd, msd+N_vp)] | ||
274 | #nest.SetKernelStatus({"grng_seed" : msd+N_vp}) | ||
275 | #nest.SetKernelStatus({"rng_seeds" : list(range(msd+N_vp+1, msd+2*N_vp+1))}) | ||
276 | {{/code}} | ||
277 | |||
278 | === Building the network: neuronal populations , Poisson processes and spike detectors === | ||
279 | |||
280 | {{code language="python"}} | ||
281 | #############################------------------------------------------------------------------------ | ||
282 | print("Building network") | ||
283 | #############################------------------------------------------------------------------------ | ||
284 | |||
285 | startbuild = time.time() #initialize the calculation of the time used to simulate | ||
286 | |||
287 | NeuronPop=[] | ||
288 | NoisePop=[] | ||
289 | DetectorPop=[] | ||
290 | |||
291 | #define and initialize the populations of neurons with the parameters extracted from the.ini files | ||
292 | for i in range(1,int(InfoBuild[0])+1): | ||
293 | if int(InfoBuild[i][7])==0: | ||
294 | app=float(InfoBuild[i][5]) | ||
295 | else: | ||
296 | app=0. | ||
297 | app2= nest.Create("aeif_psc_exp", int(InfoBuild[i][0]),params={"C_m": 1.0, | ||
298 | "g_L": 1.0/float(InfoBuild[i][3]), | ||
299 | "t_ref": float(InfoBuild[i][6]), | ||
300 | "E_L": 0.0, | ||
301 | "V_reset": float(InfoBuild[i][5]), | ||
302 | "V_m": app, | ||
303 | "V_th": float(InfoBuild[i][4]), | ||
304 | "Delta_T": 0., | ||
305 | "tau_syn_ex": 1.0, | ||
306 | "tau_syn_in": 1.0, | ||
307 | "a": 0.0, | ||
308 | "b": float(InfoBuild[i][10]), | ||
309 | "tau_w": float(InfoBuild[i][9]), | ||
310 | "V_peak":float(InfoBuild[i][4])+10.0}) | ||
311 | NeuronPop.append(app2) | ||
312 | |||
313 | #define and initialize the poisson generators and the spike detectors with the parameters extracted from the.ini files | ||
314 | |||
315 | for i in range(1,int(InfoBuild[0])+1): | ||
316 | app3= nest.Create("poisson_generator",params={"rate": float(InfoBuild[i][1]*InfoBuild[i][2]), | ||
317 | 'origin':0., | ||
318 | 'start':start}) | ||
319 | NoisePop.append(app3) | ||
320 | app4 = nest.Create("spike_recorder",params={ "start":StartMisure}) | ||
321 | DetectorPop.append(app4) | ||
322 | |||
323 | endbuild = time.time() | ||
324 | {{/code}} | ||
325 | |||
326 | === [[image:image-20220127165908-2.png||height="659" width="1149"]] === | ||
327 | |||
328 | === Connecting the network nodes: neuronal populations, Poisson processes and spike detectors === | ||
329 | |||
330 | {{code language="python"}} | ||
331 | #############################------------------------------------------------------------------------ | ||
332 | print("Connecting ") | ||
333 | #############################------------------------------------------------------------------------ | ||
334 | |||
335 | startconnect = time.time() | ||
336 | Connessioni=[] | ||
337 | Medie=[] | ||
338 | |||
339 | #create and define the connections between the populations of neurons and the poisson generators | ||
340 | #and between the populations of neurons and the spike detectors with the parameters extracted from the.ini files | ||
341 | |||
342 | for i in range(0,int(InfoBuild[0])): | ||
343 | nest.Connect(NoisePop[i], NeuronPop[i], syn_spec={'synapse_model': 'static_synapse_hpc', | ||
344 | 'delay': dt, | ||
345 | 'weight': nest.math.redraw(nest.random.normal(mean=float(InfoConnectNoise[i+1][0]), | ||
346 | std=(float(InfoConnectNoise[i+1][1])*float(InfoConnectNoise[i+1][0]))), | ||
347 | min=0., max=float('Inf')) | ||
348 | }) | ||
349 | nest.Connect(NeuronPop[i][:int(InfoBuild[i+1][0])], DetectorPop[i], syn_spec={"weight": 1.0, "delay": dt}) | ||
350 | |||
351 | #create and define the connections between the populations of neurons with the parameters extracted from the.ini files | ||
352 | |||
353 | for i in range(0,len(InfoConnectPop[1:])): | ||
354 | |||
355 | conn=nest.Connect(NeuronPop[int(InfoConnectPop[i+1][1])], NeuronPop[int(InfoConnectPop[i+1][0])], | ||
356 | {'rule': 'pairwise_bernoulli', | ||
357 | 'p':float(InfoConnectPop[i+1][2]) }, | ||
358 | syn_spec={'synapse_model': 'static_synapse_hpc', | ||
359 | 'delay':nest.math.redraw(nest.random.exponential(beta=float(1./(2.99573227355/(float(InfoConnectPop[i+1][4])-float(InfoConnectPop[i+1][3]))))), | ||
360 | min= numpy.max([dt,float(1./float(InfoConnectPop[i+1][4]))]), | ||
361 | max= float(1./(float(InfoConnectPop[i+1][3])-dt/2))), | ||
362 | |||
363 | 'weight':nest.random.normal(mean=float(InfoConnectPop[i+1][6]), | ||
364 | std=math.fabs(float(InfoConnectPop[i+1][6])*float(InfoConnectPop[i+1][7])))}) | ||
365 | |||
366 | |||
367 | endconnect = time.time() | ||
368 | {{/code}} | ||
369 | |||
370 | === === | ||
371 | |||
372 | === === | ||
373 | |||
374 | === [[image:image-20220127170722-1.png]] === | ||
375 | |||
376 | === Simulating: neuronal time evolution. === | ||
377 | |||
378 | === === | ||
379 | |||
380 | {{code language="python"}} | ||
381 | #############################------------------------------------------------------------------------ | ||
382 | print("Simulating") | ||
383 | #############################------------------------------------------------------------------------ | ||
384 | ################################################################################################################################################################### | ||
385 | if Salva: | ||
386 | print("I m going to save the data") | ||
387 | #x=str(iterazioni) | ||
388 | f = open(FileName,"w") | ||
389 | if len(InfoProtocol): | ||
390 | print("I m going to split the simulation") | ||
391 | tempo=0 | ||
392 | for contatore in range(0,len(InfoProtocol)): | ||
393 | appoggio1=int((tempo+InfoProtocol[contatore][0])/1000.) | ||
394 | appoggio2=int(tempo/1000.) | ||
395 | appoggio3=tempo+InfoProtocol[contatore][0] | ||
396 | if (appoggio1-appoggio2)>=1: | ||
397 | T1=(1+appoggio2)*1000-tempo | ||
398 | nest.Simulate(T1) | ||
399 | #Save the Data!!!! | ||
400 | ########################################################### | ||
401 | Equilibri=[] | ||
402 | for i in range(0,int(InfoBuild[0])): | ||
403 | Equilibri.append([]) | ||
404 | a=nest.GetStatus(DetectorPop[i])[0]["events"]["times"] | ||
405 | if len(a)>0: | ||
406 | Trange=(1000*int(numpy.min(a)/1000.),1000*int(numpy.min(a)/1000.)+1000) | ||
407 | hist,Tbin=numpy.histogram(a,200,(Trange[0],Trange[1])) | ||
408 | Equilibri[i]=hist*1000./(5.*int(InfoBuild[i+1][0])) | ||
409 | else: | ||
410 | Trange=(1000*int(tempo/1000.),1000*int(tempo/1000.)+1000) | ||
411 | hist=numpy.zeros(200) | ||
412 | Tbin=numpy.linspace(Trange[0],Trange[1],num=201) | ||
413 | Equilibri[i]=hist | ||
414 | nest.SetStatus(DetectorPop[i],{'n_events':0}) | ||
415 | for j in range(0,len(hist)): | ||
416 | f.write(str(Tbin[j])+" ") | ||
417 | for i in range(0,int(InfoBuild[0])): | ||
418 | f.write(str(Equilibri[i][j])+" ") | ||
419 | f.write("\n ") | ||
420 | ########################################################### | ||
421 | tempo=tempo+T1 | ||
422 | for contatore2 in range(1,(appoggio1-appoggio2)): | ||
423 | nest.Simulate(1000.) | ||
424 | #Save the Data!!!! | ||
425 | ########################################################### | ||
426 | Equilibri=[] | ||
427 | for i in range(0,int(InfoBuild[0])): | ||
428 | Equilibri.append([]) | ||
429 | a=nest.GetStatus(DetectorPop[i])[0]["events"]["times"] | ||
430 | if len(a)>0: | ||
431 | Trange=(1000*int(numpy.min(a)/1000.),1000*int(numpy.min(a)/1000.)+1000) | ||
432 | hist,Tbin=numpy.histogram(a,200,(Trange[0],Trange[1])) | ||
433 | Equilibri[i]=hist*1000./(5.*int(InfoBuild[i+1][0])) | ||
434 | else: | ||
435 | Trange=(1000*int(tempo/1000.),1000*int(tempo/1000.)+1000) | ||
436 | hist=numpy.zeros(200) | ||
437 | Tbin=numpy.linspace(Trange[0],Trange[1],num=201) | ||
438 | Equilibri[i]=hist | ||
439 | nest.SetStatus(DetectorPop[i],{'n_events':0}) | ||
440 | for j in range(0,len(hist)): | ||
441 | f.write(str(Tbin[j])+" ") | ||
442 | for i in range(0,int(InfoBuild[0])): | ||
443 | f.write(str(Equilibri[i][j])+" ") | ||
444 | f.write("\n ") | ||
445 | tempo=tempo+1000. | ||
446 | T2=appoggio3-tempo | ||
447 | nest.Simulate(T2); | ||
448 | tempo=tempo+T2; | ||
449 | else: | ||
450 | nest.Simulate(InfoProtocol[contatore][0]) | ||
451 | temp=InfoProtocol[contatore][0] | ||
452 | tempo=tempo+temp | ||
453 | if InfoProtocol[contatore][2]==4: | ||
454 | nest.SetStatus(NoisePop[InfoProtocol[contatore][1]],params={"rate": float(InfoBuild[1+InfoProtocol[contatore][1]][2]*InfoProtocol[contatore][3])}) | ||
455 | if InfoProtocol[contatore][2]==12: | ||
456 | nest.SetStatus(NeuronPop[InfoProtocol[contatore][1]], params={"b": float(InfoProtocol[contatore][3])}) | ||
457 | else: | ||
458 | nest.Simulate(simtime) | ||
459 | tempo=simtime | ||
460 | if (simtime-tempo)>0.: | ||
461 | nest.Simulate(simtime-tempo) | ||
462 | |||
463 | |||
464 | endsimulate = time.time() | ||
465 | f.close() | ||
466 | else: | ||
467 | if len(InfoProtocol): | ||
468 | tempo=0 | ||
469 | for contatore in range(0,len(InfoProtocol)): | ||
470 | nest.Simulate(InfoProtocol[contatore][0]) | ||
471 | temp=InfoProtocol[contatore][0] | ||
472 | tempo=tempo+temp | ||
473 | if InfoProtocol[contatore][2]==4: | ||
474 | nest.SetStatus(NoisePop[InfoProtocol[contatore][1]],params={"rate": float(InfoBuild[1+InfoProtocol[contatore][1]][2]*InfoProtocol[contatore][3])}) | ||
475 | #print "Population:", InfoProtocol[contatore][1] ,";Parameter:", InfoProtocol[contatore][2] ,"; Value: ",InfoProtocol[contatore][3] | ||
476 | if InfoProtocol[contatore][2]==12: | ||
477 | nest.SetStatus(NeuronPop[InfoProtocol[contatore][1]], params={"b": float(InfoProtocol[contatore][3])}) | ||
478 | #print "Population:", InfoProtocol[contatore][1] ,";Parameter:", InfoProtocol[contatore][2] ,"; Value: ",InfoProtocol[contatore][3] | ||
479 | |||
480 | else: | ||
481 | nest.Simulate(simtime) | ||
482 | tempo=simtime | ||
483 | if (simtime-tempo)>0.: | ||
484 | nest.Simulate(simtime-tempo) | ||
485 | endsimulate = time.time() | ||
486 | |||
487 | |||
488 | ################################################################################################################################################################### | ||
489 | |||
490 | #############################------------------------------------------------------------------------ | ||
491 | #print some information from the simulation | ||
492 | #############################------------------------------------------------------------------------ | ||
493 | |||
494 | num_synapses = nest.GetDefaults('static_synapse_hpc')["num_connections"] | ||
495 | build_time = endbuild - startbuild | ||
496 | connect_time = endconnect - startconnect | ||
497 | sim_time = endsimulate - endconnect | ||
498 | |||
499 | N_neurons=0 | ||
500 | for i in range(0,int(InfoBuild[0])): | ||
501 | N_neurons=N_neurons+int(InfoBuild[i+1][0]) | ||
502 | |||
503 | print(" Network simulation (Python) neuron type:",InfoPerseo[0]) | ||
504 | print("Number of neurons : {0}".format(N_neurons)) | ||
505 | print("Number of synapses: {0}".format(num_synapses)) | ||
506 | print("Building time : %.2f s" % build_time) | ||
507 | print("Connecting time : %.2f s" % connect_time) | ||
508 | print("Simulation time : %.2f s" % sim_time) | ||
509 | |||
510 | Fine=time.time() | ||
511 | print ("Total Simulation time : %.2f s" % (Fine-Inizio)) | ||
512 | {{/code}} | ||
513 | |||
514 | === === | ||
515 | |||
516 | === === | ||
517 | |||
518 | (% class="wikigeneratedid" %) | ||
519 | === [[image:image-20220127171242-1.png]] === | ||
520 | |||
521 | === Results: === | ||
522 | |||
523 | the output of this simulationo is... | ||
524 | |||
525 | |||
526 | |||
527 | |||
528 | |||
529 | |||
530 | ==== ==== |
- Introduction (path and modules):
- Check where I am and place myself in the right folder:
- Import the modules necessary for the simulation:
- Define necessary classes to import the Initialization Files:
- Import the initialization files:
- Defining general and nest.kernel parameters
- Building the network: neuronal populations , Poisson processes and spike detectors
- Connecting the network nodes: neuronal populations, Poisson processes and spike detectors
- Simulating: neuronal time evolution.
- Results: