Wiki source code of Code description
Version 4.2 by galluzziandrea on 2021/12/09 14:39
Hide last authors
author | version | line-number | content |
---|---|---|---|
![]() |
4.1 | 1 | == Introduction (path and modules) == |
![]() |
1.1 | 2 | |
![]() |
3.1 | 3 | First of all we check the path and import the necessary modules . |
![]() |
1.1 | 4 | |
![]() |
4.1 | 5 | === Check where I am and place myself in the right folder : === |
![]() |
3.1 | 6 | |
![]() |
2.2 | 7 | {{code language="python"}} |
![]() |
3.1 | 8 | # Import the os module |
9 | import os | ||
10 | |||
11 | #Print the current working directory | ||
12 | print("Current working directory: {0}".format(os.getcwd())) | ||
13 | |||
14 | # Change the current working directory | ||
15 | os.chdir('/mnt/user/shared/Slow waves in fading anesthesia/Nest3Python3') | ||
16 | |||
17 | # Print the current working directory | ||
18 | print("Current working directory: {0}".format(os.getcwd())) | ||
![]() |
2.2 | 19 | {{/code}} |
![]() |
1.1 | 20 | |
![]() |
4.1 | 21 | === import the modules necessary for the simulation === |
![]() |
1.1 | 22 | |
23 | {{code language="python"}} | ||
![]() |
3.1 | 24 | import nest |
25 | import time | ||
26 | from numpy import exp | ||
27 | import numpy | ||
28 | import math | ||
29 | import random | ||
30 | import multiprocessing | ||
31 | Inizio=time.time() | ||
32 | print('tempo di Inizio:',Inizio) | ||
![]() |
1.1 | 33 | {{/code}} |
34 | |||
![]() |
4.1 | 35 | === === |
![]() |
2.2 | 36 | |
![]() |
4.1 | 37 | ==== Results ==== |
![]() |
2.2 | 38 | |
![]() |
4.1 | 39 | ==== ==== |
- Introduction (path and modules):
- Check where I am and place myself in the right folder:
- Import the modules necessary for the simulation:
- Define necessary classes to import the Initialization Files:
- Import the initialization files:
- Defining general and nest.kernel parameters
- Building the network: neuronal populations , Poisson processes and spike detectors
- Connecting the network nodes: neuronal populations, Poisson processes and spike detectors
- Simulating: neuronal time evolution.
- Results: