Attention: The Keycloak upgrade has been completed. As this was a major upgrade, there may be some unexpected issues occurring. Please report any issues you find to support by using the contact form found at https://www.ebrains.eu/contact/. Thank you for your patience and understanding. 


Changes for page Tools description

Last modified by marissadiazpier on 2023/06/29 13:09

From version 1.1
edited by marissadiazpier
on 2023/06/25 23:08
Change comment: There is no comment for this version
To version 4.1
edited by marissadiazpier
on 2023/06/29 13:09
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,7 +1,3269 @@
1 -EBRAINS offers an extensive range of data and also provides compute resources (High-performance computing and Neuromorphic hardware). SLU can guide your journey on EBRAINS, show you how you find tools/data/related research projects appropriate for your research, and help you translate your work from the structured formalization process of science to technical requirements on EBRAINS.
1 +**Human Brain Project Tools Description**
2 2  
3 -EBRAINS support teams will help you connect to the community and give you tips for creating your simulations and models. If you are a neuroscientist, professor, or student, or are you interested in brain-related research, simulation, AI, robotics, and brain-inspired hardware check out what EBRAINS has for you.
3 +On this page you will find a list with a brief description of the tools we have for the HBP tools Book, if you have a suggestion or detect an omission please send your feedback to [[slu@ebrains.eu>>mailto:slu@ebrains.eu]].
4 4  
5 -As a researcher, you might find yourself immersed in a continuous flow of information, data, environments, and platforms which offer different tools and aids to fulfill an investigation and publish your results. This new way to doing science helps us advance at a fast pace and reduces efforts on searching data and tests, also allows us to deploy state-of-the-art simulations that can improve the quality of our work, and increase the capacity of neuroscientists for multiscale neural activity modeling of the human brain network.
5 +{{html}}
6 +<html>
6 6  
7 -On this page you will find a quick overview of the different tools and services available in EBRAINS. It will address, in an interactive way, how to use EBRAINS for specific use cases from the participants and focus on exploring all the potential that EBRAINS, as a digital research infrastructure, provides to its users. Researchers will have the opportunity to get creative and combine the different EBRAINS components to respond to existing questions and formulate new avenues based on collaboration, sharing, co-design, and innovation.
8 +<head>
9 +<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
10 +<meta name=Generator content="Microsoft Word 15 (filtered)">
11 +<style>
12 +<!--
13 + /* Font Definitions */
14 + @font-face
15 + {font-family:"Cambria Math";
16 + panose-1:2 4 5 3 5 4 6 3 2 4;}
17 +@font-face
18 + {font-family:"Calibri Light";
19 + panose-1:2 15 3 2 2 2 4 3 2 4;}
20 +@font-face
21 + {font-family:Calibri;
22 + panose-1:2 15 5 2 2 2 4 3 2 4;}
23 + /* Style Definitions */
24 + p.MsoNormal, li.MsoNormal, div.MsoNormal
25 + {margin-top:0cm;
26 + margin-right:0cm;
27 + margin-bottom:10.0pt;
28 + margin-left:0cm;
29 + line-height:120%;
30 + font-size:10.5pt;
31 + font-family:"Calibri",sans-serif;}
32 +h1
33 + {mso-style-link:"Heading 1 Char";
34 + margin-top:18.0pt;
35 + margin-right:0cm;
36 + margin-bottom:2.0pt;
37 + margin-left:0cm;
38 + page-break-after:avoid;
39 + font-size:20.0pt;
40 + font-family:"Calibri Light",sans-serif;
41 + color:#538135;
42 + font-weight:normal;}
43 +h2
44 + {mso-style-link:"Heading 2 Char";
45 + margin-top:4.0pt;
46 + margin-right:0cm;
47 + margin-bottom:0cm;
48 + margin-left:0cm;
49 + margin-bottom:.0001pt;
50 + page-break-after:avoid;
51 + font-size:14.0pt;
52 + font-family:"Calibri Light",sans-serif;
53 + color:#538135;
54 + font-weight:normal;}
55 +h3
56 + {mso-style-link:"Heading 3 Char";
57 + margin-top:4.0pt;
58 + margin-right:0cm;
59 + margin-bottom:0cm;
60 + margin-left:0cm;
61 + margin-bottom:.0001pt;
62 + page-break-after:avoid;
63 + font-size:12.0pt;
64 + font-family:"Calibri Light",sans-serif;
65 + color:#538135;
66 + font-weight:normal;}
67 +h4
68 + {mso-style-link:"Heading 4 Char";
69 + margin-top:4.0pt;
70 + margin-right:0cm;
71 + margin-bottom:0cm;
72 + margin-left:0cm;
73 + margin-bottom:.0001pt;
74 + line-height:120%;
75 + page-break-after:avoid;
76 + font-size:11.0pt;
77 + font-family:"Calibri Light",sans-serif;
78 + color:#70AD47;
79 + font-weight:normal;}
80 +h5
81 + {mso-style-link:"Heading 5 Char";
82 + margin-top:2.0pt;
83 + margin-right:0cm;
84 + margin-bottom:0cm;
85 + margin-left:0cm;
86 + margin-bottom:.0001pt;
87 + line-height:120%;
88 + page-break-after:avoid;
89 + font-size:11.0pt;
90 + font-family:"Calibri Light",sans-serif;
91 + color:#70AD47;
92 + font-weight:normal;
93 + font-style:italic;}
94 +h6
95 + {mso-style-link:"Heading 6 Char";
96 + margin-top:2.0pt;
97 + margin-right:0cm;
98 + margin-bottom:0cm;
99 + margin-left:0cm;
100 + margin-bottom:.0001pt;
101 + line-height:120%;
102 + page-break-after:avoid;
103 + font-size:10.5pt;
104 + font-family:"Calibri Light",sans-serif;
105 + color:#70AD47;
106 + font-weight:normal;}
107 +p.MsoHeading7, li.MsoHeading7, div.MsoHeading7
108 + {mso-style-link:"Heading 7 Char";
109 + margin-top:2.0pt;
110 + margin-right:0cm;
111 + margin-bottom:0cm;
112 + margin-left:0cm;
113 + margin-bottom:.0001pt;
114 + line-height:120%;
115 + page-break-after:avoid;
116 + font-size:10.5pt;
117 + font-family:"Calibri Light",sans-serif;
118 + color:#70AD47;
119 + font-weight:bold;}
120 +p.MsoHeading8, li.MsoHeading8, div.MsoHeading8
121 + {mso-style-link:"Heading 8 Char";
122 + margin-top:2.0pt;
123 + margin-right:0cm;
124 + margin-bottom:0cm;
125 + margin-left:0cm;
126 + margin-bottom:.0001pt;
127 + line-height:120%;
128 + page-break-after:avoid;
129 + font-size:10.0pt;
130 + font-family:"Calibri Light",sans-serif;
131 + color:#70AD47;
132 + font-weight:bold;
133 + font-style:italic;}
134 +p.MsoHeading9, li.MsoHeading9, div.MsoHeading9
135 + {mso-style-link:"Heading 9 Char";
136 + margin-top:2.0pt;
137 + margin-right:0cm;
138 + margin-bottom:0cm;
139 + margin-left:0cm;
140 + margin-bottom:.0001pt;
141 + line-height:120%;
142 + page-break-after:avoid;
143 + font-size:10.0pt;
144 + font-family:"Calibri Light",sans-serif;
145 + color:#70AD47;
146 + font-style:italic;}
147 +p.MsoToc1, li.MsoToc1, div.MsoToc1
148 + {margin-top:0cm;
149 + margin-right:0cm;
150 + margin-bottom:5.0pt;
151 + margin-left:0cm;
152 + line-height:107%;
153 + font-size:11.0pt;
154 + font-family:"Calibri",sans-serif;}
155 +p.MsoToc2, li.MsoToc2, div.MsoToc2
156 + {margin-top:0cm;
157 + margin-right:0cm;
158 + margin-bottom:5.0pt;
159 + margin-left:10.5pt;
160 + line-height:120%;
161 + font-size:10.5pt;
162 + font-family:"Calibri",sans-serif;}
163 +p.MsoToc3, li.MsoToc3, div.MsoToc3
164 + {margin-top:0cm;
165 + margin-right:0cm;
166 + margin-bottom:5.0pt;
167 + margin-left:22.0pt;
168 + line-height:107%;
169 + font-size:11.0pt;
170 + font-family:"Calibri",sans-serif;}
171 +p.MsoToc4, li.MsoToc4, div.MsoToc4
172 + {margin-top:0cm;
173 + margin-right:0cm;
174 + margin-bottom:5.0pt;
175 + margin-left:33.0pt;
176 + line-height:107%;
177 + font-size:11.0pt;
178 + font-family:"Calibri",sans-serif;}
179 +p.MsoToc5, li.MsoToc5, div.MsoToc5
180 + {margin-top:0cm;
181 + margin-right:0cm;
182 + margin-bottom:5.0pt;
183 + margin-left:44.0pt;
184 + line-height:107%;
185 + font-size:11.0pt;
186 + font-family:"Calibri",sans-serif;}
187 +p.MsoToc6, li.MsoToc6, div.MsoToc6
188 + {margin-top:0cm;
189 + margin-right:0cm;
190 + margin-bottom:5.0pt;
191 + margin-left:55.0pt;
192 + line-height:107%;
193 + font-size:11.0pt;
194 + font-family:"Calibri",sans-serif;}
195 +p.MsoToc7, li.MsoToc7, div.MsoToc7
196 + {margin-top:0cm;
197 + margin-right:0cm;
198 + margin-bottom:5.0pt;
199 + margin-left:66.0pt;
200 + line-height:107%;
201 + font-size:11.0pt;
202 + font-family:"Calibri",sans-serif;}
203 +p.MsoToc8, li.MsoToc8, div.MsoToc8
204 + {margin-top:0cm;
205 + margin-right:0cm;
206 + margin-bottom:5.0pt;
207 + margin-left:77.0pt;
208 + line-height:107%;
209 + font-size:11.0pt;
210 + font-family:"Calibri",sans-serif;}
211 +p.MsoToc9, li.MsoToc9, div.MsoToc9
212 + {margin-top:0cm;
213 + margin-right:0cm;
214 + margin-bottom:5.0pt;
215 + margin-left:88.0pt;
216 + line-height:107%;
217 + font-size:11.0pt;
218 + font-family:"Calibri",sans-serif;}
219 +p.MsoCaption, li.MsoCaption, div.MsoCaption
220 + {margin-top:0cm;
221 + margin-right:0cm;
222 + margin-bottom:10.0pt;
223 + margin-left:0cm;
224 + font-size:10.5pt;
225 + font-family:"Calibri",sans-serif;
226 + font-variant:small-caps;
227 + color:#595959;
228 + font-weight:bold;}
229 +p.MsoTitle, li.MsoTitle, div.MsoTitle
230 + {mso-style-link:"Title Char";
231 + margin:0cm;
232 + margin-bottom:.0001pt;
233 + font-size:48.0pt;
234 + font-family:"Calibri Light",sans-serif;
235 + color:#262626;
236 + letter-spacing:-.75pt;}
237 +p.MsoTitleCxSpFirst, li.MsoTitleCxSpFirst, div.MsoTitleCxSpFirst
238 + {mso-style-link:"Title Char";
239 + margin:0cm;
240 + margin-bottom:.0001pt;
241 + font-size:48.0pt;
242 + font-family:"Calibri Light",sans-serif;
243 + color:#262626;
244 + letter-spacing:-.75pt;}
245 +p.MsoTitleCxSpMiddle, li.MsoTitleCxSpMiddle, div.MsoTitleCxSpMiddle
246 + {mso-style-link:"Title Char";
247 + margin:0cm;
248 + margin-bottom:.0001pt;
249 + font-size:48.0pt;
250 + font-family:"Calibri Light",sans-serif;
251 + color:#262626;
252 + letter-spacing:-.75pt;}
253 +p.MsoTitleCxSpLast, li.MsoTitleCxSpLast, div.MsoTitleCxSpLast
254 + {mso-style-link:"Title Char";
255 + margin:0cm;
256 + margin-bottom:.0001pt;
257 + font-size:48.0pt;
258 + font-family:"Calibri Light",sans-serif;
259 + color:#262626;
260 + letter-spacing:-.75pt;}
261 +p.MsoSubtitle, li.MsoSubtitle, div.MsoSubtitle
262 + {mso-style-link:"Subtitle Char";
263 + margin-top:0cm;
264 + margin-right:0cm;
265 + margin-bottom:10.0pt;
266 + margin-left:0cm;
267 + font-size:15.0pt;
268 + font-family:"Calibri Light",sans-serif;}
269 +a:link, span.MsoHyperlink
270 + {color:#0563C1;
271 + text-decoration:underline;}
272 +a:visited, span.MsoHyperlinkFollowed
273 + {color:#954F72;
274 + text-decoration:underline;}
275 +em
276 + {color:#70AD47;}
277 +p.MsoNoSpacing, li.MsoNoSpacing, div.MsoNoSpacing
278 + {margin:0cm;
279 + margin-bottom:.0001pt;
280 + font-size:10.5pt;
281 + font-family:"Calibri",sans-serif;}
282 +p.MsoQuote, li.MsoQuote, div.MsoQuote
283 + {mso-style-link:"Quote Char";
284 + margin-top:8.0pt;
285 + margin-right:36.0pt;
286 + margin-bottom:10.0pt;
287 + margin-left:36.0pt;
288 + text-align:center;
289 + line-height:120%;
290 + font-size:10.5pt;
291 + font-family:"Calibri",sans-serif;
292 + color:#262626;
293 + font-style:italic;}
294 +p.MsoIntenseQuote, li.MsoIntenseQuote, div.MsoIntenseQuote
295 + {mso-style-link:"Intense Quote Char";
296 + margin-top:8.0pt;
297 + margin-right:36.0pt;
298 + margin-bottom:8.0pt;
299 + margin-left:36.0pt;
300 + text-align:center;
301 + line-height:110%;
302 + font-size:16.0pt;
303 + font-family:"Calibri Light",sans-serif;
304 + color:#70AD47;
305 + font-style:italic;}
306 +span.MsoSubtleEmphasis
307 + {font-style:italic;}
308 +span.MsoIntenseEmphasis
309 + {font-weight:bold;
310 + font-style:italic;}
311 +span.MsoSubtleReference
312 + {font-variant:small-caps;
313 + color:#595959;}
314 +span.MsoIntenseReference
315 + {font-variant:small-caps;
316 + color:#70AD47;
317 + font-weight:bold;}
318 +span.MsoBookTitle
319 + {font-variant:small-caps;
320 + text-transform:none;
321 + letter-spacing:.35pt;
322 + font-weight:bold;}
323 +p.MsoTocHeading, li.MsoTocHeading, div.MsoTocHeading
324 + {margin-top:18.0pt;
325 + margin-right:0cm;
326 + margin-bottom:2.0pt;
327 + margin-left:0cm;
328 + page-break-after:avoid;
329 + font-size:20.0pt;
330 + font-family:"Calibri Light",sans-serif;
331 + color:#538135;}
332 +span.Heading1Char
333 + {mso-style-name:"Heading 1 Char";
334 + mso-style-link:"Heading 1";
335 + font-family:"Calibri Light",sans-serif;
336 + color:#538135;}
337 +span.Heading2Char
338 + {mso-style-name:"Heading 2 Char";
339 + mso-style-link:"Heading 2";
340 + font-family:"Calibri Light",sans-serif;
341 + color:#538135;}
342 +span.Heading3Char
343 + {mso-style-name:"Heading 3 Char";
344 + mso-style-link:"Heading 3";
345 + font-family:"Calibri Light",sans-serif;
346 + color:#538135;}
347 +span.Heading4Char
348 + {mso-style-name:"Heading 4 Char";
349 + mso-style-link:"Heading 4";
350 + font-family:"Calibri Light",sans-serif;
351 + color:#70AD47;}
352 +span.Heading5Char
353 + {mso-style-name:"Heading 5 Char";
354 + mso-style-link:"Heading 5";
355 + font-family:"Calibri Light",sans-serif;
356 + color:#70AD47;
357 + font-style:italic;}
358 +span.Heading6Char
359 + {mso-style-name:"Heading 6 Char";
360 + mso-style-link:"Heading 6";
361 + font-family:"Calibri Light",sans-serif;
362 + color:#70AD47;}
363 +span.Heading7Char
364 + {mso-style-name:"Heading 7 Char";
365 + mso-style-link:"Heading 7";
366 + font-family:"Calibri Light",sans-serif;
367 + color:#70AD47;
368 + font-weight:bold;}
369 +span.Heading8Char
370 + {mso-style-name:"Heading 8 Char";
371 + mso-style-link:"Heading 8";
372 + font-family:"Calibri Light",sans-serif;
373 + color:#70AD47;
374 + font-weight:bold;
375 + font-style:italic;}
376 +span.Heading9Char
377 + {mso-style-name:"Heading 9 Char";
378 + mso-style-link:"Heading 9";
379 + font-family:"Calibri Light",sans-serif;
380 + color:#70AD47;
381 + font-style:italic;}
382 +span.TitleChar
383 + {mso-style-name:"Title Char";
384 + mso-style-link:Title;
385 + font-family:"Calibri Light",sans-serif;
386 + color:#262626;
387 + letter-spacing:-.75pt;}
388 +span.SubtitleChar
389 + {mso-style-name:"Subtitle Char";
390 + mso-style-link:Subtitle;
391 + font-family:"Calibri Light",sans-serif;}
392 +span.QuoteChar
393 + {mso-style-name:"Quote Char";
394 + mso-style-link:Quote;
395 + color:#262626;
396 + font-style:italic;}
397 +span.IntenseQuoteChar
398 + {mso-style-name:"Intense Quote Char";
399 + mso-style-link:"Intense Quote";
400 + font-family:"Calibri Light",sans-serif;
401 + color:#70AD47;
402 + font-style:italic;}
403 +.MsoChpDefault
404 + {font-size:10.5pt;
405 + font-family:"Calibri",sans-serif;}
406 +.MsoPapDefault
407 + {margin-bottom:10.0pt;
408 + line-height:120%;}
409 +@page WordSection1
410 + {size:595.3pt 841.9pt;
411 + margin:72.0pt 72.0pt 72.0pt 72.0pt;}
412 +div.WordSection1
413 + {page:WordSection1;}
414 +-->
415 +</style>
416 +
417 +</head>
418 +
419 +<body lang=EN-US link="#0563C1" vlink="#954F72">
420 +
421 +<div class=WordSection1>
422 +
423 +<p class=MsoTocHeading>HBP Tools list</p>
424 +
425 +<p class=MsoToc2><span lang=en-DE><span class=MsoHyperlink><a
426 +href="#_Toc138932248">AngoraPy<span style='color:windowtext;display:none;
427 +text-decoration:none'>. </span><span
428 +style='color:windowtext;display:none;text-decoration:none'>5</span></a></span></span></p>
429 +
430 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
431 +href="#_Toc138932249">AnonyMI<span style='color:windowtext;display:none;
432 +text-decoration:none'> </span><span
433 +style='color:windowtext;display:none;text-decoration:none'>5</span></a></span></span></p>
434 +
435 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
436 +href="#_Toc138932250">Arbor<span style='color:windowtext;display:none;
437 +text-decoration:none'> </span><span
438 +style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p>
439 +
440 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
441 +href="#_Toc138932251">Arbor GUI<span style='color:windowtext;display:none;
442 +text-decoration:none'> </span><span
443 +style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p>
444 +
445 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
446 +href="#_Toc138932252">Bayesian Virtual Epileptic Patient (BVEP)<span
447 +style='color:windowtext;display:none;text-decoration:none'> </span><span
448 +style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p>
449 +
450 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
451 +href="#_Toc138932253">BIDS Extension Proposal Computational Model
452 +Specifications<span style='color:windowtext;display:none;text-decoration:none'>. </span><span
453 +style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p>
454 +
455 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
456 +href="#_Toc138932254">BioBB<span style='color:windowtext;display:none;
457 +text-decoration:none'>. </span><span
458 +style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p>
459 +
460 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
461 +href="#_Toc138932255">BioExcel-CV19<span style='color:windowtext;display:none;
462 +text-decoration:none'>. </span><span
463 +style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p>
464 +
465 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
466 +href="#_Toc138932256">BioNAR<span style='color:windowtext;display:none;
467 +text-decoration:none'>. </span><span
468 +style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p>
469 +
470 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
471 +href="#_Toc138932257">BlueNaaS-single cell<span style='color:windowtext;
472 +display:none;text-decoration:none'> </span><span
473 +style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p>
474 +
475 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
476 +href="#_Toc138932258">BlueNaaS-subcellular<span style='color:windowtext;
477 +display:none;text-decoration:none'> </span><span
478 +style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p>
479 +
480 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
481 +href="#_Toc138932259">BluePyEfe<span style='color:windowtext;display:none;
482 +text-decoration:none'>. </span><span
483 +style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p>
484 +
485 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
486 +href="#_Toc138932260">BluePyMM<span style='color:windowtext;display:none;
487 +text-decoration:none'>... </span><span
488 +style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p>
489 +
490 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
491 +href="#_Toc138932261">BluePyOpt<span style='color:windowtext;display:none;
492 +text-decoration:none'> </span><span
493 +style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p>
494 +
495 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
496 +href="#_Toc138932262">Brain Cockpit<span style='color:windowtext;display:none;
497 +text-decoration:none'> </span><span
498 +style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p>
499 +
500 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
501 +href="#_Toc138932263">BrainScaleS<span style='color:windowtext;display:none;
502 +text-decoration:none'>. </span><span
503 +style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p>
504 +
505 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
506 +href="#_Toc138932264">Brayns<span style='color:windowtext;display:none;
507 +text-decoration:none'>. </span><span
508 +style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p>
509 +
510 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
511 +href="#_Toc138932265">Brion<span style='color:windowtext;display:none;
512 +text-decoration:none'>. </span><span
513 +style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p>
514 +
515 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
516 +href="#_Toc138932266">BSB<span style='color:windowtext;display:none;text-decoration:
517 +none'>. </span><span
518 +style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p>
519 +
520 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
521 +href="#_Toc138932267">BSP Service Account<span style='color:windowtext;
522 +display:none;text-decoration:none'> </span><span
523 +style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p>
524 +
525 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
526 +href="#_Toc138932268">bsp-usecase-wizard<span style='color:windowtext;
527 +display:none;text-decoration:none'>. </span><span
528 +style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p>
529 +
530 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
531 +href="#_Toc138932269">CGMD Platform<span style='color:windowtext;display:none;
532 +text-decoration:none'>.. </span><span
533 +style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p>
534 +
535 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
536 +href="#_Toc138932270">CNS-ligands<span style='color:windowtext;display:none;
537 +text-decoration:none'>. </span><span
538 +style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p>
539 +
540 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
541 +href="#_Toc138932271">Cobrawap<span style='color:windowtext;display:none;
542 +text-decoration:none'>. </span><span
543 +style='color:windowtext;display:none;text-decoration:none'>10</span></a></span></span></p>
544 +
545 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
546 +href="#_Toc138932272">Collaboratory Bucket service<span style='color:windowtext;
547 +display:none;text-decoration:none'>. </span><span
548 +style='color:windowtext;display:none;text-decoration:none'>10</span></a></span></span></p>
549 +
550 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
551 +href="#_Toc138932273">Collaboratory Drive<span style='color:windowtext;
552 +display:none;text-decoration:none'>. </span><span
553 +style='color:windowtext;display:none;text-decoration:none'>10</span></a></span></span></p>
554 +
555 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
556 +href="#_Toc138932274">Collaboratory IAM<span style='color:windowtext;
557 +display:none;text-decoration:none'>... </span><span
558 +style='color:windowtext;display:none;text-decoration:none'>10</span></a></span></span></p>
559 +
560 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
561 +href="#_Toc138932275">Collaboratory Lab<span style='color:windowtext;
562 +display:none;text-decoration:none'>. </span><span
563 +style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p>
564 +
565 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
566 +href="#_Toc138932276">Collaboratory Office<span style='color:windowtext;
567 +display:none;text-decoration:none'>. </span><span
568 +style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p>
569 +
570 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
571 +href="#_Toc138932277">Collaboratory Wiki<span style='color:windowtext;
572 +display:none;text-decoration:none'> </span><span
573 +style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p>
574 +
575 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
576 +href="#_Toc138932278">CoreNEURON<span style='color:windowtext;display:none;
577 +text-decoration:none'>.. </span><span
578 +style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p>
579 +
580 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
581 +href="#_Toc138932279">CxSystem2<span style='color:windowtext;display:none;
582 +text-decoration:none'>. </span><span
583 +style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p>
584 +
585 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
586 +href="#_Toc138932280">DeepSlice<span style='color:windowtext;display:none;
587 +text-decoration:none'>. </span><span
588 +style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p>
589 +
590 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
591 +href="#_Toc138932281">EBRAINS Ethics &amp; Society Toolkit<span
592 +style='color:windowtext;display:none;text-decoration:none'> </span><span
593 +style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p>
594 +
595 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
596 +href="#_Toc138932282">EBRAINS Image Service<span style='color:windowtext;
597 +display:none;text-decoration:none'>. </span><span
598 +style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p>
599 +
600 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
601 +href="#_Toc138932283">EBRAINS Knowledge Graph<span style='color:windowtext;
602 +display:none;text-decoration:none'>. </span><span
603 +style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p>
604 +
605 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
606 +href="#_Toc138932284">EDI Toolkit<span style='color:windowtext;display:none;
607 +text-decoration:none'> </span><span
608 +style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p>
609 +
610 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
611 +href="#_Toc138932285">eFEL<span style='color:windowtext;display:none;
612 +text-decoration:none'>. </span><span
613 +style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p>
614 +
615 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
616 +href="#_Toc138932286">Electrophysiology Analysis Toolkit<span style='color:
617 +windowtext;display:none;text-decoration:none'> </span><span
618 +style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p>
619 +
620 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
621 +href="#_Toc138932287">FAConstructor<span style='color:windowtext;display:none;
622 +text-decoration:none'> </span><span
623 +style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p>
624 +
625 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
626 +href="#_Toc138932288">fairgraph<span style='color:windowtext;display:none;
627 +text-decoration:none'>. </span><span
628 +style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p>
629 +
630 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
631 +href="#_Toc138932289">Fast sampling with neuromorphic hardware<span
632 +style='color:windowtext;display:none;text-decoration:none'>. </span><span
633 +style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p>
634 +
635 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
636 +href="#_Toc138932290">fastPLI<span style='color:windowtext;display:none;
637 +text-decoration:none'> </span><span
638 +style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p>
639 +
640 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
641 +href="#_Toc138932291">Feed-forward LFP-MEG estimator from mean-field models<span
642 +style='color:windowtext;display:none;text-decoration:none'>. </span><span
643 +style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p>
644 +
645 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
646 +href="#_Toc138932292">FIL<span style='color:windowtext;display:none;text-decoration:
647 +none'>. </span><span
648 +style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p>
649 +
650 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
651 +href="#_Toc138932293">FMRALIGN<span style='color:windowtext;display:none;
652 +text-decoration:none'>.. </span><span
653 +style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p>
654 +
655 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
656 +href="#_Toc138932294">Foa3D<span style='color:windowtext;display:none;
657 +text-decoration:none'>.. </span><span
658 +style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p>
659 +
660 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
661 +href="#_Toc138932295">Frites<span style='color:windowtext;display:none;
662 +text-decoration:none'>. </span><span
663 +style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p>
664 +
665 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
666 +href="#_Toc138932296">gridspeccer<span style='color:windowtext;display:none;
667 +text-decoration:none'> </span><span
668 +style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p>
669 +
670 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
671 +href="#_Toc138932297">Hal-Cgp<span style='color:windowtext;display:none;
672 +text-decoration:none'>. </span><span
673 +style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p>
674 +
675 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
676 +href="#_Toc138932298">Health Data Cloud<span style='color:windowtext;
677 +display:none;text-decoration:none'>. </span><span
678 +style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p>
679 +
680 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
681 +href="#_Toc138932299">Hodgkin-Huxley Neuron Builder<span style='color:windowtext;
682 +display:none;text-decoration:none'> </span><span
683 +style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p>
684 +
685 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
686 +href="#_Toc138932300">HPC Job Proxy<span style='color:windowtext;display:none;
687 +text-decoration:none'>. </span><span
688 +style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p>
689 +
690 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
691 +href="#_Toc138932301">HPC Status Monitor<span style='color:windowtext;
692 +display:none;text-decoration:none'> </span><span
693 +style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p>
694 +
695 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
696 +href="#_Toc138932302">Human Intracerebral EEG Platform<span style='color:windowtext;
697 +display:none;text-decoration:none'>.. </span><span
698 +style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p>
699 +
700 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
701 +href="#_Toc138932303">Hybrid MM/CG Webserver<span style='color:windowtext;
702 +display:none;text-decoration:none'> </span><span
703 +style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p>
704 +
705 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
706 +href="#_Toc138932304">Insite<span style='color:windowtext;display:none;
707 +text-decoration:none'>. </span><span
708 +style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p>
709 +
710 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
711 +href="#_Toc138932305">Interactive Brain Atlas Viewer<span style='color:windowtext;
712 +display:none;text-decoration:none'> </span><span
713 +style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p>
714 +
715 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
716 +href="#_Toc138932306">JuGEx<span style='color:windowtext;display:none;
717 +text-decoration:none'>. </span><span
718 +style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p>
719 +
720 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
721 +href="#_Toc138932307">KnowledgeSpace<span style='color:windowtext;display:none;
722 +text-decoration:none'>. </span><span
723 +style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p>
724 +
725 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
726 +href="#_Toc138932308">L2L<span style='color:windowtext;display:none;text-decoration:
727 +none'>. </span><span
728 +style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p>
729 +
730 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
731 +href="#_Toc138932309">Leveltlab/SpectralSegmentation<span style='color:windowtext;
732 +display:none;text-decoration:none'>. </span><span
733 +style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p>
734 +
735 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
736 +href="#_Toc138932310">LFPy<span style='color:windowtext;display:none;
737 +text-decoration:none'>. </span><span
738 +style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p>
739 +
740 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
741 +href="#_Toc138932311">libsonata<span style='color:windowtext;display:none;
742 +text-decoration:none'>. </span><span
743 +style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p>
744 +
745 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
746 +href="#_Toc138932312">Live Papers<span style='color:windowtext;display:none;
747 +text-decoration:none'>. </span><span
748 +style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p>
749 +
750 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
751 +href="#_Toc138932313">Livre<span style='color:windowtext;display:none;
752 +text-decoration:none'>. </span><span
753 +style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p>
754 +
755 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
756 +href="#_Toc138932314">LocaliZoom<span style='color:windowtext;display:none;
757 +text-decoration:none'>.. </span><span
758 +style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p>
759 +
760 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
761 +href="#_Toc138932315">MD-IFP<span style='color:windowtext;display:none;
762 +text-decoration:none'>. </span><span
763 +style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p>
764 +
765 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
766 +href="#_Toc138932316">MEDUSA<span style='color:windowtext;display:none;
767 +text-decoration:none'>. </span><span
768 +style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p>
769 +
770 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
771 +href="#_Toc138932317">MeshView<span style='color:windowtext;display:none;
772 +text-decoration:none'>.. </span><span
773 +style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p>
774 +
775 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
776 +href="#_Toc138932318">MIP<span style='color:windowtext;display:none;text-decoration:
777 +none'>. </span><span
778 +style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p>
779 +
780 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
781 +href="#_Toc138932319">Model Validation Service<span style='color:windowtext;
782 +display:none;text-decoration:none'>. </span><span
783 +style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p>
784 +
785 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
786 +href="#_Toc138932320">Model Validation Test Suites<span style='color:windowtext;
787 +display:none;text-decoration:none'>. </span><span
788 +style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p>
789 +
790 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
791 +href="#_Toc138932321">MoDEL-CNS<span style='color:windowtext;display:none;
792 +text-decoration:none'>. </span><span
793 +style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p>
794 +
795 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
796 +href="#_Toc138932322">Modular Science<span style='color:windowtext;display:
797 +none;text-decoration:none'>. </span><span
798 +style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p>
799 +
800 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
801 +href="#_Toc138932323">Monsteer<span style='color:windowtext;display:none;
802 +text-decoration:none'> </span><span
803 +style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p>
804 +
805 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
806 +href="#_Toc138932324">MorphIO<span style='color:windowtext;display:none;
807 +text-decoration:none'>.. </span><span
808 +style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p>
809 +
810 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
811 +href="#_Toc138932325">Morphology alignment tool<span style='color:windowtext;
812 +display:none;text-decoration:none'> </span><span
813 +style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p>
814 +
815 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
816 +href="#_Toc138932326">MorphTool<span style='color:windowtext;display:none;
817 +text-decoration:none'> </span><span
818 +style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p>
819 +
820 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
821 +href="#_Toc138932327">Multi-Brain<span style='color:windowtext;display:none;
822 +text-decoration:none'>. </span><span
823 +style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p>
824 +
825 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
826 +href="#_Toc138932328">Multi-Image-OSD<span style='color:windowtext;display:
827 +none;text-decoration:none'>.. </span><span
828 +style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p>
829 +
830 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
831 +href="#_Toc138932329">MUSIC<span style='color:windowtext;display:none;
832 +text-decoration:none'>. </span><span
833 +style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p>
834 +
835 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
836 +href="#_Toc138932330">NEAT<span style='color:windowtext;display:none;
837 +text-decoration:none'>. </span><span
838 +style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p>
839 +
840 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
841 +href="#_Toc138932331">Neo<span style='color:windowtext;display:none;text-decoration:
842 +none'>. </span><span
843 +style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p>
844 +
845 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
846 +href="#_Toc138932332">Neo Viewer<span style='color:windowtext;display:none;
847 +text-decoration:none'> </span><span
848 +style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p>
849 +
850 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
851 +href="#_Toc138932333">NEST Desktop<span style='color:windowtext;display:none;
852 +text-decoration:none'>. </span><span
853 +style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p>
854 +
855 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
856 +href="#_Toc138932334">NEST Simulator<span style='color:windowtext;display:none;
857 +text-decoration:none'> </span><span
858 +style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p>
859 +
860 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
861 +href="#_Toc138932335">NESTML<span style='color:windowtext;display:none;
862 +text-decoration:none'>. </span><span
863 +style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p>
864 +
865 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
866 +href="#_Toc138932336">NetPyNE<span style='color:windowtext;display:none;
867 +text-decoration:none'>. </span><span
868 +style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p>
869 +
870 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
871 +href="#_Toc138932337">NEURO-CONNECT<span style='color:windowtext;display:none;
872 +text-decoration:none'>. </span><span
873 +style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p>
874 +
875 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
876 +href="#_Toc138932338">NeuroFeatureExtract<span style='color:windowtext;
877 +display:none;text-decoration:none'> </span><span
878 +style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p>
879 +
880 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
881 +href="#_Toc138932339">NeurogenPy<span style='color:windowtext;display:none;
882 +text-decoration:none'>. </span><span
883 +style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p>
884 +
885 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
886 +href="#_Toc138932340">NeuroM<span style='color:windowtext;display:none;
887 +text-decoration:none'>... </span><span
888 +style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p>
889 +
890 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
891 +href="#_Toc138932341">Neuromorphic Computing Job Queue<span style='color:windowtext;
892 +display:none;text-decoration:none'>. </span><span
893 +style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p>
894 +
895 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
896 +href="#_Toc138932342">Neuronize v2<span style='color:windowtext;display:none;
897 +text-decoration:none'>. </span><span
898 +style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p>
899 +
900 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
901 +href="#_Toc138932343">NeuroR<span style='color:windowtext;display:none;
902 +text-decoration:none'>. </span><span
903 +style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p>
904 +
905 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
906 +href="#_Toc138932344">Neurorobotics Platform<span style='color:windowtext;
907 +display:none;text-decoration:none'>.. </span><span
908 +style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p>
909 +
910 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
911 +href="#_Toc138932345">Neurorobotics Platform Robot Designer<span
912 +style='color:windowtext;display:none;text-decoration:none'> </span><span
913 +style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p>
914 +
915 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
916 +href="#_Toc138932346">NeuroScheme<span style='color:windowtext;display:none;
917 +text-decoration:none'>. </span><span
918 +style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p>
919 +
920 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
921 +href="#_Toc138932347">NeuroSuites<span style='color:windowtext;display:none;
922 +text-decoration:none'>. </span><span
923 +style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p>
924 +
925 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
926 +href="#_Toc138932348">NeuroTessMesh<span style='color:windowtext;display:none;
927 +text-decoration:none'>. </span><span
928 +style='color:windowtext;display:none;text-decoration:none'>25</span></a></span></span></p>
929 +
930 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
931 +href="#_Toc138932349">NMODL Framework<span style='color:windowtext;display:
932 +none;text-decoration:none'>. </span><span
933 +style='color:windowtext;display:none;text-decoration:none'>25</span></a></span></span></p>
934 +
935 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
936 +href="#_Toc138932350">NSuite<span style='color:windowtext;display:none;
937 +text-decoration:none'>. </span><span
938 +style='color:windowtext;display:none;text-decoration:none'>25</span></a></span></span></p>
939 +
940 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
941 +href="#_Toc138932351">ODE-toolbox<span style='color:windowtext;display:none;
942 +text-decoration:none'>. </span><span
943 +style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p>
944 +
945 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
946 +href="#_Toc138932352">openMINDS<span style='color:windowtext;display:none;
947 +text-decoration:none'>. </span><span
948 +style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p>
949 +
950 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
951 +href="#_Toc138932353">openMINDS metadata for TVB-ready data<span
952 +style='color:windowtext;display:none;text-decoration:none'>. </span><span
953 +style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p>
954 +
955 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
956 +href="#_Toc138932354">PCI<span style='color:windowtext;display:none;text-decoration:
957 +none'> </span><span
958 +style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p>
959 +
960 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
961 +href="#_Toc138932355">PIPSA<span style='color:windowtext;display:none;
962 +text-decoration:none'>. </span><span
963 +style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p>
964 +
965 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
966 +href="#_Toc138932356">PoSCE<span style='color:windowtext;display:none;
967 +text-decoration:none'>. </span><span
968 +style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p>
969 +
970 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
971 +href="#_Toc138932357">Provenance API<span style='color:windowtext;display:none;
972 +text-decoration:none'> </span><span
973 +style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p>
974 +
975 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
976 +href="#_Toc138932358">PyNN<span style='color:windowtext;display:none;
977 +text-decoration:none'>.. </span><span
978 +style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p>
979 +
980 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
981 +href="#_Toc138932359">Pyramidal Explorer<span style='color:windowtext;
982 +display:none;text-decoration:none'> </span><span
983 +style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p>
984 +
985 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
986 +href="#_Toc138932360">QCAlign software<span style='color:windowtext;display:
987 +none;text-decoration:none'>. </span><span
988 +style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p>
989 +
990 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
991 +href="#_Toc138932361">QuickNII<span style='color:windowtext;display:none;
992 +text-decoration:none'> </span><span
993 +style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p>
994 +
995 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
996 +href="#_Toc138932362">Quota Manager<span style='color:windowtext;display:none;
997 +text-decoration:none'> </span><span
998 +style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p>
999 +
1000 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1001 +href="#_Toc138932363">RateML<span style='color:windowtext;display:none;
1002 +text-decoration:none'>. </span><span
1003 +style='color:windowtext;display:none;text-decoration:none'>28</span></a></span></span></p>
1004 +
1005 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1006 +href="#_Toc138932364">Region-wise CBPP using the Julich BrainÊCytoarchitectonic
1007 +Atlas<span style='color:windowtext;display:none;text-decoration:none'>. </span><span
1008 +style='color:windowtext;display:none;text-decoration:none'>28</span></a></span></span></p>
1009 +
1010 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1011 +href="#_Toc138932365">RRI Capacity Development Resources<span style='color:
1012 +windowtext;display:none;text-decoration:none'>. </span><span
1013 +style='color:windowtext;display:none;text-decoration:none'>28</span></a></span></span></p>
1014 +
1015 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1016 +href="#_Toc138932366">rsHRF<span style='color:windowtext;display:none;
1017 +text-decoration:none'>. </span><span
1018 +style='color:windowtext;display:none;text-decoration:none'>28</span></a></span></span></p>
1019 +
1020 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1021 +href="#_Toc138932367">RTNeuron<span style='color:windowtext;display:none;
1022 +text-decoration:none'>. </span><span
1023 +style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p>
1024 +
1025 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1026 +href="#_Toc138932368">sbs: Spike-based Sampling<span style='color:windowtext;
1027 +display:none;text-decoration:none'>. </span><span
1028 +style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p>
1029 +
1030 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1031 +href="#_Toc138932369">SDA 7<span style='color:windowtext;display:none;
1032 +text-decoration:none'>. </span><span
1033 +style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p>
1034 +
1035 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1036 +href="#_Toc138932370">Shape &amp; Appearance Modelling<span style='color:windowtext;
1037 +display:none;text-decoration:none'>. </span><span
1038 +style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p>
1039 +
1040 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1041 +href="#_Toc138932371">siibra-api<span style='color:windowtext;display:none;
1042 +text-decoration:none'> </span><span
1043 +style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p>
1044 +
1045 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1046 +href="#_Toc138932372">siibra-explorer<span style='color:windowtext;display:
1047 +none;text-decoration:none'> </span><span
1048 +style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p>
1049 +
1050 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1051 +href="#_Toc138932373">siibra-python<span style='color:windowtext;display:none;
1052 +text-decoration:none'>. </span><span
1053 +style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p>
1054 +
1055 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1056 +href="#_Toc138932374">Single Cell Model (Re)builder Notebook<span
1057 +style='color:windowtext;display:none;text-decoration:none'>. </span><span
1058 +style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p>
1059 +
1060 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1061 +href="#_Toc138932375">Slurm Plugin for Co-allocation of Compute and Data
1062 +Resources<span style='color:windowtext;display:none;text-decoration:none'>. </span><span
1063 +style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p>
1064 +
1065 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1066 +href="#_Toc138932376">Snudda<span style='color:windowtext;display:none;
1067 +text-decoration:none'>. </span><span
1068 +style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p>
1069 +
1070 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1071 +href="#_Toc138932377">SomaSegmenter<span style='color:windowtext;display:none;
1072 +text-decoration:none'> </span><span
1073 +style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p>
1074 +
1075 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1076 +href="#_Toc138932378">SpiNNaker<span style='color:windowtext;display:none;
1077 +text-decoration:none'> </span><span
1078 +style='color:windowtext;display:none;text-decoration:none'>31</span></a></span></span></p>
1079 +
1080 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1081 +href="#_Toc138932379">SSB toolkit<span style='color:windowtext;display:none;
1082 +text-decoration:none'> </span><span
1083 +style='color:windowtext;display:none;text-decoration:none'>31</span></a></span></span></p>
1084 +
1085 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1086 +href="#_Toc138932380">Subcellular model building and calibration tool set<span
1087 +style='color:windowtext;display:none;text-decoration:none'> </span><span
1088 +style='color:windowtext;display:none;text-decoration:none'>31</span></a></span></span></p>
1089 +
1090 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1091 +href="#_Toc138932381">Synaptic Events Fitting<span style='color:windowtext;
1092 +display:none;text-decoration:none'>. </span><span
1093 +style='color:windowtext;display:none;text-decoration:none'>31</span></a></span></span></p>
1094 +
1095 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1096 +href="#_Toc138932382">Synaptic Plasticity Explorer<span style='color:windowtext;
1097 +display:none;text-decoration:none'> </span><span
1098 +style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p>
1099 +
1100 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1101 +href="#_Toc138932383">Synaptic proteome database (SQLite)<span
1102 +style='color:windowtext;display:none;text-decoration:none'> </span><span
1103 +style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p>
1104 +
1105 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1106 +href="#_Toc138932384">Synaptome.db<span style='color:windowtext;display:none;
1107 +text-decoration:none'>. </span><span
1108 +style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p>
1109 +
1110 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1111 +href="#_Toc138932385">Tide<span style='color:windowtext;display:none;
1112 +text-decoration:none'>. </span><span
1113 +style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p>
1114 +
1115 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1116 +href="#_Toc138932386">TVB EBRAINS<span style='color:windowtext;display:none;
1117 +text-decoration:none'>. </span><span
1118 +style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p>
1119 +
1120 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1121 +href="#_Toc138932387">TVB Image Processing Pipeline<span style='color:windowtext;
1122 +display:none;text-decoration:none'>. </span><span
1123 +style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p>
1124 +
1125 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1126 +href="#_Toc138932388">TVB Inversion<span style='color:windowtext;display:none;
1127 +text-decoration:none'>. </span><span
1128 +style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p>
1129 +
1130 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1131 +href="#_Toc138932389">TVB Web App<span style='color:windowtext;display:none;
1132 +text-decoration:none'>. </span><span
1133 +style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p>
1134 +
1135 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1136 +href="#_Toc138932390">TVB Widgets<span style='color:windowtext;display:none;
1137 +text-decoration:none'>. </span><span
1138 +style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p>
1139 +
1140 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1141 +href="#_Toc138932391">TVB-Multiscale<span style='color:windowtext;display:none;
1142 +text-decoration:none'>. </span><span
1143 +style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p>
1144 +
1145 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1146 +href="#_Toc138932392">VIOLA<span style='color:windowtext;display:none;
1147 +text-decoration:none'>. </span><span
1148 +style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p>
1149 +
1150 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1151 +href="#_Toc138932393">Vishnu 1.0<span style='color:windowtext;display:none;
1152 +text-decoration:none'>. </span><span
1153 +style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p>
1154 +
1155 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1156 +href="#_Toc138932394">ViSimpl<span style='color:windowtext;display:none;
1157 +text-decoration:none'> </span><span
1158 +style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p>
1159 +
1160 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1161 +href="#_Toc138932395">VisuAlign<span style='color:windowtext;display:none;
1162 +text-decoration:none'>. </span><span
1163 +style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p>
1164 +
1165 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1166 +href="#_Toc138932396">VMetaFlow<span style='color:windowtext;display:none;
1167 +text-decoration:none'>.. </span><span
1168 +style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p>
1169 +
1170 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1171 +href="#_Toc138932397">Voluba<span style='color:windowtext;display:none;
1172 +text-decoration:none'>. </span><span
1173 +style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p>
1174 +
1175 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1176 +href="#_Toc138932398">WebAlign<span style='color:windowtext;display:none;
1177 +text-decoration:none'>. </span><span
1178 +style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p>
1179 +
1180 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1181 +href="#_Toc138932399">Webilastik<span style='color:windowtext;display:none;
1182 +text-decoration:none'>. </span><span
1183 +style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p>
1184 +
1185 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1186 +href="#_Toc138932400">WebWarp<span style='color:windowtext;display:none;
1187 +text-decoration:none'>. </span><span
1188 +style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p>
1189 +
1190 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1191 +href="#_Toc138932401">ZetaStitcher<span style='color:windowtext;display:none;
1192 +text-decoration:none'> </span><span
1193 +style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p>
1194 +
1195 +<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a
1196 +href="#_Toc138932402">TauRAMD<span style='color:windowtext;display:none;
1197 +text-decoration:none'>.. </span><span
1198 +style='color:windowtext;display:none;text-decoration:none'>36</span></a></span></span></p>
1199 +
1200 +<p class=MsoNormal><span lang=en-DE>&nbsp;</span></p>
1201 +
1202 +<h2><a name="_Toc138932248"><span lang=en-DE>AngoraPy</span></a></h2>
1203 +
1204 +<p class=MsoNormal><span lang=en-DE>AngoraPy is an open-source Python library
1205 +that helps neuroscientists build and train goal-driven models of the sensorimotor
1206 +system. The toolbox comprises state-of-the-art machine learning techniques
1207 +under the hood of an easy-to-use API. With the help of deep reinforcement
1208 +learning, the connectivity required for solving complex, ecologically valid
1209 +tasks, can be learned autonomously, obviating the need for hand-engineered or
1210 +hypothesis-driven connectivity patterns. With AngoraPy, neuroscientists can
1211 +train custom deep neural networks on custom sensorimotor tasks.</span></p>
1212 +
1213 +<h2></h2>
1214 +
1215 +<h2><a name="_Toc138932249"><span lang=en-DE>AnonyMI</span></a></h2>
1216 +
1217 +<p class=MsoNormal><span lang=en-DE>AnonyMI is an MRI de-identification tool
1218 +that uses 3D surface modelling in order to de-identify MRIs while retaining as
1219 +much geometrical information as possible. It can be run automatically or
1220 +manually, which allows precise tailoring for specific needs. AnonyMI is
1221 +distributed as a plug-in of 3D Slicer, a widely used, open-source, stable and
1222 +reliable image-processing software. It leverages the power of this platform for
1223 +reading and saving images, which makes it applicable on almost any MRI file
1224 +type, including all the most commonly used formats (e.g., DICOM, Nifti, Analyze
1225 +etc.).</span></p>
1226 +
1227 +<h2></h2>
1228 +
1229 +<h2><a name="_Toc138932250"><span lang=en-DE>Arbor</span></a></h2>
1230 +
1231 +<p class=MsoNormal><span lang=en-DE>Arbor is a simulation software library for
1232 +neuron models with complex morphologies Ñ from single cells to large
1233 +distributed networks. Developed entirely inside HBP, it enables running
1234 +large-scale simulations on any HPC, including those available through EBRAINS.
1235 +Arbor provides performance portability for native execution on all HPC
1236 +architectures. Optimized vectorized code is generated for Intel, AMD and ARM
1237 +CPUs, NVIDIA and AMD GPUs, and support will be added for new architectures as
1238 +they become available. Model portability is easier due to an interface for
1239 +model description independent of how Arbor represents models internally. 
1240 +Interoperability with other simulation engines is enabled via API for spike
1241 +exchange and the output of voltages, currents and model state.</span></p>
1242 +
1243 +<h2></h2>
1244 +
1245 +<h2><a name="_Toc138932251"><span lang=en-DE>Arbor GUI</span></a></h2>
1246 +
1247 +<p class=MsoNormal><span lang=en-DE>Arbor GUI strives to be self-contained,
1248 +fast and easy to use. Design morphologically detailed cells for simulation in
1249 +Arbor. Load morphologies from SWC .swc, NeuroML .nml, NeuroLucida .asc. Define
1250 +and highlight Arbor regions and locsets. Paint ion dynamics and bio-physical
1251 +properties onto morphologies. Place spike detectors and probes. Export cable
1252 +cells to Arbor's internal format (ACC) for direct simulation. Import cable
1253 +cells in ACC format. This project is under active development and welcomes
1254 +early feedback.</span></p>
1255 +
1256 +<h2></h2>
1257 +
1258 +<h2><a name="_Toc138932252"><span lang=en-DE>Bayesian Virtual Epileptic Patient
1259 +(BVEP)</span></a></h2>
1260 +
1261 +<p class=MsoNormal><span lang=en-DE>BVEP relies on the fusion of structural
1262 +data of individuals, a generative model of epileptiform discharges, and the
1263 +state-of-the-art probabilistic machine learning algorithms. It uses self-tuning
1264 +Monte Carlo sampling algorithm, and the deep neural density estimators for
1265 +reliable and efficient model-based inference at source and sensor levels data.
1266 +The Bayesian framework provides an appropriate patient-specific strategy for
1267 +estimating the extent of epileptogenic and propagation zones of the brain
1268 +regions to improve outcome after epilepsy surgery.</span></p>
1269 +
1270 +<h2></h2>
1271 +
1272 +<h2><a name="_Toc138932253"><span lang=en-DE>BIDS Extension Proposal
1273 +Computational Model Specifications</span></a></h2>
1274 +
1275 +<p class=MsoNormal><span lang=en-DE>A data structure schema for neural network
1276 +computational models that aims to be generically applicable to all kinds of
1277 +neural network simulation software, mathematical models, computational models,
1278 +and data models, but with a focus on dynamic circuit models of brain activity. </span></p>
1279 +
1280 +<h2></h2>
1281 +
1282 +<h2><a name="_Toc138932254"><span lang=en-DE>BioBB</span></a></h2>
1283 +
1284 +<p class=MsoNormal><span lang=en-DE>The BioExcel Building Blocks (BioBB)
1285 +software library is a collection of Python wrappers on top of popular
1286 +biomolecular simulation tools. The library offers a layer of interoperability
1287 +between the wrapped tools, which make them compatible and prepared to be
1288 +directly interconnected to build complex biomolecular workflows. Building and
1289 +sharing complex biomolecular simulation workflows just requires joining and
1290 +connecting BioExcelBuilding Blocks together. Biomolecular simulation workflows
1291 +built using the BioBB library are integrated in the Collaboratory Jupyter lab
1292 +infrastructure, allowing the exploration of dynamics and flexibility of
1293 +proteins related to the Central Nervous Systems.</span></p>
1294 +
1295 +<h2></h2>
1296 +
1297 +<h2><a name="_Toc138932255"><span lang=en-DE>BioExcel-CV19</span></a></h2>
1298 +
1299 +<p class=MsoNormal><span lang=en-DE>BioExcel-CV19 is a platform designed to
1300 +provide web access to atomistic-MD trajectories for macromolecules involved in
1301 +the COVID-19 disease. The project is part of the open access initiatives
1302 +promoted by the world-wide scientific community to share information about
1303 +COVID-19 research. BioExcel-CV19 web server interface presents the resulting
1304 +trajectories, with a set of quality control analyses and system information.
1305 +All data produced by the project is available to download from an associated
1306 +programmatic access API.</span></p>
1307 +
1308 +<h2></h2>
1309 +
1310 +<h2><a name="_Toc138932256"><span lang=en-DE>BioNAR</span></a></h2>
1311 +
1312 +<p class=MsoNormal><span lang=en-DE>BioNAR combines a selection of
1313 +existing R protocols for network analysis with newly designed original
1314 +methodological features to support step-by-step analysis of
1315 +biological/biomedical networks. BioNAR supports a pipeline approach where many
1316 +networks and iterative analyses can be performed. BioNAR helps to achieve a
1317 +number of network analysis goals that are difficult to achieve anywhere else,
1318 +e.g., choose the optimal clustering algorithm from a range of options based on
1319 +independent annotation enrichment</span><span lang=en-DE style='font-family:
1320 +"Times New Roman",serif'> </span><span lang=en-DE>predict a proteins influence
1321 +within and across multiple sub-complexes in the network and estimate the
1322 +co-occurrence or linkage between meta-data at the network level.</span></p>
1323 +
1324 +<h2></h2>
1325 +
1326 +<h2><a name="_Toc138932257"><span lang=en-DE>BlueNaaS-single cell</span></a></h2>
1327 +
1328 +<p class=MsoNormal><span lang=en-DE>BlueNaaS-SingleCell is an open-source web
1329 +application. It enables users to quickly visualize single cell model
1330 +morphologies in 3D or as a dendrogram. Using a simple web user interface, single
1331 +cell simulations can be easily configured and launched, producing voltage
1332 +traces from selected compartments.</span></p>
1333 +
1334 +<h2></h2>
1335 +
1336 +<h2><a name="_Toc138932258"><span lang=en-DE>BlueNaaS-subcellular</span></a></h2>
1337 +
1338 +<p class=MsoNormal><span lang=en-DE>BlueNaaS-Subcellular is a web-based
1339 +environment for creation and simulation of reaction-diffusion models. It allows
1340 +the user to import, combine and simulate existing models derived from other
1341 +parts of the pipeline. It is integrated with a number of solvers for
1342 +reaction-diffusion systems of equations and can represent rule-based systems
1343 +using BioNetGen. Additionally, it supports simulation of spatially distributed
1344 +systems using STEPS (stochastic engine for pathway simulation), providing
1345 +spatial stochastic and deterministic solvers for simulation of reactions and
1346 +diffusion on tetrahedral meshes. It includes some visualisation tools such as a
1347 +geometry viewer, a contact map and a reactivity network graph.</span></p>
1348 +
1349 +<h2></h2>
1350 +
1351 +<h2><a name="_Toc138932259"><span lang=en-DE>BluePyEfe</span></a></h2>
1352 +
1353 +<p class=MsoNormal><span lang=en-DE>BluePyEfe eases the process of reading
1354 +experimental recordings and extracting batches of electrical features from
1355 +these recordings. It combines trace reading functions and features extraction
1356 +functions from the eFel library. BluePyEfe outputs protocols and features files
1357 +in the format used by BluePyOpt for neuron electrical model building.</span></p>
1358 +
1359 +<h2></h2>
1360 +
1361 +<h2><a name="_Toc138932260"><span lang=en-DE>BluePyMM</span></a></h2>
1362 +
1363 +<p class=MsoNormal><span lang=en-DE>When building a network simulation,
1364 +biophysically detailed electrical models (e-models) need to be tested for every
1365 +morphology that is possibly used in the circuit.  With current resources,
1366 +e-models are not re-optimised for every morphology in the network. In a process
1367 +called Cell Model Management (MM), we test if an existing e-model matches a
1368 +particular morphology 'well enough'. It takes as input a morphology release, a
1369 +circuit recipe and a set of e-models, then finds all possible (morphology,
1370 +e-model)-combinations (me-combos) based on e-type, m-type, and layer as
1371 +described by the circuit recipe, then calculates the scores for every
1372 +combination. Finally, it writes out the resulting accepted me-combos to a
1373 +database and produces a report with information on the number of matches.</span></p>
1374 +
1375 +<h2></h2>
1376 +
1377 +<h2><a name="_Toc138932261"><span lang=en-DE>BluePyOpt</span></a></h2>
1378 +
1379 +<p class=MsoNormal><span lang=en-DE>BluePyOpt simplifies the task of creating
1380 +and sharing these optimisations, and the associated techniques and knowledge.
1381 +This is achieved by abstracting the optimisation and evaluation tasks into
1382 +various reusable and flexible discrete elements according to established best
1383 +practices. Further, BluePyOpt provides methods for setting up both small- and
1384 +large-scale optimisations on a variety of platforms, ranging from laptops to
1385 +Linux clusters and cloud-based computer infrastructures.</span></p>
1386 +
1387 +<h2></h2>
1388 +
1389 +<h2><a name="_Toc138932262"><span lang=en-DE>Brain Cockpit</span></a></h2>
1390 +
1391 +<p class=MsoNormal><span lang=en-DE>Brain Cockpit is a web app comprising a
1392 +Typescript front-end and a Python back-end. It is meant to help explore large
1393 +surface fMRI datasets projected on surface meshes and alignments computed
1394 +between brains, such as those computed with Fused Unbalanced Gromov-Wasserstein
1395 +(fugw) for Python.</span></p>
1396 +
1397 +<h2></h2>
1398 +
1399 +<h2><a name="_Toc138932263"><span lang=en-DE>BrainScaleS</span></a></h2>
1400 +
1401 +<p class=MsoNormal><span lang=en-DE>Emulate spiking neural networks in
1402 +continuous time on the BrainScaleS analog neuromorphic computing system. Models
1403 +and experiments can be described in Python using the PyNN modelling language,
1404 +or in hxtorch, a PyTorch-based machine-learning-friendly API.  The platform can
1405 +be used interactively via the EBRAINS JupyterLab service or EBRAINS HPC</span><span
1406 +lang=en-DE style='font-family:"Times New Roman",serif'> </span><span
1407 +lang=en-DE>in addition, the NMPI web service provides batch-style access. The
1408 +modelling APIs employ common data formats for input and output data, e.g.,
1409 +neo.</span></p>
1410 +
1411 +<h2></h2>
1412 +
1413 +<h2><a name="_Toc138932264"><span lang=en-DE>Brayns</span></a></h2>
1414 +
1415 +<p class=MsoNormal><span lang=en-DE>Brayns is a large-scale scientific
1416 +visualization platform based on Intel OSPRAY to perform CPU Ray-tracing and
1417 +uses an extension-plugin architecture. The core provides basic functionalities
1418 +that can be reused and/or extended on plugins, which are independent and can be
1419 +loaded or disabled at start-up. This simplifies the process of adding support
1420 +for new scientific visualization use cases, without compromising the
1421 +reliability of the rest of the software. Brayns counts with braynsService, a
1422 +rendering backend which can be accessed over the internet and streams images to
1423 +connected clients. Already-made plugins include CircuitExplorer, DTI,
1424 +AtlasExplorer, CylindricCamera and MoleculeExplorer.</span></p>
1425 +
1426 +<p class=MsoNormal></p>
1427 +
1428 +<h2><a name="_Toc138932265"><span lang=en-DE>Brion</span></a></h2>
1429 +
1430 +<p class=MsoNormal><span lang=en-DE>Brion is a C++ project for read and write
1431 +access to Blue Brain data structures, including BlueConfig/CircuitConfig,
1432 +Circuit, CompartmentReport, Mesh, Morphology, Synapse and Target files. It also
1433 +offers an interface in Python.</span></p>
1434 +
1435 +<h2></h2>
1436 +
1437 +<h2><a name="_Toc138932266"><span lang=en-DE>BSB</span></a></h2>
1438 +
1439 +<p class=MsoNormal><span lang=en-DE>The BSB reconstructs realistic neural
1440 +circuits by placing and connecting fibres and neurons with detailed
1441 +morphologies or only simplified geometrical features. Configure your model the
1442 +way you need. Interfaces with several simulators (CoreNEURON, Arbor, NEST)
1443 +allow simulation of the reconstructed network and investigation of the
1444 +structure-function-dynamics relationships at different levels of resolution.
1445 +The 'scaffold' design allows an easy model reconfiguration reflecting variants
1446 +across brain regions, animal species and physio-pathological conditions without
1447 +dismounting the basic network structure. The BSB provides effortless parallel
1448 +computing both for the reconstruction and simulation phase.</span></p>
1449 +
1450 +<h2></h2>
1451 +
1452 +<h2><a name="_Toc138932267"><span lang=en-DE>BSP Service Account</span></a></h2>
1453 +
1454 +<p class=MsoNormal><span lang=en-DE>The BSP Service Account is a rest API
1455 +service that allows developers to submit user's jobs on HPC systems and
1456 +retrieve results using the EBRAINS authentication, even if users don't have a
1457 +personal account on the available HPC facilities.</span></p>
1458 +
1459 +<h2></h2>
1460 +
1461 +<h2><a name="_Toc138932268"><span lang=en-DE>bsp-usecase-wizard</span></a></h2>
1462 +
1463 +<p class=MsoNormal><span lang=en-DE>The CLS interactive workflows and use cases
1464 +application guides the users through the resolution of realistic scientific
1465 +problems. They are implemented as either front-end or full stack web
1466 +applications or Python-based Jupyter Notebooks that allow the user to
1467 +interactively build, reconstruct or simulate data-driven brain models and
1468 +perform data analysis visualisation. Web applications are freely accessible and
1469 +only require authentication to EBRAINS when specific actions are required
1470 +(e.g., submitting a simulation job to an HBP HPC system). Jupyter Notebooks are
1471 +cloned to the lab.ebrains.eu platform and require authentication via an EBRAINS
1472 +account.</span></p>
1473 +
1474 +<h2></h2>
1475 +
1476 +<h2><a name="_Toc138932269"><span lang=en-DE>CGMD Platform</span></a></h2>
1477 +
1478 +<p class=MsoNormal><span lang=en-DE>Recent advances in CGMD simulations have
1479 +allowed longer and larger molecular dynamics simulations of biological
1480 +macromolecules and their interactions. The CGMD platform is dedicated to the
1481 +preparation, running, and analysis of CGMD simulations, and built on a
1482 +completely revisited version of the Martini coarsE gRained MembrAne proteIn
1483 +Dynamics (MERMAID) web server. In its current version, the platform expands the
1484 +existing implementation of the Martini force field for membrane proteins to
1485 +also allow the simulation of soluble proteins using the Martini and SIRAH force
1486 +fields. Moreover, it offers an automated protocol for carrying out the
1487 +backmapping of the coarse-grained description of the system into an atomistic
1488 +one.</span></p>
1489 +
1490 +<h2></h2>
1491 +
1492 +<h2><a name="_Toc138932270"><span lang=en-DE>CNS-ligands</span></a></h2>
1493 +
1494 +<p class=MsoNormal><span lang=en-DE>The project is part of the Parameter
1495 +generation and mechanistic studies of neuronal cascades using multi-scale
1496 +molecular simulations of the HBP. CNS conformers are generated using a powerful
1497 +multilevel strategy that combines a low-level (LL) method for sampling the
1498 +conformational minima and high-level (HL) ab initio calculations for estimating
1499 +their relative stability. CNS database presents the results in a graphical user
1500 +interface, displaying small molecule properties, analyses and generated 3D
1501 +conformers. All data produced by the project is available to download.</span></p>
1502 +
1503 +<h2></h2>
1504 +
1505 +<h2><a name="_Toc138932271"><span lang=en-DE>Cobrawap</span></a></h2>
1506 +
1507 +<p class=MsoNormal><span lang=en-DE>Cobrawap is an adaptable and reusable
1508 +software tool to study wave-like activity propagation in the cortex. It allows for
1509 +the integration of heterogeneous data from different measurement techniques and
1510 +simulations through alignment to common wave descriptions. Cobrawap provides an
1511 +extendable collection of processing and analysis methods that can be combined
1512 +and adapted to specific input data and research applications. It enables broad
1513 +and rigorous comparisons of wave characteristics across multiple datasets,
1514 +model calibration and validation applications, and its modular building blocks
1515 +may serve to construct related analysis pipelines.</span></p>
1516 +
1517 +<h2></h2>
1518 +
1519 +<h2><a name="_Toc138932272"><span lang=en-DE>Collaboratory Bucket service</span></a></h2>
1520 +
1521 +<p class=MsoNormal><span lang=en-DE>The Bucket service provides object storage
1522 +to EBRAINS users without them having to request an account on Fenix (the
1523 +EBRAINS infrastructure provider) and storage resources there. This is the
1524 +recommended storage for datasets that are shared by data providers, on the
1525 +condition that these do not contain sensitive personal data. For sharing
1526 +datasets with personal data, users should refer to the Health Data Cloud. The
1527 +Bucket service is better suited for larger files that are usually not edited,
1528 +such as datasets and videos. For Docker images, users should refer to the
1529 +EBRAINS Docker registry. For smaller files and files which are more likely to
1530 +be edited, users should consider the Collaboratory Drive service.</span></p>
1531 +
1532 +<h2></h2>
1533 +
1534 +<h2><a name="_Toc138932273"><span lang=en-DE>Collaboratory Drive</span></a></h2>
1535 +
1536 +<p class=MsoNormal><span lang=en-DE>The Drive service offers users cloud
1537 +storage space for their files in each collab (workspace). The Drive storage is
1538 +mounted in the Collaboratory Lab to provide persistent storage (as opposed to
1539 +the Lab containers which are deleted after a few hours of inactivity). All
1540 +files are under version control. The Drive is intended for smaller files
1541 +(currently limited to 1 GB) that change more often. Users must not save files
1542 +containing personal information in the Drive (i.e. data of living human subjects).
1543 +The Drive is also integrated with the Collaboratory Office service to offer
1544 +easy collaborative editing of Office files online.</span></p>
1545 +
1546 +<h2></h2>
1547 +
1548 +<h2><a name="_Toc138932274"><span lang=en-DE>Collaboratory IAM</span></a></h2>
1549 +
1550 +<p class=MsoNormal><span lang=en-DE>The EBRAINS Collaboratory IAM allows the
1551 +developers of different EBRAINS services to benefit from a single sign-on
1552 +solution. End users will benefit from a seamless experience, whereby they can
1553 +access a specific service and have direct access from it to resources in other
1554 +EBRAINS services without re-authentication. For the developer, it is a good way
1555 +for separating concerns and offloading much of the identification and
1556 +authentication to a central service. The EBRAINS IAM is recognised as an
1557 +identity provider at Fenix supercomputing sites. The IAM service also provides
1558 +three ways of managing groups of users: Units, Groups and Teams.</span></p>
1559 +
1560 +<h2></h2>
1561 +
1562 +<h2><a name="_Toc138932275"><span lang=en-DE>Collaboratory Lab</span></a></h2>
1563 +
1564 +<p class=MsoNormal><span lang=en-DE>The Collaboratory Lab provides EBRAINS
1565 +users with a user-friendly programming environment for reproducible science.
1566 +EBRAINS tools are pre-installed for the user. The latest release is selected by
1567 +default, but users can choose to run an older release to reuse an older
1568 +notebook, or try out the very latest features in the weekly experimental
1569 +deployment. Official releases are produced by EBRAINS every few months. End
1570 +users do not need to build and install the tools, and, more importantly, they
1571 +do not need to resolve dependency conflicts among tools as this has been
1572 +handled for them.</span></p>
1573 +
1574 +<h2></h2>
1575 +
1576 +<h2><a name="_Toc138932276"><span lang=en-DE>Collaboratory Office</span></a></h2>
1577 +
1578 +<p class=MsoNormal><span lang=en-DE>With the Office service, EBRAINS users can
1579 +collaboratively edit Office documents (Word, PowerPoint or Excel) with most of
1580 +the key features of the MS Office tools. It uses the open standard formats
1581 +.docx, .pptx and .xlsx so that files can alternately be edited in the
1582 +Collaboratory Office service and in other compatible tools including the MS
1583 +Office suite.</span></p>
1584 +
1585 +<h2></h2>
1586 +
1587 +<h2><a name="_Toc138932277"><span lang=en-DE>Collaboratory Wiki</span></a></h2>
1588 +
1589 +<p class=MsoNormal><span lang=en-DE>The Wiki service offers the user-friendly
1590 +wiki functionality for publishing web content. It acts as central user
1591 +interface and API to access the other Collaboratory services. EBRAINS
1592 +developers can integrate their services as app which can be instantiated by
1593 +users in their collabs. The Wiki is a good place to create tutorials and
1594 +documentation and it is also the place to publish your work on the internet if
1595 +you choose to do so.</span></p>
1596 +
1597 +<h2></h2>
1598 +
1599 +<h2><a name="_Toc138932278"><span lang=en-DE>CoreNEURON</span></a></h2>
1600 +
1601 +<p class=MsoNormal><span lang=en-DE>In order to adapt NEURON to evolving
1602 +computer architectures, the compute engine of the NEURON simulator was
1603 +extracted and optimised as a library called CoreNEURON. CoreNEURON is a compute
1604 +engine library for the NEURON simulator optimised for both memory usage and
1605 +computational speed on modern CPU/GPU architectures. Some of its key goals are
1606 +to: 1) Efficiently simulate large network models, 2) Support execution on
1607 +accelerators such as GPU, 3) Support optimisations such as vectorisation and
1608 +cache-efficient memory layout.</span></p>
1609 +
1610 +<h2></h2>
1611 +
1612 +<h2><a name="_Toc138932279"><span lang=en-DE>CxSystem2</span></a></h2>
1613 +
1614 +<p class=MsoNormal><span lang=en-DE>CxSystem is a cerebral cortex simulation
1615 +framework, which operates on personal computers. The CxSystem enables easy
1616 +testing and build-up of diverse models at single-cell resolution and it is
1617 +implemented on the top of the Python-based Brain2 simulator. The CxSystem
1618 +interface comprises two csv files - one for anatomy and technical details, the
1619 +other for physiological parameters.</span></p>
1620 +
1621 +<h2></h2>
1622 +
1623 +<h2><a name="_Toc138932280"><span lang=en-DE>DeepSlice</span></a></h2>
1624 +
1625 +<p class=MsoNormal><span lang=en-DE>DeepSlice is a deep neural network that
1626 +aligns histological sections of mouse brain to the Allen Mouse Brain Common
1627 +Coordinate Framework, adjusting for anterior-posterior position, angle,
1628 +rotation and scale. At present, DeepSlice only works with tissue cut in the
1629 +coronal plane, although future versions will be compatible with sagittal and
1630 +horizontal sections.</span></p>
1631 +
1632 +<h2></h2>
1633 +
1634 +<h2><a name="_Toc138932281"><span lang=en-DE>EBRAINS Ethics &amp; Society
1635 +Toolkit</span></a></h2>
1636 +
1637 +<p class=MsoNormal><span lang=en-DE>The aim of the toolkit is to offer
1638 +researchers who carry out cross-disciplinary brain research a possibility to
1639 +engage with ethical and societal issues within brain health and brain disease.
1640 +The user is presented with short introductory texts, scenario-based dilemmas,
1641 +animations and quizzes, all tailored to specific areas of ethics and society in
1642 +a setting of brain research. All exercises are reflection-oriented, with an
1643 +interactive approach to inspire users to incorporate these reflections into
1644 +their own research practices. Moreover, it is possible to gain further
1645 +knowledge by utilising the links for relevant publications, teaching modules
1646 +and the EBRAINS Community Space.</span></p>
1647 +
1648 +<h2></h2>
1649 +
1650 +<h2><a name="_Toc138932282"><span lang=en-DE>EBRAINS Image Service</span></a></h2>
1651 +
1652 +<p class=MsoNormal><span lang=en-DE>The Image Service takes large 2D (and 3D)
1653 +images and preprocesses them to generate small 2D tiles (or 3D chunks).
1654 +Applications consuming image data (viewers or other) can then access regions of
1655 +interest by downloading a few tiles rather than the entire large image. Tiles
1656 +are also generated at coarser resolutions to support zooming out of large
1657 +images. The service supports multiple input image formats. The serving of tiles
1658 +to apps is provided by the Collaboratory Bucket (based on OpenStack Swift
1659 +object storage), which provides significantly higher network bandwidth than
1660 +could be provided by any VM.</span></p>
1661 +
1662 +<h2></h2>
1663 +
1664 +<h2><a name="_Toc138932283"><span lang=en-DE>EBRAINS Knowledge Graph</span></a></h2>
1665 +
1666 +<p class=MsoNormal><span lang=en-DE>The EBRAINS Knowledge Graph (KG) is the
1667 +metadata management system of the EBRAINS Data and Knowledge services. It
1668 +provides fundamental services and tools to make neuroscientific data, models
1669 +and related software FAIR. The KG Editor and API (incl. Python SDKs) allow to
1670 +annotate scientific resources in a semantically correct way. The KG Search
1671 +exposes the research information via an intuitive user interface and makes the
1672 +information publicly available to any user. For advanced users, the KG Query
1673 +Builder and KG Core API provide the necessary means to execute detailed queries
1674 +on the graph database whilst enforcing fine-grained permission control.</span></p>
1675 +
1676 +<h2></h2>
1677 +
1678 +<h2><a name="_Toc138932284"><span lang=en-DE>EDI Toolkit</span></a></h2>
1679 +
1680 +<p class=MsoNormal><span lang=en-DE>The EDI Toolkit supports projects in
1681 +integrating EDI in their research content and as guiding principles for team
1682 +collaboration. It is designed for everyday usage by offering: Basic information
1683 +Guiding questions, templates and tools to design responsible research Quick
1684 +checklists, guidance for suitable structures and standard procedures Measures
1685 +to support EDI-based leadership, fair teams and events</span></p>
1686 +
1687 +<h2></h2>
1688 +
1689 +<h2><a name="_Toc138932285"><span lang=en-DE>eFEL</span></a></h2>
1690 +
1691 +<p class=MsoNormal><span lang=en-DE>eFEL allows neuroscientists to
1692 +automatically extract features from time series data recorded from neurons
1693 +(both in vitro and in silico). Examples include  action potential width and
1694 +amplitude in voltage traces recorded during whole-cell patch clamp experiments.
1695 +Users can provide a set of traces and select which  features to calculate. The
1696 +library will then extract the requested features and return the values.</span></p>
1697 +
1698 +<h2></h2>
1699 +
1700 +<h2><a name="_Toc138932286"><span lang=en-DE>Electrophysiology Analysis Toolkit</span></a></h2>
1701 +
1702 +<p class=MsoNormal><span lang=en-DE>The Electrophysiology Analysis Toolkit
1703 +(Elephant) is a Python library that provides a modular framework for the
1704 +analysis of experimental and simulated neuronal activity data, such as spike
1705 +trains, local field potentials, and intracellular data. Elephant builds on the
1706 +Neo data model to facilitate usability, enable interoperability, and support
1707 +data from dozens of file formats and network simulation tools. Its analysis
1708 +functions are continuously validated against reference implementations and
1709 +reports in the literature. Visualisations of analysis results are made
1710 +available via the Viziphant companion library. Elephant aims to act as a
1711 +platform for sharing analysis methods across the field.</span></p>
1712 +
1713 +<h2></h2>
1714 +
1715 +<h2><a name="_Toc138932287"><span lang=en-DE>FAConstructor</span></a></h2>
1716 +
1717 +<p class=MsoNormal><span lang=en-DE>FAConstructor allows a simple and effective
1718 +creation of fibre models based on mathematical functions or the manual input of
1719 +data points. Models are visualised during creation and can be interacted with
1720 +by translating them in 3D space.</span></p>
1721 +
1722 +<h2></h2>
1723 +
1724 +<h2><a name="_Toc138932288"><span lang=en-DE>fairgraph</span></a></h2>
1725 +
1726 +<p class=MsoNormal><span lang=en-DE>fairgraph is a Python library for working
1727 +with metadata in the EBRAINS Knowledge Graph (KG), with a particular focus on
1728 +data reuse, although it is also useful in registering and curating metadata.
1729 +The library represents metadata nodes (also known as openMINDS instances) from
1730 +the KG as Python objects. fairgraph supports querying the KG, following links
1731 +in the graph, downloading data and metadata, and creating new nodes in the KG.
1732 +It builds on openMINDS and on the KG Core Python library.</span></p>
1733 +
1734 +<h2></h2>
1735 +
1736 +<h2><a name="_Toc138932289"><span lang=en-DE>Fast sampling with neuromorphic
1737 +hardware</span></a></h2>
1738 +
1739 +<p class=MsoNormal><span lang=en-DE>Compared to conventional neural networks,
1740 +physical model devices offer a fast, efficient, and inherently parallel
1741 +substrate capable of related forms of Markov chain Monte Carlo sampling. This
1742 +software suite enables the use of a neuromorphic chip to replicate the
1743 +properties of quantum systems through spike-based sampling.</span></p>
1744 +
1745 +<h2></h2>
1746 +
1747 +<h2><a name="_Toc138932290"><span lang=en-DE>fastPLI</span></a></h2>
1748 +
1749 +<p class=MsoNormal><span lang=en-DE>fastPLI is an open-source toolbox based on
1750 +Python and C++ for modelling myelinated axons, i.e., nerve fibres, and
1751 +simulating the results of measurement of fibre orientations with a polarisation
1752 +microscope using 3D-PLI. The fastPLI package includes the following modules:
1753 +nerve fibre modelling, simulation, and analysis. All computationally intensive
1754 +calculations are optimised either with Numba on the Python side or with
1755 +multithreading C++ algorithms, which can be accessed via pybind11 inside the
1756 +Python package. Additionally, the simulation module supports the Message
1757 +Passing Interface (MPI) to facilitate the simulation of very large volumes on
1758 +multiple computer nodes.</span></p>
1759 +
1760 +<h2></h2>
1761 +
1762 +<h2><a name="_Toc138932291"><span lang=en-DE>Feed-forward LFP-MEG estimator
1763 +from mean-field models</span></a></h2>
1764 +
1765 +<p class=MsoNormal><span lang=en-DE>This tool was developed to calculate the
1766 +local field potentials (LFP) and magnetoencephalogram (MEG) signals generated
1767 +by a population of neurons described by a mean-field model. The calculation of
1768 +LFP is done via a kernel method based on unitary LFP's (the LFP generated by a
1769 +single axon) which was recently introduced for spiking-networks simulations and
1770 +that we adapt here for mean-field models. The calculation of the magnetic field
1771 +is based on current-dipole and volume-conductor models, where the secondary
1772 +currents (due to the conducting extracellular medium) are estimated using the
1773 +LFP calculated via the kernel method and where the effects of
1774 +medium-inhomogeneities are incorporated.</span></p>
1775 +
1776 +<h2></h2>
1777 +
1778 +<h2><a name="_Toc138932292"><span lang=en-DE>FIL</span></a></h2>
1779 +
1780 +<p class=MsoNormal><span lang=en-DE>This is a scheme for training and applying
1781 +the FIL framework. Some functionality from SPM12 is required for handling
1782 +images. After training, labelling a new image is relatively fast because
1783 +optimising the latent variables can be formulated within a scheme similar to a recurrent
1784 +Residual Network (ResNet).</span></p>
1785 +
1786 +<h2></h2>
1787 +
1788 +<h2><a name="_Toc138932293"><span lang=en-DE>FMRALIGN</span></a></h2>
1789 +
1790 +<p class=MsoNormal><span lang=en-DE>This library is meant to be a light-weight
1791 +Python library that handles functional alignment tasks (also known as
1792 +hyperalignment). It is compatible with and inspired by Nilearn. Alternative
1793 +implementations of these ideas can be found in the pymvpa or brainiak packages.</span></p>
1794 +
1795 +<h2></h2>
1796 +
1797 +<h2><a name="_Toc138932294"><span lang=en-DE>Foa3D</span></a></h2>
1798 +
1799 +<p class=MsoNormal><span lang=en-DE>Foa3D is a tool for multiscale nerve fibre
1800 +enhancement and orientation analysis in high-resolution volume images acquired
1801 +by two-photon scanning or light-sheet fluorescence microscopy, exploiting the
1802 +brain tissue autofluorescence or exogenous myelin stains. Its image processing
1803 +pipeline is built around a 3D Frangi filter that enables the enhancement of
1804 +fibre structures of varying diameters, and the generation of accurate 3D
1805 +orientation maps in both grey and white matter. Foa3D features the computation
1806 +of multiscale orientation distribution functions that facilitate the comparison
1807 +with orientations assessed via 3D-PLI or 3D PS-OCT, and the validation of
1808 +mesoscale dMRI-based connectivity information.</span></p>
1809 +
1810 +<h2></h2>
1811 +
1812 +<h2><a name="_Toc138932295"><span lang=en-DE>Frites</span></a></h2>
1813 +
1814 +<p class=MsoNormal><span lang=en-DE>Frites allows the characterisation of
1815 +task-related cognitive brain networks. Neural correlates of cognitive functions
1816 +can be extracted both at the single brain area (or channel) and network level.
1817 +The toolbox includes time-resolved directed (e.g., Granger causality) and
1818 +undirected (e.g., Mutual Information) functional connectivity metrics. In
1819 +addition, it includes cluster-based and permutation-based statistical methods
1820 +for single-subject and group-level inference.</span></p>
1821 +
1822 +<h2></h2>
1823 +
1824 +<h2><a name="_Toc138932296"><span lang=en-DE>gridspeccer</span></a></h2>
1825 +
1826 +<p class=MsoNormal><span lang=en-DE>Plotting tool to make plotting with many
1827 +subfigures easier, especially for publications. After installation, gridspeccer
1828 +can be used from the command line to create plots.</span></p>
1829 +
1830 +<h2></h2>
1831 +
1832 +<h2><a name="_Toc138932297"><span lang=en-DE>Hal-Cgp</span></a></h2>
1833 +
1834 +<p class=MsoNormal><span lang=en-DE>Hal-Cgp is an extensible pure Python
1835 +library implementing Cgp to represent, mutate and evaluate populations of
1836 +individuals encoding symbolic expressions targeting applications with
1837 +computationally expensive fitness evaluations. It supports the translation from
1838 +a CGP genotype, a two-dimensional Cartesian graph, into the corresponding
1839 +phenotype, a computational graph implementing a particular mathematical expression.
1840 +These computational graphs can be exported as pure Python functions, in a
1841 +NumPy-compatible format, SymPy expressions or PyTorch modules. The library
1842 +implements a mu + lambda evolution strategy to evolve a population of
1843 +individuals to optimise an objective function.</span></p>
1844 +
1845 +<h2></h2>
1846 +
1847 +<h2><a name="_Toc138932298"><span lang=en-DE>Health Data Cloud</span></a></h2>
1848 +
1849 +<p class=MsoNormal><span lang=en-DE>The Health Data Cloud (HDC) provides
1850 +EBRAINS services for sensitive data as a federated research data ecosystem that
1851 +enables scientists across Europe and beyond to collect, process and share
1852 +sensitive data in compliance with EU General Data Protection Regulations
1853 +(GDPR). The HDC is a federation of interoperable nodes. Nodes share a common
1854 +system architecture based on CharitŽ Virtual Research Environment (VRE),
1855 +enabling research consortia to manage and process data, and making data
1856 +discoverable and sharable via the EBRAINS Knowledge Graph.</span></p>
1857 +
1858 +<p class=MsoNormal></p>
1859 +
1860 +<p class=MsoNormal><a name="_Toc138932299"><span class=Heading2Char><span
1861 +lang=en-DE style='font-size:14.0pt;line-height:120%'>Hodgkin-Huxley Neuron
1862 +Builder</span></span></a></p>
1863 +
1864 +<p class=MsoNormal><span lang=en-DE>The Hodgkin-Huxley Neuron Builder is a
1865 +web-application that allows users to interactively go through an entire NEURON
1866 +model building pipeline of individual biophysically detailed cells. 2. Model
1867 +parameter optimisation via HPC systems. 3. In silico experiments using the
1868 +optimised model cell.  </span></p>
1869 +
1870 +<h2></h2>
1871 +
1872 +<h2><a name="_Toc138932300"><span lang=en-DE>HPC Job Proxy</span></a></h2>
1873 +
1874 +<p class=MsoNormal><span lang=en-DE>The HPC Job Proxy provides a simplified way
1875 +for EBRAINS service providers to launch jobs on Fenix supercomputers on behalf
1876 +of EBRAINS end users. The proxy offers a wrapper over the Unicore service which
1877 +adds logging, access to stdout/stderr/status, verification of user quota, and
1878 +updating of user quota at the end of the job.</span></p>
1879 +
1880 +<h2></h2>
1881 +
1882 +<h2><a name="_Toc138932301"><span lang=en-DE>HPC Status Monitor</span></a></h2>
1883 +
1884 +<p class=MsoNormal><span lang=en-DE>The HPC Status Monitor allows a real-time
1885 +check of the availability status of the HPC Systems accessible from HBP tools
1886 +and services and provides an instant snapshot of the resource quotas available
1887 +to individual users on each system.</span></p>
1888 +
1889 +<h2></h2>
1890 +
1891 +<h2><a name="_Toc138932302"><span lang=en-DE>Human Intracerebral EEG Platform</span></a></h2>
1892 +
1893 +<p class=MsoNormal><span lang=en-DE>The HIP is an open-source platform designed
1894 +for collecting, managing, analysing and sharing multi-scale iEEG data at an
1895 +international level. Its mission is to assist clinicians and researchers in
1896 +improving research capabilities by simplifying iEEG data analysis and
1897 +interpretation. The HIP integrates different software, modules and services
1898 +necessary for investigating spatio-temporal dynamics of neural processes in a
1899 +secure and optimised fashion. The interface is browser-based and allows
1900 +selecting sets of tools according to specific research needs.</span></p>
1901 +
1902 +<h2></h2>
1903 +
1904 +<h2><a name="_Toc138932303"><span lang=en-DE>Hybrid MM/CG Webserver</span></a></h2>
1905 +
1906 +<p class=MsoNormal><span lang=en-DE>MM/CG simulations help predict ligand poses
1907 +in hGPCRs  for pharmacological applications. This approach allows for the
1908 +description of the ligand, the binding cavity and the surrounding water
1909 +molecules at atomistic resolution, while coarse-graining the rest of the
1910 +receptor. The webserver automatises and speeds up the simulation set-up of
1911 +hGPCR/ligand complexes. It also allows for equilibration of the systems, either
1912 +fully automatically or interactively. The results are visualised online,
1913 +helping the user identify possible issues and modify the set-up parameters.
1914 +This framework allows for the automatic preparation and running of hybrid
1915 +molecular dynamics simulations of molecules and their cognate receptors.</span></p>
1916 +
1917 +<h2></h2>
1918 +
1919 +<h2><a name="_Toc138932304"><span lang=en-DE>Insite</span></a></h2>
1920 +
1921 +<p class=MsoNormal><span lang=en-DE>Insite enables users to access data via the
1922 +in transit paradigm for NEST, TVB and Arbor simulations. Compared to the
1923 +traditional approach of offline processing, in transit paradigms allow
1924 +accessing of data while the simulation runs. This is especially useful for
1925 +simulations that produce large amounts of data and are running for a long time.
1926 +In transit allows the user to access only parts of the data and prevents the
1927 +need for storing all data. It also allows the user early insights into the data
1928 +even before the simulation finishes. Insite provides an easy-to-use and
1929 +easy-to-integrate architecture to enable in transit features in other tools.</span></p>
1930 +
1931 +<h2></h2>
1932 +
1933 +<h2><a name="_Toc138932305"><span lang=en-DE>Interactive Brain Atlas Viewer</span></a></h2>
1934 +
1935 +<p class=MsoNormal><span lang=en-DE>The Interactive Brain Atlas Viewer provides
1936 +various kinds of interactive visualisations for multi-modal brain and head
1937 +image data: different parcellations, degrees of transparency and overlays. The
1938 +Viewer provides the following functions and supports data from the following
1939 +sources: EEG, white matter tracts, MRI and PET 3D volumes, 2D slices,
1940 +intracranial electrodes, brain activity, multiscale brain network models,
1941 +supplementary information for brain regions and functional brain networks in
1942 +multiple languages. It comes as a web app, mobile app and desktop app.</span></p>
1943 +
1944 +<h2></h2>
1945 +
1946 +<h2><a name="_Toc138932306"><span lang=en-DE>JuGEx</span></a></h2>
1947 +
1948 +<p class=MsoNormal><span lang=en-DE>Decoding the chain from genes to cognition
1949 +requires detailed insights into how areas with specific gene activities and
1950 +microanatomical architectures contribute to brain function and dysfunction. The
1951 +Allen Human Brain Atlas contains regional gene expression data, while the
1952 +Julich Brain Atlas, which can be accessed via siibra, offers 3D
1953 +cytoarchitectonic maps reflecting the interindividual variability. JuGEx offers
1954 +an integrated framework that combines the analytical benefits of both
1955 +repositories towards a multilevel brain atlas of adult humans. JuGEx is a new
1956 +method for integrating tissue transcriptome and cytoarchitectonic segregation.</span></p>
1957 +
1958 +<h2></h2>
1959 +
1960 +<h2><a name="_Toc138932307"><span lang=en-DE>KnowledgeSpace</span></a></h2>
1961 +
1962 +<p class=MsoNormal><span lang=en-DE>KnowledgeSpace (KS) is a globally-used,
1963 +data-driven encyclopaedia and search engine for the neuroscience community. As
1964 +an encyclopaedia, KS provides curated definitions of brain research concepts
1965 +found in different neuroscience community ontologies, Wikipedia and
1966 +dictionaries. The dataset discovery in KS makes research datasets across many
1967 +large-scale brain initiatives universally accessible and useful. It also
1968 +promotes FAIR data principles that will help data publishers to follow best
1969 +practices for data storage and publication. As more and more data publishers
1970 +follow data standards like OpenMINDS or DATS, the quality of data discovery
1971 +through KS will improve. The related publications are also curated from PubMed
1972 +and linked to the concepts in KS to provide an improved search capability.</span></p>
1973 +
1974 +<h2></h2>
1975 +
1976 +<h2><a name="_Toc138932308"><span lang=en-DE>L2L</span></a></h2>
1977 +
1978 +<p class=MsoNormal><span lang=en-DE>L2L is an easy-to-use and flexible
1979 +framework to perform parameter and hyper-parameter space exploration of
1980 +mathematical models on HPC infrastructure. L2L is an implementation of the
1981 +learning-to-learn concept written in Python. This open-source software allows
1982 +several instances of an optimisation target to be executed with different
1983 +parameters in an massively parallel fashion on HPC. L2L provides a set of
1984 +built-in optimiser algorithms, which make adaptive and efficient exploration of
1985 +parameter spaces possible. Different from other optimisation toolboxes, L2L
1986 +provides maximum flexibility for the way the optimisation target can be
1987 +executed.</span></p>
1988 +
1989 +<h2></h2>
1990 +
1991 +<h2><a name="_Toc138932309"><span lang=en-DE>Leveltlab/SpectralSegmentation</span></a></h2>
1992 +
1993 +<p class=MsoNormal><span lang=en-DE>SpecSeg is a toolbox that segments neurons
1994 +and neurites in chronic calcium imaging datasets based on low-frequency
1995 +cross-spectral power. The pipeline includes a graphical user interface to edit
1996 +the automatically extracted ROIs, to add new ones or delete ROIs by further
1997 +constraining their properties.</span></p>
1998 +
1999 +<h2></h2>
2000 +
2001 +<h2><a name="_Toc138932310"><span lang=en-DE>LFPy</span></a></h2>
2002 +
2003 +<p class=MsoNormal><span lang=en-DE>LFPy is an open-source Python module linking
2004 +simulated neural activity with measurable brain signals. This is done by
2005 +enabling calculation of brain signals from neural activity simulated with
2006 +multi-compartment neuron models (single cells or networks). LFPy can be used to
2007 +simulate brain signals like extracellular action potentials, local field
2008 +potentials (LFP), and in vitro MEA recordings, as well as ECoG, EEG, and MEG
2009 +signals. LFPy is well-integrated with the NEURON simulator and can, through
2010 +LFPykit, also be used with other simulators like Arbor. Through the recently
2011 +developed extensions hybridLFPy and LFPykernels, LFPy can also be used to
2012 +calculate brain signals directly from point-neuron network models or
2013 +population-based models.</span></p>
2014 +
2015 +<h2></h2>
2016 +
2017 +<h2><a name="_Toc138932311"><span lang=en-DE>libsonata</span></a></h2>
2018 +
2019 +<p class=MsoNormal><span lang=en-DE>libsonata allows circuit and simulation
2020 +config loading, node set materialisation, and access to node and edge
2021 +populations in an efficient manner. It is generally a read-only library, but
2022 +support for writing edge indices has been added.</span></p>
2023 +
2024 +<h2></h2>
2025 +
2026 +<h2><a name="_Toc138932312"><span lang=en-DE>Live Papers</span></a></h2>
2027 +
2028 +<p class=MsoNormal><span lang=en-DE>EBRAINS Live Papers are structured and
2029 +interactive documents that complement published scientific articles. Live
2030 +Papers feature integrated tools and services that allow users to download,
2031 +visualise or simulate data, models and results presented in the corresponding
2032 +publications: Build interactive documents to showcase your data and the
2033 +simulation or data analysis code used in your research. Easily link to
2034 +resources in community databases such as EBRAINS, NeuroMorpho.org, ModelDB, and
2035 +Allen Brain Atlas. Embedded, interactive visualisation of electrophysiology
2036 +data and neuronal reconstructions. Launch EBRAINS simulation tools to explore
2037 +single neuron models in your browser. Share live papers pre-publication with
2038 +anonymous reviewers during peer review of your manuscript. Explore already
2039 +published live papers, or develop your own live paper with our authoring tool.</span></p>
2040 +
2041 +<h2></h2>
2042 +
2043 +<h2><a name="_Toc138932313"><span lang=en-DE>Livre</span></a></h2>
2044 +
2045 +<p class=MsoNormal><span lang=en-DE>Livre is an out-of-core, multi-node,
2046 +multi-GPU, OpenGL volume rendering engine to visualise large volumetric
2047 +datasets. It provides the following major features to facilitate rendering of
2048 +large volumetric datasets: Visualisation of pre-processed UVF format volume
2049 +datasets. Real-time voxelisation of different data sources (surface meshes, BBP
2050 +morphologies, local field potentials, etc.) through the use of plugins.
2051 +Multi-node, multi-GPU rendering (only sort-first rendering).</span></p>
2052 +
2053 +<h2></h2>
2054 +
2055 +<h2><a name="_Toc138932314"><span lang=en-DE>LocaliZoom</span></a></h2>
2056 +
2057 +<p class=MsoNormal><span lang=en-DE>Pan-and-zoom type viewer displaying image
2058 +series with overlaid atlas delineations. LocaliZoom is a pan-and-zoom type
2059 +viewer displaying high-resolution image series coupled with overlaid atlas
2060 +delineations. It has three operating modes: Display series with atlas overlay.
2061 +Both linear and nonlinear alignments are supported (created with QuickNII or
2062 +VisuAlign). Create or edit nonlinear alignments. Create markup which can be
2063 +exported as MeshView point clouds or to Excel for further numerical analysis.</span></p>
2064 +
2065 +<h2></h2>
2066 +
2067 +<h2><a name="_Toc138932315"><span lang=en-DE>MD-IFP</span></a></h2>
2068 +
2069 +<p class=MsoNormal><span lang=en-DE>MD-IFP is a python workflow for the
2070 +generation and analysis of protein-ligand interaction fingerprints from
2071 +molecular dynamics trajectories. If used for the analysis of Random
2072 +Acceleration Molecular Dynamics (RAMD) trajectories, it can help to investigate
2073 +dissociation mechanisms by characterising transition states as well as the
2074 +determinants and hot-spots for dissociation. As such, the combined use of
2075 +RAMD and MD-IFP may assist the early stages of drug discovery campaigns for the
2076 +design of new molecules or ligand optimisation.</span></p>
2077 +
2078 +<h2></h2>
2079 +
2080 +<h2><a name="_Toc138932316"><span lang=en-DE>MEDUSA</span></a></h2>
2081 +
2082 +<p class=MsoNormal><span lang=en-DE>Using a spherical meshing technique that
2083 +decomposes each microstructural item into a set of overlapping spheres, the
2084 +phantom construction is made very fast while reliably avoiding the collisions
2085 +between items in the scene. This novel method is applied to the construction of
2086 +human brain white matter microstructural components, namely axonal fibers,
2087 +oligodendrocytes and astrocytes. The algorithm reaches high values of packing
2088 +density and angular dispersion for the axonal fibers, even in the case of
2089 +multiple white matter fiber populations and enables the construction of complex
2090 +biomimicking geometries including myelinated axons, beaded axons and glial
2091 +cells.</span></p>
2092 +
2093 +<h2></h2>
2094 +
2095 +<h2><a name="_Toc138932317"><span lang=en-DE>MeshView</span></a></h2>
2096 +
2097 +<p class=MsoNormal><span lang=en-DE>MeshView is a web application for real-time
2098 +3D display of surface mesh data representing structural parcellations from
2099 +volumetric atlases, such as the Waxholm Space atlas of the Sprague Dawley rat
2100 +brain. Key features: orbiting view with toggleable opaque/transparent/hidden
2101 +parcellation meshes, rendering user-defined cut surface as if meshes were solid
2102 +objects, rendering point-clouds (simple type-in, or loaded from JSON). The
2103 +coordinate system is compatible with QuickNII.</span></p>
2104 +
2105 +<h2></h2>
2106 +
2107 +<h2><a name="_Toc138932318"><span lang=en-DE>MIP</span></a></h2>
2108 +
2109 +<p class=MsoNormal><span lang=en-DE>MIP is an open-source platform enabling
2110 +federated data analysis in a secure environment for centres involved in
2111 +collaborative initiatives. It allows users to initiate or join disease-oriented
2112 +federations with the aim of analysing large-scale distributed clinical
2113 +datasets. For each federation, users can create specific data models based on
2114 +well-accepted common data elements, approved by all participating centres. MIP
2115 +experts assist in creating the data models and facilitate coordination and
2116 +communication among centres. They provide advice and support for data curation,
2117 +harmonisation, and anonymisation, as well as data governance, especially with
2118 +regards to Data Sharing Agreements and general ethical considerations.</span></p>
2119 +
2120 +<h2></h2>
2121 +
2122 +<h2><a name="_Toc138932319"><span lang=en-DE>Model Validation Service</span></a></h2>
2123 +
2124 +<p class=MsoNormal><span lang=en-DE>The HBP/EBRAINS Model Validation Service is
2125 +a set of tools for performing and tracking validation of models with respect to
2126 +experimental data. It consists of a web API, a GUI client (the Model Catalog
2127 +app) and a Python client. The service enables users to store, query, view and
2128 +download: (i) model descriptions/scripts, (ii) validation test definitions and
2129 +(iii) validation results. In a typical workflow, users will find models and
2130 +validation tests by searching the Model Catalog (or upload their own), run the
2131 +tests using the Python client in a Jupyter notebook, with simulations running
2132 +locally or on HPC, and then upload the results.</span></p>
2133 +
2134 +<h2></h2>
2135 +
2136 +<h2><a name="_Toc138932320"><span lang=en-DE>Model Validation Test Suites</span></a></h2>
2137 +
2138 +<p class=MsoNormal><span lang=en-DE>As part of the HBP/EBRAINS model validation
2139 +framework, we provide a Python Software Development Kit (SDK) for model
2140 +validation, which provides: (i) validation test definitions and (ii) interface
2141 +definitions intended to decouple model validation from the details of model
2142 +implementation. This more formal approach to model validation aims to make it
2143 +quicker and easier to compare models, to provide validation test suites for
2144 +models and to develop new validations of existing models. The SDK consists of a
2145 +collection of Python packages all using the sciunit framework: HippoUnit,
2146 +MorphoUnit, NetworkUnit, BasalUnit, CerebUnit, eFELUnit, HippoNetworkUnit.</span></p>
2147 +
2148 +<h2></h2>
2149 +
2150 +<h2><a name="_Toc138932321"><span lang=en-DE>MoDEL-CNS</span></a></h2>
2151 +
2152 +<p class=MsoNormal><span lang=en-DE>MoDEL-CNS is a database and server platform
2153 +designed to provide web access to atomistic MD trajectories for relevant signal
2154 +transduction proteins. The project is part of the service for providing
2155 +molecular simulation-based predictions for systems neurobiology of the HBP.
2156 +MoDEL-CNS expands the MD Extended Library database of atomistic MD trajectories
2157 +with proteins involved in CNS processes, including membrane proteins. MoDEL-CNS
2158 +web server interface presents the resulting trajectories, analyses and protein
2159 +properties. All data produced are available to download.</span></p>
2160 +
2161 +<h2></h2>
2162 +
2163 +<h2><a name="_Toc138932322"><span lang=en-DE>Modular Science</span></a></h2>
2164 +
2165 +<p class=MsoNormal><span lang=en-DE>Modular Science is a middleware that
2166 +provides robust deployment of complex multi-application workflows. It contains
2167 +protocols and interfaces for multi-scale co-simulation workloads on
2168 +high-performance computers and local hardware. It allows for synchronisation
2169 +and coordination of individual components and contains dedicated and
2170 +parallelised modules for data transformations between scales. Modular Science
2171 +offers insight into both the system level and the individual subsystems to
2172 +steer the execution, to monitor resource usage, and system health &amp; status
2173 +with small overheads on performance. Modular Science comes with a number of
2174 +neuroscience co-simulation use cases including NEST-TVB, NEST-Arbor, LFPy and neurorobotics.</span></p>
2175 +
2176 +<h2></h2>
2177 +
2178 +<h2><a name="_Toc138932323"><span lang=en-DE>Monsteer</span></a></h2>
2179 +
2180 +<p class=MsoNormal><span lang=en-DE>Monsteer is a library for interactive
2181 +supercomputing in the neuroscience domain. It facilitates the coupling of
2182 +running simulations (currently NEST) with interactive visualization and
2183 +analysis applications. Monsteer supports streaming of simulation data to
2184 +clients (currently limited to spikes) as well as control of the simulator from
2185 +the clients (also known as computational steering). Monsteer's main components
2186 +are a C++ library, a MUSIC-based application and Python helpers.</span></p>
2187 +
2188 +<h2></h2>
2189 +
2190 +<h2><a name="_Toc138932324"><span lang=en-DE>MorphIO</span></a></h2>
2191 +
2192 +<p class=MsoNormal><span lang=en-DE>MorphIO is a library for reading and
2193 +writing neuron morphology files. It supports the following formats: SWC, ASC
2194 +(also known as neurolucida), H5. There are two APIs: mutable, for creating or
2195 +editing morphologies, and immutable, for read-only operations. Both are
2196 +represented in C++ and Python. Extended formats include glia, mitochondria and
2197 +endoplasmic reticulum.</span></p>
2198 +
2199 +<h2></h2>
2200 +
2201 +<h2><a name="_Toc138932325"><span lang=en-DE>Morphology alignment tool</span></a></h2>
2202 +
2203 +<p class=MsoNormal><span lang=en-DE>Starting with serial sections of a brain in
2204 +which a complete single morphology has been labelled, the pieces of neurite
2205 +(axons/dendrites) in each section are traced with Neurolucida or similar
2206 +microscope-attached software. The slices are then aligned, first using an
2207 +automated algorithm that tries to find matching pieces in adjacent sections
2208 +(Python script), and second using a GUI-driven tool (web-based, JavaScript).
2209 +Finally, the pieces are stitched into a complete neuron (Python script). The
2210 +neuron and tissue volume are then registered to one of the EBRAINS-supported
2211 +reference templates (Python script). The web-based tool can also be used to align
2212 +slices without a neuron being present.</span></p>
2213 +
2214 +<h2></h2>
2215 +
2216 +<h2><a name="_Toc138932326"><span lang=en-DE>MorphTool</span></a></h2>
2217 +
2218 +<p class=MsoNormal><span lang=en-DE>MorphTool is a python toolkit designed for
2219 +editing morphological skeletons of cell reconstructions. It has been developed
2220 +to provide helper programmes that perform simple tasks such as morphology
2221 +diffing, file conversion, soma area calculation, skeleton simplification,
2222 +process resampling, morphology repair and spatial transformations. It allows
2223 +neuroscientists to curate and manipulate morphological reconstruction and
2224 +correct morphological artifacts due to the manual reconstruction process.</span></p>
2225 +
2226 +<h2></h2>
2227 +
2228 +<h2><a name="_Toc138932327"><span lang=en-DE>Multi-Brain</span></a></h2>
2229 +
2230 +<p class=MsoNormal><span lang=en-DE>The Multi-Brain (MB) model has the
2231 +general aim of integrating a number of disparate image analysis components
2232 +within a single unified generative modelling framework. Its objective is to
2233 +achieve diffeomorphic alignment of a wide variety of medical image modalities
2234 +into a common anatomical space. This involves the ability to construct a
2235 +&quot;tissue probability template&quot; from a population of scans
2236 +through group-wise alignment. The MB model has been shown to provide accurate
2237 +modelling of the intensity distributions of different imaging modalities.</span></p>
2238 +
2239 +<h2></h2>
2240 +
2241 +<h2><a name="_Toc138932328"><span lang=en-DE>Multi-Image-OSD</span></a></h2>
2242 +
2243 +<p class=MsoNormal><span lang=en-DE>It has browser-based classic pan and zoom
2244 +capabilities. A collection of images can be displayed as a filmstrip (Filmstrip
2245 +Mode) or as a table (Collection Mode) with adjustable number of rows and
2246 +columns. The tool supports keyboard or/and mouse navigation options, as well as
2247 +touch devices. Utilising the open standard Deep Zoom Image (DZI) format, it is
2248 +able to efficiently visualise very large brain images in the gigapixel range,
2249 +allowing to zoom from common, display-sized overview resolutions down to the
2250 +microscopic resolution without downloading the underlying, very large image
2251 +dataset.</span></p>
2252 +
2253 +<h2></h2>
2254 +
2255 +<h2><a name="_Toc138932329"><span lang=en-DE>MUSIC</span></a></h2>
2256 +
2257 +<p class=MsoNormal><span lang=en-DE>MUSIC is a communication framework in the
2258 +domain of computational neuroscience and neuromorphic computing which enables
2259 +co-simulations, where components of a model are simulated by different
2260 +simulators or hardware. It consists of an API and C++ library which can be
2261 +linked into existing software with minor modifications. MUSIC enables the
2262 +communication of neuronal spike events, continuous values and text messages
2263 +while hiding the complexity of data distribution over ranks, as well as
2264 +scheduling of communication in the face of loops. MUSIC is light-weight with a
2265 +simple API.</span></p>
2266 +
2267 +<h2></h2>
2268 +
2269 +<h2><a name="_Toc138932330"><span lang=en-DE>NEAT</span></a></h2>
2270 +
2271 +<p class=MsoNormal><span lang=en-DE>NEAT allows for the convenient definition
2272 +of morphological neuron models. These models can be simulated through an
2273 +interface with the NEURON simulator or analysed with two classical methods: (i)
2274 +the separation-of-variables method to obtain impedance kernels as a
2275 +superposition of exponentials and (ii) Koch's method to compute impedances with
2276 +linearised ion channels analytically in the frequency domain. NEAT also
2277 +implements the neural evaluation tree framework and an associated C++ simulator
2278 +to analyse sub-unit independence. Finally, NEAT implements a new method to
2279 +simplify morphological neuron models into models with few compartments, which
2280 +can also be simulated with NEURON.</span></p>
2281 +
2282 +<h2></h2>
2283 +
2284 +<h2><a name="_Toc138932331"><span lang=en-DE>Neo</span></a></h2>
2285 +
2286 +<p class=MsoNormal><span lang=en-DE>Neo implements a hierarchical data model
2287 +well adapted to intracellular and extracellular electrophysiology and EEG data.
2288 +It improves interoperability between Python tools for analysing, visualising
2289 +and generating electrophysiology data by providing a common, shared object
2290 +model. It reads a wide range of neurophysiology file formats, including Spike2,
2291 +NeuroExplorer, AlphaOmega, Axon, Blackrock, Plexon, Tdt and Igor Pro and writes
2292 +to open formats such as NWB and NIX. Neo objects behave just like normal NumPy
2293 +arrays, but with additional metadata, checks for dimensional consistency and
2294 +automatic unit conversion. Neo has been endorsed as a community standard by the
2295 +International Neuroinformatics Coordinating Facility (INCF).</span></p>
2296 +
2297 +<h2></h2>
2298 +
2299 +<h2><a name="_Toc138932332"><span lang=en-DE>Neo Viewer</span></a></h2>
2300 +
2301 +<p class=MsoNormal><span lang=en-DE>Neo Viewer consists of a REST-API and a
2302 +Javascript component that can be embedded in any web page. Electrophysiology
2303 +traces can be zoomed, scrolled and saved as images. Individual points can be
2304 +measured off the graphs. Neo Viewer can visualise data from most of the
2305 +widely-used file formats in neurophysiology, including community standards such
2306 +as NWB.</span></p>
2307 +
2308 +<h2></h2>
2309 +
2310 +<h2><a name="_Toc138932333"><span lang=en-DE>NEST Desktop</span></a></h2>
2311 +
2312 +<p class=MsoNormal><span lang=en-DE>NEST Desktop comprises of GUI components
2313 +for creating and configuring network models, running simulations, and
2314 +visualising and analysing simulation results. NEST Desktop allows students to
2315 +explore important concepts in computational neuroscience without the need to
2316 +first learn a simulator control language. This is done by offering a
2317 +server-side NEST simulator, which can also be installed as a package together
2318 +with a web server providing NEST Desktop as visual front-end. Besides local
2319 +installations, distributed setups can be installed, and direct use through
2320 +EBRAINS is possible. NEST Desktop has also been used as a modelling front-end
2321 +of the Neurorobotics Platform.</span></p>
2322 +
2323 +<h2></h2>
2324 +
2325 +<h2><a name="_Toc138932334"><span lang=en-DE>NEST Simulator</span></a></h2>
2326 +
2327 +<p class=MsoNormal><span lang=en-DE>NEST is used in computational neuroscience
2328 +to model and study behaviour of large networks of neurons. The models describe
2329 +single neuron and synapse behaviour and their connections. Different mechanisms
2330 +of plasticity can be used to investigate artificial learning and help to shed
2331 +light on the fundamental principles of how the brain works. NEST offers
2332 +convenient and efficient commands to define and connect large networks, ranging
2333 +from algorithmically determined connections to data-driven connectivity. Create
2334 +connections between neurons using numerous synapse models from STDP to gap
2335 +junctions.</span></p>
2336 +
2337 +<h2></h2>
2338 +
2339 +<h2><a name="_Toc138932335"><span lang=en-DE>NESTML</span></a></h2>
2340 +
2341 +<p class=MsoNormal><span lang=en-DE>NESTML is a domain-specific language for
2342 +neuron and synapse models. These dynamical models can be used in simulations of
2343 +brain activity on several platforms, in particular NEST Simulator. NESTML
2344 +combines an easy to understand, yet powerful syntax with good simulation
2345 +performance by means of code generation (C++ for NEST Simulator), but flexibly
2346 +supports other simulation engines including neuromorphic hardware.</span></p>
2347 +
2348 +<h2></h2>
2349 +
2350 +<h2><a name="_Toc138932336"><span lang=en-DE>NetPyNE</span></a></h2>
2351 +
2352 +<p class=MsoNormal><span lang=en-DE>NetPyNE provides programmatic and graphical
2353 +interfaces to develop data-driven multiscale brain neural circuit models using
2354 +Python and NEURON. Users can define models using a standardised
2355 +JSON-compatible, rule-based, declarative format. Based on these specifications,
2356 +NetPyNE will generate the network in CoreNEURON, enabling users to run
2357 +parallel simulations, optimise and explore network parameters through automated
2358 +batch runs, and use built-in functions for visualisation and analysis (e.g.,
2359 +generate connectivity matrices, voltage traces, spike raster plots, local field
2360 +potentials and information theoretic measures). NetPyNE also facilitates model
2361 +sharing by exporting and importing standardised formats: NeuroML and SONATA.</span></p>
2362 +
2363 +<h2></h2>
2364 +
2365 +<h2><a name="_Toc138932337"><span lang=en-DE>NEURO-CONNECT</span></a></h2>
2366 +
2367 +<p class=MsoNormal><span lang=en-DE>The NEURO-CONNECT platform provides
2368 +functions to integrate multimodal brain imaging information in a unifying
2369 +feature space. Thus, Surface Based Morphometry (SBM), Functional Magnetic
2370 +Resonance Imaging (fMRI) and Diffusion Tensor Imaging (DTI) can be combined and
2371 +visualised at the whole-brain scale. Moreover, multiple brain atlases are
2372 +aligned to match research outcomes to neuroanatomical entities. The datasets
2373 +are appended with openMINDS metadata and thus enable integrative data analysis
2374 +and machine learning.</span></p>
2375 +
2376 +<h2></h2>
2377 +
2378 +<h2><a name="_Toc138932338"><span lang=en-DE>NeuroFeatureExtract</span></a></h2>
2379 +
2380 +<p class=MsoNormal><span lang=en-DE>The NeuroFeatureExtract is a web
2381 +application that allows the users to extract an ensemble of
2382 +electrophysiological properties from voltage traces recorded upon electrical
2383 +stimulation of neuronal cells. The main outcome of the application is the
2384 +generation of two files Ð features.json and protocol.json Ð that can be used
2385 +for later analysis and model parameter optimisations via the Hodgkin-Huxley
2386 +Neuron Builder application.</span></p>
2387 +
2388 +<h2></h2>
2389 +
2390 +<h2><a name="_Toc138932339"><span lang=en-DE>NeurogenPy</span></a></h2>
2391 +
2392 +<p class=MsoNormal><span lang=en-DE>NeurogenPy is a Python package for working
2393 +with Bayesian networks. It is focused on the analysis of gene expression data
2394 +and learning of gene regulatory networks, modelled as Bayesian networks. For
2395 +that reason, at the moment, only the Gaussian and fully discrete cases are
2396 +supported. The package provides different structure learning algorithms,
2397 +parameters estimation and input/output formats. For some of them, already
2398 +existing implementations have been used, with bnlearn, pgmpy, networkx and
2399 +igraph being the most relevant used packages. This project has been conceived
2400 +to be included as a plugin in the EBRAINS interactive atlas viewer, but it may
2401 +be used for other purposes.</span></p>
2402 +
2403 +<h2></h2>
2404 +
2405 +<h2><a name="_Toc138932340"><span lang=en-DE>NeuroM</span></a></h2>
2406 +
2407 +<p class=MsoNormal><span lang=en-DE>NeuroM is a Python toolkit for the analysis
2408 +and processing of neuron morphologies. It allows the extraction of various
2409 +information about morphologies, e.g., the segment lengths of a morphology via
2410 +the segment_lengths feature. More than 50 features that can be extracted.</span></p>
2411 +
2412 +<h2></h2>
2413 +
2414 +<h2><a name="_Toc138932341"><span lang=en-DE>Neuromorphic Computing Job Queue</span></a></h2>
2415 +
2416 +<p class=MsoNormal><span lang=en-DE>The Neuromorphic Computing Job Queue allows
2417 +users to run simulations/emulations on the SpiNNaker and BrainScaleS systems by
2418 +submitting a PyNN script and associated job configuration information to a
2419 +central queue. The system consists of a web API, a GUI client (the Job Manager
2420 +app) and a Python client. Users can submit scripts stored locally on their own
2421 +machine, in a Git repository, in the KG, or in EBRAINS Collaboratory storage
2422 +(Drive/Bucket). Users can track the progress of their job, and view and/or
2423 +download the results, log files, and provenance information.</span></p>
2424 +
2425 +<h2></h2>
2426 +
2427 +<h2><a name="_Toc138932342"><span lang=en-DE>Neuronize v2</span></a></h2>
2428 +
2429 +<p class=MsoNormal><span lang=en-DE>Neuronize v2 has been developed to generate
2430 +a connected neural 3D mesh. If the input is a neuron tracing, it generates a 3D
2431 +mesh from it, including the shape of the soma. If the input is data extracted
2432 +with Imaris Filament Tracer (a set of unconnected meshes of a neuron),
2433 +Neuronize v2 generates a single connected 3D mesh of the whole neuron (also
2434 +generating the soma) and provides its neural tracing, which can then be
2435 +imported into tools such as Neurolucida, facilitating the interoperability of
2436 +two of the most widely used proprietary tools.</span></p>
2437 +
2438 +<h2></h2>
2439 +
2440 +<h2><a name="_Toc138932343"><span lang=en-DE>NeuroR</span></a></h2>
2441 +
2442 +<p class=MsoNormal><span lang=en-DE>NeuroR is a collection of tools to repair
2443 +morphologies.  This includes cut plane detection, sanitisation (removing
2444 +unifurcations, invalid soma counts, short segments) and 'unravelling': the
2445 +action of 'stretching' the cell that has been shrunk due to  the dehydratation
2446 +caused by the slicing.</span></p>
2447 +
2448 +<h2></h2>
2449 +
2450 +<h2><a name="_Toc138932344"><span lang=en-DE>Neurorobotics Platform</span></a></h2>
2451 +
2452 +<p class=MsoNormal><span lang=en-DE>The Neurorobotics Platform (NRP) is an
2453 +integrative simulation framework that enables in silico experimentation and
2454 +embodiment of brain models inside virtual agents interacting with realistic
2455 +simulated environments. Entirely Open Source, it offers a browser-based
2456 +graphical user interface for online access. It can be installed locally (Docker
2457 +or source install). It can be interfaced with multiple spike-based neuromorphic
2458 +chips (SpiNNaker, Intel Loihi). You can download and install the NRP locally
2459 +for maximum experimental convenience or access it online in order to leverage
2460 +the HBP High Performance Computing infrastructure for large-scale experiments.</span></p>
2461 +
2462 +<h2></h2>
2463 +
2464 +<h2><a name="_Toc138932345"><span lang=en-DE>Neurorobotics Platform Robot
2465 +Designer</span></a></h2>
2466 +
2467 +<p class=MsoNormal><span lang=en-DE>The Robot Designer is a plugin for the 3D
2468 +modeling suite Blender that enables researchers to design morphologies for
2469 +simulation experiments in, particularly but not restricted to, the
2470 +Neurorobotics Platform. This plugin helps researchers design and parameterize
2471 +models with a Graphical User Interface, simplifying and speeding up the design
2472 +process.cess. It includes design capabilities for musculoskeletal bodies as
2473 +well as robotic systems, fostering not only the understanding of biological
2474 +motions and enabling better robot designs, but also enabling true Neurorobotic
2475 +experiments that consist of biomimetic models such as tendon-driven robots or a
2476 +transition between biology and technology.</span></p>
2477 +
2478 +<h2></h2>
2479 +
2480 +<h2><a name="_Toc138932346"><span lang=en-DE>NeuroScheme</span></a></h2>
2481 +
2482 +<p class=MsoNormal><span lang=en-DE>NeuroScheme uses schematic
2483 +representations, such as icons and glyphs, to encode attributes of neural
2484 +structures (neurons, columns, layers, populations, etc.), alleviating problems
2485 +with displaying, navigating and analysing large datasets. It manages
2486 +hierarchically organised neural structures</span><span lang=en-DE
2487 +style='font-family:"Times New Roman",serif'> </span><span lang=en-DE>users can
2488 +navigate through the levels of the hierarchy and hone in on and explore the
2489 +data at their desired level of detail. NeuroScheme has currently two built-in
2490 +&quot;domains&quot;, which specify entities, attributes and
2491 +relationships used for specific use cases: the 'cortex' domain, designed for
2492 +navigating and analysing cerebral cortex structures</span><span lang=en-DE
2493 +style='font-family:"Times New Roman",serif'> </span><span lang=en-DE>and the
2494 +'congen' domain, used to define the properties of cells and connections, create
2495 +circuits of neurons and build populations.</span></p>
2496 +
2497 +<h2></h2>
2498 +
2499 +<h2><a name="_Toc138932347"><span lang=en-DE>NeuroSuites</span></a></h2>
2500 +
2501 +<p class=MsoNormal><span lang=en-DE>NeuroSuites is a web-based platform
2502 +designed to handle large-scale, high-dimensional data in the field of
2503 +neuroscience. It offers neuroscience-oriented applications and tools for data
2504 +analysis, machine learning and visualisation, while also providing
2505 +general-purpose tools for data scientists in other research fields. NeuroSuites
2506 +requires no software installation and runs on the backend of a server, making
2507 +it accessible from various devices. The platform's main strengths include its
2508 +defined architecture, ability to handle complex neuroscience data and the
2509 +variety of available tools.</span></p>
2510 +
2511 +<h2></h2>
2512 +
2513 +<h2><a name="_Toc138932348"><span lang=en-DE>NeuroTessMesh</span></a></h2>
2514 +
2515 +<p class=MsoNormal><span lang=en-DE>NeuroTessMesh takes morphological tracings
2516 +of cells acquired by neuroscientists and generates 3D models that approximate
2517 +the neuronal membrane. The resolution of the models can be adapted at the time
2518 +of visualisation. You can colour-code different parts of a morphology,
2519 +differentiating relevant morphological variables or even neuronal activity.
2520 +NeuroTessMesh copes with many of the problems associated with the visualisation
2521 +of neural circuits consisting of large numbers of cells. It facilitates the
2522 +recovery and visualisation of the 3D geometry of cells included in databases,
2523 +such as NeuroMorpho, and allows to approximate missing information such as the
2524 +soma's morphology.</span></p>
2525 +
2526 +<h2></h2>
2527 +
2528 +<h2><a name="_Toc138932349"><span lang=en-DE>NMODL Framework</span></a></h2>
2529 +
2530 +<p class=MsoNormal><span lang=en-DE>NMODL Framework is designed with
2531 +modern compiler and code generation techniques. It provides modular tools for
2532 +parsing, analysing and transforming NMODL it provides an easy to use, high
2533 +level Python API</span><span lang=en-DE style='font-family:"Times New Roman",serif'>
2534 +</span><span lang=en-DE> it generates optimised code for modern compute architectures
2535 +including CPUs and GPUs</span><span lang=en-DE style='font-family:"Times New Roman",serif'>
2536 +</span><span lang=en-DE> it provides flexibility to implement new simulator
2537 +backends and it supports full NMODL specification.</span></p>
2538 +
2539 +<h2></h2>
2540 +
2541 +<h2><a name="_Toc138932350"><span lang=en-DE>NSuite</span></a></h2>
2542 +
2543 +<p class=MsoNormal><span lang=en-DE>NSuite is a framework for maintaining and
2544 +running benchmarks and validation tests for multi-compartment neural network
2545 +simulations on HPC systems. NSuite automates the process of building simulation
2546 +engines, and running benchmarks and validation tests. NSuite is specifically
2547 +designed to allow easy deployment on HPC systems in testing workflows, such as
2548 +benchmark-driven development or continuous integration. The development of
2549 +NSuite has been driven by the need (1) for a definitive resource for comparing
2550 +performance and correctness of simulation engines on HPC systems, (2) to verify
2551 +the performance and correctness of individual simulation engines as they change
2552 +over time and (3) to test that changes to an HPC system do not cause
2553 +performance or correctness regressions in simulation engines. The framework
2554 +currently supports the simulation engines Arbor, NEURON, and CoreNeuron, while
2555 +allowing other simulation engines to be added.</span></p>
2556 +
2557 +<p class=MsoNormal></p>
2558 +
2559 +<p class=MsoNormal><span lang=en-DE>Nutil</span></p>
2560 +
2561 +<p class=MsoNormal><span lang=en-DE>Nutil is a pre- and post-processing toolbox
2562 +that enables analysis of large collections of histological images of rodent
2563 +brain sections. The software is open source and has both a graphical user
2564 +interface for specifying the input and output parameters and a command-line
2565 +execution option for batch processing. Nutil includes a transformation tool for
2566 +automated scaling, rotation, mirroring and renaming of image files, a file
2567 +format converter, a simple resize tool and a post-processing method for
2568 +quantifying and localising labelled features based on a reference atlas of the
2569 +brain (mouse or rat). The quantification method requires input from customised
2570 +brain atlas maps generated with the QuickNII software, and segmentations
2571 +generated with ilastik or another image analysis tool. The output from Nutil
2572 +include csv reports, 3D point cloud coordinate files and atlas map images
2573 +superimposed with colour-coded objects.</span></p>
2574 +
2575 +<h2></h2>
2576 +
2577 +<h2><a name="_Toc138932351"><span lang=en-DE>ODE-toolbox</span></a></h2>
2578 +
2579 +<p class=MsoNormal><span lang=en-DE>ODE-toolbox is a Python package that
2580 +assists in solver benchmarking, and recommends solvers on the basis of a set of
2581 +user-configurable heuristics. For all dynamical equations that admit an
2582 +analytic solution, ODE-toolbox generates propagator matrices that allow the
2583 +solution to be calculated at machine precision. For all others, first-order
2584 +update expressions are returned based on the Jacobian matrix. In addition to
2585 +continuous dynamics, discrete events can be used to model instantaneous changes
2586 +in system state, such as a neuronal action potential. These can be generated by
2587 +the system under test as well as applied as external stimuli, making
2588 +ODE-toolbox particularly well-suited for applications in computational
2589 +neuroscience.</span></p>
2590 +
2591 +<h2></h2>
2592 +
2593 +<h2><a name="_Toc138932352"><span lang=en-DE>openMINDS</span></a></h2>
2594 +
2595 +<p class=MsoNormal><span lang=en-DE>openMINDS is composed of: (i) integrated
2596 +metadata models adoptable by any graph database system (GDBS), (ii) a set of
2597 +libraries of serviceable metadata instances with external resource references
2598 +for local and global knowledge integration, and (iii) supportive tooling for
2599 +handling the metadata models and instances. Moreover, the framework provides
2600 +machine-readable mappings to other standardisation efforts (e.g., schema.org).
2601 +With this, openMINDS is a unique and powerful metadata framework for flexible
2602 +knowledge integration within and beyond any GDBS.</span></p>
2603 +
2604 +<h2></h2>
2605 +
2606 +<h2><a name="_Toc138932353"><span lang=en-DE>openMINDS metadata for TVB-ready
2607 +data</span></a></h2>
2608 +
2609 +<p class=MsoNormal><span lang=en-DE>Jupyter Python notebook with code and
2610 +commentaries for creating openMINDS metadata version 1.0 in JSON-LD format for
2611 +ingestion of TVB-ready data in EBRAINS Knowledge Graph.</span></p>
2612 +
2613 +<h2></h2>
2614 +
2615 +<h2><a name="_Toc138932354"><span lang=en-DE>PCI</span></a></h2>
2616 +
2617 +<p class=MsoNormal><span lang=en-DE>The notebook allows the computation of the
2618 +PCI Lempel-Ziv and PCI state transitions. In order to run the examples, a wake
2619 +and sleep data set needs to be provided in the Python-MNE format.</span></p>
2620 +
2621 +<h2></h2>
2622 +
2623 +<h2><a name="_Toc138932355"><span lang=en-DE>PIPSA</span></a></h2>
2624 +
2625 +<p class=MsoNormal><span lang=en-DE>PIPSA enables the comparison of the
2626 +electrostatic interaction properties of proteins. It permits the classification
2627 +of proteins according to their interaction properties. PIPSA may assist in
2628 +function assignment, the estimation of binding properties and enzyme kinetic
2629 +parameters.</span></p>
2630 +
2631 +<h2></h2>
2632 +
2633 +<h2><a name="_Toc138932356"><span lang=en-DE>PoSCE</span></a></h2>
2634 +
2635 +<p class=MsoNormal><span lang=en-DE>PoSCE is a functional connectivity
2636 +estimator of fMRI time-series. It relies on the Riemannian geometry of
2637 +covariances and integrates prior knowledge of covariance distribution over a
2638 +population.</span></p>
2639 +
2640 +<h2></h2>
2641 +
2642 +<h2><a name="_Toc138932357"><span lang=en-DE>Provenance API</span></a></h2>
2643 +
2644 +<p class=MsoNormal><span lang=en-DE>The EBRAINS Provenance API is a web service
2645 +to facilitate working with computational provenance metadata. Metadata are
2646 +stored in the EBRAINS Knowledge Graph (KG) using openMINDS schemas. The
2647 +Provenance API provides a somewhat simplified interface compared to accessing
2648 +the KG directly and performs checks of metadata consistency. The service covers
2649 +workflows involving simulation, data analysis, visualisation, optimisation,
2650 +data movement and model validation.</span></p>
2651 +
2652 +<h2></h2>
2653 +
2654 +<h2><a name="_Toc138932358"><span lang=en-DE>PyNN</span></a></h2>
2655 +
2656 +<p class=MsoNormal><span lang=en-DE>A model description written with the PyNN
2657 +API and the Python programming language runs on any simulator that PyNN
2658 +supports (currently NEURON, NEST and Brian 2) as well as on the BrainScaleS
2659 +and SpiNNaker neuromorphic hardware systems. PyNN provides a library of
2660 +standard neuron, synapse and synaptic plasticity models, verified to work the
2661 +same on different simulators. PyNN also provides commonly used connectivity
2662 +algorithms (e.g. all-to-all, random, distance-dependent, small-world) but makes
2663 +it easy to provide your own connectivity in a simulator-independent way. PyNN
2664 +transparently supports distributed simulations using MPI.</span></p>
2665 +
2666 +<h2></h2>
2667 +
2668 +<h2><a name="_Toc138932359"><span lang=en-DE>Pyramidal Explorer</span></a></h2>
2669 +
2670 +<p class=MsoNormal><span lang=en-DE>PyramidalExplorer is a tool to
2671 +interactively explore and reveal the detailed organisation of the microanatomy
2672 +of pyramidal neurons with functionally related models. Possible regional
2673 +differences in the pyramidal cell architecture can be interactively discovered
2674 +by combining quantitative morphological information about the structure of the
2675 +cell with implemented functional models. The key contribution of this tool is the
2676 +morpho-functional oriented design,  allowing the user to navigate within the 3D
2677 +dataset, filter and perform content-based retrieval operations to find the 
2678 +spines that are alike and dissimilar within the neuron, according to particular
2679 +morphological or functional variables.</span></p>
2680 +
2681 +<h2></h2>
2682 +
2683 +<h2><a name="_Toc138932360"><span lang=en-DE>QCAlign software</span></a></h2>
2684 +
2685 +<p class=MsoNormal><span lang=en-DE>The QUINT workflow enables spatial analysis
2686 +of labelling in series of brain sections from mouse and rat based on
2687 +registration to a reference brain atlas. The QCAlign software supports the use
2688 +of QUINT for high-throughput studies by providing information about: 1. The
2689 +quality of the section images used as input to the QUINT workflow. 2. The
2690 +quality of the atlas registration performed in the QUINT workflow. 3. QCAlign
2691 +also makes it easier for the user to explore the atlas hierarchy and decide on
2692 +a customised hierarchy level to use for the investigation</span></p>
2693 +
2694 +<h2></h2>
2695 +
2696 +<h2><a name="_Toc138932361"><span lang=en-DE>QuickNII</span></a></h2>
2697 +
2698 +<p class=MsoNormal><span lang=en-DE>QuickNII is a tool for user-guided affine
2699 +registration (anchoring) of 2D experimental image data, typically high
2700 +resolution microscopic images, to 3D atlas reference space, facilitating data
2701 +integration through standardised coordinate systems. Key features: Generate
2702 +user-defined cut planes through the atlas templates, matching the orientation
2703 +of the cut plane of the 2D experimental image data, as a first step towards
2704 +anchoring of images to the relevant atlas template. Propagate spatial
2705 +transformations across series of sections following anchoring of selected
2706 +images.</span></p>
2707 +
2708 +<h2></h2>
2709 +
2710 +<h2><a name="_Toc138932362"><span lang=en-DE>Quota Manager</span></a></h2>
2711 +
2712 +<p class=MsoNormal><span lang=en-DE>The Quota Manager enables each EBRAINS
2713 +service to manage user quotas for resources EBRAINS users consume in their
2714 +respective services. The goal is to encourage the responsible use of resources.
2715 +It is recommended that all users (except possibly guest accounts) are provided
2716 +with a default quota, and that specific users have the option of receiving
2717 +larger quotas based on their affiliation, role or motivated requests.</span></p>
2718 +
2719 +<h2></h2>
2720 +
2721 +<h2><a name="_Toc138932363"><span lang=en-DE>RateML</span></a></h2>
2722 +
2723 +<p class=MsoNormal><span lang=en-DE>RateML enables users to generate
2724 +whole-brain network models from a succinct declarative description, in which
2725 +the mathematics of the model are described without specifying how their
2726 +simulation should be implemented. RateML builds on NeuroML's Low Entropy Model
2727 +Specification (LEMS), an XML-based language for specifying models of dynamical systems,
2728 +allowing descriptions of neural mass and discretized neural field models, as
2729 +implemented by the TVB simulator. The end user describes their model's
2730 +mathematics once and generates and runs code for different languages, targeting
2731 +both CPUs for fast single simulations and GPUs for parallel ensemble
2732 +simulations.</span></p>
2733 +
2734 +<h2></h2>
2735 +
2736 +<h2><a name="_Toc138932364"><span lang=en-DE>Region-wise CBPP using the Julich
2737 +BrainÊCytoarchitectonic Atlas</span></a></h2>
2738 +
2739 +<p class=MsoNormal><span lang=en-DE>Many studies have been investigating the
2740 +relationships between interindividual variability in brain regions'
2741 +connectivity and behavioural phenotypes, by utilising connectivity-based
2742 +prediction models. Recently, we demonstrated that an approach based on the
2743 +combination of whole-brain and region-wise CBPP can provide important insight
2744 +into the predictive model, and hence in brain-behaviour relationships, by
2745 +offering interpretable patterns. Here, we applied this approach using the
2746 +Julich Brain Cytoarchitectonic Atlas with the resting-state functional
2747 +connectivity and psychometric variables from the Human Connectome Project
2748 +dataset, illustrating each brain region's predictive power for a range of
2749 +psychometric variables. As a result, a psychometric prediction profile was
2750 +established for each brain region, which can be validated against brain mapping
2751 +literature.</span></p>
2752 +
2753 +<h2></h2>
2754 +
2755 +<h2><a name="_Toc138932365"><span lang=en-DE>RRI Capacity Development Resources</span></a></h2>
2756 +
2757 +<p class=MsoNormal><span lang=en-DE>A series of training resources developed to
2758 +enable anticipation, critical reflection and public engagement/deliberation of
2759 +societal consequences of brain research and innovation activities. These
2760 +resources were designed primarily for HBP researchers and EBRAINS leadership
2761 +and management, involving EBRAINS data and infrastructure providers. However,
2762 +they are also useful for engaging the wider public with RRI. The resources are
2763 +based on the legacy of over 10 years of research and activities of the ethics
2764 +and society-team in the HBP. They cover important RRI-related topics on
2765 +neuroethics, data governance, dual-use, public engagement and foresight,
2766 +diversity, search integrity etc.</span></p>
2767 +
2768 +<h2></h2>
2769 +
2770 +<h2><a name="_Toc138932366"><span lang=en-DE>rsHRF</span></a></h2>
2771 +
2772 +<p class=MsoNormal><span lang=en-DE>This toolbox is aimed to retrieve the
2773 +onsets of pseudo-events triggering an hemodynamic response from resting state
2774 +fMRI BOLD signals. It is based on point process theory and fits a model to
2775 +retrieve the optimal lag between the events and the HRF onset, as well as the
2776 +HRF shape, using different shape parameters or combinations of basis functions.
2777 +Once the HRF has been retrieved for each voxel/vertex, it can be deconvolved
2778 +from the time series (for example, to improve lag-based connectivity
2779 +estimates), or one can map the shape parameters everywhere in the brain
2780 +(including white matter) and use it as a pathophysiological indicator.</span></p>
2781 +
2782 +<h2></h2>
2783 +
2784 +<h2><a name="_Toc138932367"><span lang=en-DE>RTNeuron</span></a></h2>
2785 +
2786 +<p class=MsoNormal><span lang=en-DE>The main utility of RTNeuron is twofold:
2787 +(i) the interactive visual inspection of structural and functional features of
2788 +the cortical column model and (ii) the generation of high-quality movies and
2789 +images for presentations and publications.RTNeuron provides a C++ library with
2790 +an OpenGL-based rendering backend, a Python wrapping and a Python application
2791 +called rtneuron. RTNeuron is only supported in GNU/Linux systems. However, it
2792 +should also be possible to build it on Windows systems. For OS/X it may be
2793 +quite challenging and require changes in OpenGL-related code to get it working.</span></p>
2794 +
2795 +<h2></h2>
2796 +
2797 +<h2><a name="_Toc138932368"><span lang=en-DE>sbs: Spike-based Sampling</span></a></h2>
2798 +
2799 +<p class=MsoNormal><span lang=en-DE>Spike-based sampling, sbs, is a software
2800 +suite that takes care of calibrating spiking neurons for given target
2801 +distributions and allows the evaluation of these distributions as they are
2802 +produced by stochastic spiking networks.</span></p>
2803 +
2804 +<h2></h2>
2805 +
2806 +<h2><a name="_Toc138932369"><span lang=en-DE>SDA 7</span></a></h2>
2807 +
2808 +<p class=MsoNormal><span lang=en-DE>SDA 7 can be used to carry out Brownian
2809 +dynamics simulations of the diffusional association in a continuum aqueous
2810 +solvent of two solute molecules, e.g., proteins, or of a solute molecule to an
2811 +inorganic surface. SDA 7 can also be used to simulate the diffusion of multiple
2812 +proteins, in dilute or concentrated solutions, e.g., to study the effects of
2813 +macromolecular crowding.</span></p>
2814 +
2815 +<h2></h2>
2816 +
2817 +<h2><a name="_Toc138932370"><span lang=en-DE>Shape &amp; Appearance Modelling</span></a></h2>
2818 +
2819 +<p class=MsoNormal><span lang=en-DE>A framework for automatically learning
2820 +shape and appearance models for medical (and certain other) images. The
2821 +algorithm was developed with the aim of eventually enabling distributed
2822 +privacy-preserving analysis of brain image data, such that shared information
2823 +(shape and appearance basis functions) may be passed across sites, whereas
2824 +latent variables that encode individual images remain secure within each site.
2825 +These latent variables are proposed as features for privacy-preserving data
2826 +mining applications.</span></p>
2827 +
2828 +<h2></h2>
2829 +
2830 +<h2><a name="_Toc138932371"><span lang=en-DE>siibra-api</span></a></h2>
2831 +
2832 +<p class=MsoNormal><span lang=en-DE>siibra-api provides an HTTP wrapper around
2833 +siibra-python, allowing developers to access atlas (meta)data over HTTP
2834 +protocol. Deployed on the EBRAINS infrastructure, developers can access the
2835 +centralised (meta)data on atlases, as provided by siibra-python, regardless of
2836 +the programming language.</span></p>
2837 +
2838 +<h2></h2>
2839 +
2840 +<h2><a name="_Toc138932372"><span lang=en-DE>siibra-explorer</span></a></h2>
2841 +
2842 +<p class=MsoNormal><span lang=en-DE>The interactive atlas viewer
2843 +siibra-explorer allows exploring the different EBRAINS atlases for the human,
2844 +monkey and rodent brains together with a comprehensive set of linked multimodal
2845 +data features. It provides a 3-planar view of a parcellated reference volume
2846 +combined with a rotatable overview of the 3D surface. Several templates can be
2847 +selected to navigate through the brain from MRI-scale to microscopic
2848 +resolution, allowing inspection of terabyte-size image data. Anatomically
2849 +anchored datasets reflecting aspects of cellular and molecular organisation,
2850 +fibres, function and connectivity can be discovered by selecting brain regions
2851 +from parcellations, or zooming and panning the reference brain. siibra-explorer
2852 +also allows annotation of brain locations as points and polygons and is
2853 +extensible via interactive plugins.</span></p>
2854 +
2855 +<h2></h2>
2856 +
2857 +<h2><a name="_Toc138932373"><span lang=en-DE>siibra-python</span></a></h2>
2858 +
2859 +<p class=MsoNormal><span lang=en-DE>siibra-python is a Python client to a brain
2860 +atlas framework that integrates brain parcellations and reference spaces at
2861 +different spatial scales and connects them with a broad range of multimodal
2862 +regional data features. It aims to facilitate programmatic and reproducible
2863 +incorporation of brain parcellations and brain region features from different
2864 +sources into neuroscience workflows. Also, siibra-python provides an easy
2865 +access to data features on the EBRAINS Knowledge Graph in a well-structured
2866 +manner. Users can preconfigure their own data to use within siibra-python.</span></p>
2867 +
2868 +<h2></h2>
2869 +
2870 +<h2><a name="_Toc138932374"><span lang=en-DE>Single Cell Model (Re)builder
2871 +Notebook</span></a></h2>
2872 +
2873 +<p class=MsoNormal><span lang=en-DE>The Single Cell Model (Re)builder Notebook
2874 +is a web application, implemented via a Jupyter Notebook on EBRAINS, which
2875 +allows users to configure the BluePyOpt to re-run an optimisation with their
2876 +own choices for the parameters range. The optimisation jobs are submitted
2877 +through Neuroscience Gateway.</span></p>
2878 +
2879 +<h2></h2>
2880 +
2881 +<h2><a name="_Toc138932375"><span lang=en-DE>Slurm Plugin for Co-allocation of
2882 +Compute and Data Resources</span></a></h2>
2883 +
2884 +<p class=MsoNormal><span lang=en-DE>This Simple linux utility for resource
2885 +management (Slurm) plugin enables the co-allocation of compute and data resources
2886 +on a shared multi-tiered storage cluster by estimating waiting times when the
2887 +high-performance storage (burst buffers) will become available to submitted
2888 +jobs. Based on the current job queue and the estimated waiting time, the plugin
2889 +decides whether scheduling the high-performance or lower-performance storage
2890 +system (parallel file system) benefits the job's turnaround time. The
2891 +estimation depends on additional information the user provides at submission
2892 +time.</span></p>
2893 +
2894 +<h2></h2>
2895 +
2896 +<h2><a name="_Toc138932376"><span lang=en-DE>Snudda</span></a></h2>
2897 +
2898 +<p class=MsoNormal><span lang=en-DE>Snudda ('touch' in Swedish) allows the user
2899 +to set up and generate microcircuits where the connectivity between neurons is
2900 +based on reconstructed neuron morphologies. The touch detection algorithm looks
2901 +for overlaps of axons and dendrites, and places putative synapses where they
2902 +touch. The putative synapses are pruned, removing a fraction to match
2903 +statistics from pairwise connectivity experiments. If needed, Snudda can also
2904 +use probability functions to create realistic microcircuits. The Snudda
2905 +software is written in Python and includes support for supercomputers. It uses
2906 +ipyparallel to parallelise network creation, and NEURON as the backend for
2907 +simulations. Install using pip or by directly downloading.</span></p>
2908 +
2909 +<h2></h2>
2910 +
2911 +<h2><a name="_Toc138932377"><span lang=en-DE>SomaSegmenter</span></a></h2>
2912 +
2913 +<p class=MsoNormal><span lang=en-DE>SomaSegmenter allows neuronal soma
2914 +segmentation in fluorescence microscopy imaging datasets with the use of a
2915 +parametrised version of the U-Net segmentation model, including additional
2916 +features such as residual links and tile-based frame reconstruction.</span></p>
2917 +
2918 +<h2></h2>
2919 +
2920 +<h2><a name="_Toc138932378"><span lang=en-DE>SpiNNaker</span></a></h2>
2921 +
2922 +<p class=MsoNormal><span lang=en-DE>SpiNNaker is a neuromorphic computer with
2923 +over a million low power, small memory ARM cores arranged in chips, connected
2924 +together with a unique brain-like mesh network, and designed to simulate
2925 +networks of spiking point neurons. Software is provided to compile networks
2926 +described with PyNN into running simulations, and to extract and convert
2927 +results into the neo data format, as well as providing support for live
2928 +interaction with running simulations. This allows integration with external
2929 +devices such as real or virtual robotics as well as live simulation
2930 +visualisation. Scripts can be written and executed using Jupyter for
2931 +interactive access.</span></p>
2932 +
2933 +<h2></h2>
2934 +
2935 +<h2><a name="_Toc138932379"><span lang=en-DE>SSB toolkit</span></a></h2>
2936 +
2937 +<p class=MsoNormal><span lang=en-DE>The SSB toolkit is an open-source Python
2938 +library to simulate mathematical models of the signal transduction pathways of
2939 +G-protein coupled receptors (GPCRs). By merging structural macromolecular data
2940 +with systems biology simulations, the framework allows simulation of the signal
2941 +transduction kinetics induced by ligand-GPCR interactions, as well as the consequent
2942 +change of concentration of signalling molecular species, as a function of time
2943 +and ligand concentration. Therefore, this tool allows the possibility to
2944 +investigate the subcellular effects of ligand binding upon receptor activation,
2945 +deepening the understanding of the relationship between the molecular level of
2946 +ligand-target interactions and higher-level cellular and physiological or
2947 +pathological response mechanisms.</span></p>
2948 +
2949 +<h2></h2>
2950 +
2951 +<h2><a name="_Toc138932380"><span lang=en-DE>Subcellular model building and
2952 +calibration tool set</span></a></h2>
2953 +
2954 +<p class=MsoNormal><span lang=en-DE>The toolset includes interoperable modules
2955 +for: model building, calibration (parameter estimation) and model analysis. All
2956 +information needed to perform these tasks (models, experimental calibration
2957 +data and prior assumptions on parameter distributions) are stored in a
2958 +structured, human- and machine-readable file format based on SBtab. The toolset
2959 +enables simulations of the same model in simulators with different
2960 +characteristics, e.g., STEPS, NEURON, MATLAB's Simbiology and R via automatic
2961 +code generation. The parameter estimation can include uncertainty
2962 +quantification and is done by optimisation or Bayesian approaches. Model
2963 +analysis includes global sensitivity analysis and functionality for analysing
2964 +thermodynamic constraints and conserved moieties.</span></p>
2965 +
2966 +<h2></h2>
2967 +
2968 +<h2><a name="_Toc138932381"><span lang=en-DE>Synaptic Events Fitting</span></a></h2>
2969 +
2970 +<p class=MsoNormal><span lang=en-DE>The Synaptic Events Fitting is a web
2971 +application, implemented in a Jupyter Notebook on EBRAINS that allows users to
2972 +fit synaptic events using data and models from the EBRAINS Knowledge Graph
2973 +(KG). Select, download and visualise experimental data from the KG and then choose
2974 +the data to be fitted. A mod file is then selected (local or default) together
2975 +with the corresponding configuration file (including protocol and the name of
2976 +the parameters to be fitted, their initial values and allowed variation range,
2977 +exclusion rules and an optional set of dependencies). The fitting procedure can
2978 +run on Neuroscience Gateway. Fetch the fitting results from the storage of the
2979 +HPC system to the storage of the Collab or to analyse the optimised parameters.</span></p>
2980 +
2981 +<h2></h2>
2982 +
2983 +<h2><a name="_Toc138932382"><span lang=en-DE>Synaptic Plasticity Explorer</span></a></h2>
2984 +
2985 +<p class=MsoNormal><span lang=en-DE>The Synaptic Plasticity Explorer is a web
2986 +application, implemented via a Jupyter Notebook on EBRAINS, which allows to
2987 +configure and test, through an intuitive GUI, different synaptic plasticity
2988 +models and protocols on single cell optimised models, available in the EBRAINS
2989 +Model Catalog. It consists of two tabs: 'Config', where the user can specify
2990 +the plasticity model to use and the synaptic parameters, and 'Sim', where the
2991 +recording location, weight's evolution and number of simulations to run are
2992 +defined. The results are plotted at the end of the simulation and the traces
2993 +are available for download.</span></p>
2994 +
2995 +<h2></h2>
2996 +
2997 +<h2><a name="_Toc138932383"><span lang=en-DE>Synaptic proteome database
2998 +(SQLite)</span></a></h2>
2999 +
3000 +<p class=MsoNormal><span lang=en-DE>Integration of 57 published synaptic
3001 +proteomic datasets reveals a stunningly complex picture involving over 7000
3002 +proteins. Molecular complexes were reconstructed using evidence-based
3003 +protein-protein interaction data available from public databases. The
3004 +constructed molecular interaction network model is embedded into an SQLite
3005 +implementation, allowing queries that generate custom network models based on
3006 +meta-data including species, synaptic compartment, brain region, and method of
3007 +extraction.</span></p>
3008 +
3009 +<h2></h2>
3010 +
3011 +<h2><a name="_Toc138932384"><span lang=en-DE>Synaptome.db</span></a></h2>
3012 +
3013 +<p class=MsoNormal><span lang=en-DE>The Synaptome.db bioconductor package
3014 +contains a local copy of the Synaptic proteome database. On top of this it
3015 +provides a set of utility R functions to query and analyse its content. It
3016 +allows for extraction of information for specific genes and building the
3017 +protein-protein interaction graph for gene sets, synaptic compartments and
3018 +brain regions.</span></p>
3019 +
3020 +<h2></h2>
3021 +
3022 +<h2><a name="_Toc138932385"><span lang=en-DE>Tide</span></a></h2>
3023 +
3024 +<p class=MsoNormal><span lang=en-DE>BlueBrain's Tide provides multi-window,
3025 +multi-user touch interaction on large surfaces Ð think of a giant collaborative
3026 +wall-mounted tablet. Tide is a distributed application that can run on multiple
3027 +machines to power display walls or projection systems of any size. Its user interface
3028 +is designed to offer an intuitive experience on touch walls. It works just as
3029 +well on non-touch-capable installations by using its web interface from any web
3030 +browser.</span></p>
3031 +
3032 +<h2></h2>
3033 +
3034 +<h2><a name="_Toc138932386"><span lang=en-DE>TVB EBRAINS</span></a></h2>
3035 +
3036 +<p class=MsoNormal><span lang=en-DE>TVB EBRAINS is the principal full brain
3037 +network simulation engine in EBRAINS and covers every aspect of realising
3038 +personalised whole-brain simulations on the EBRAINS platform. It consists of
3039 +the simulation tools and adaptors connecting the data, atlas and computing
3040 +services to the rest of the TVB ecosystem and Cloud services available in
3041 +EBRAINS. As such it allows the user to find and fetch relevant datasets through
3042 +the EBRAINS Knowledge Graph and Atlas services, construct the personalised TVB
3043 +models and use the HPC systems to perform parameter exploration, optimisation and
3044 +inference studies. The user can orchestrate the workflow from the Jupyterlab
3045 +interactive computing environment of the EBRAINS Collaboratory or use the
3046 +dedicated web application of TVB.</span></p>
3047 +
3048 +<h2></h2>
3049 +
3050 +<h2><a name="_Toc138932387"><span lang=en-DE>TVB Image Processing Pipeline</span></a></h2>
3051 +
3052 +<p class=MsoNormal><span lang=en-DE>TVB Image Processing Pipeline takes multimodal
3053 +MRI data sets (anatomical, functional and diffusion-weighted MRI) as input and
3054 +generates structural connectomes, region-average fMRI time series, functional
3055 +connectomes, brain surfaces, electrode positions, lead field matrices and atlas
3056 +parcellations as output. The pipeline performs preprocessing and
3057 +distortion-correction on MRI data as well as white matter fibre bundle
3058 +tractography on diffusion data. Outputs are formatted according to two data
3059 +standards: a TVB-ready data set that can be directly used to simulate brain
3060 +network models and the same output in BIDS format.</span></p>
3061 +
3062 +<h2></h2>
3063 +
3064 +<h2><a name="_Toc138932388"><span lang=en-DE>TVB Inversion</span></a></h2>
3065 +
3066 +<p class=MsoNormal><span lang=en-DE>The TVB Inversion package implements the
3067 +machinery required to perform parameter exploration and  inference over
3068 +parameters of The Virtual Brain simulator. It implements Simulation Based
3069 +Inference (SBI) which is a Bayesian inference method for complex models, where
3070 +calculation of the likelihood function is either analytically or
3071 +computationally intractable. As such, it allows the user to formulate with
3072 +great expressive power both the model and the inference scenario in terms of
3073 +observed data features and model parameters. Part of the integration with TVB
3074 +entails the option to perform numerous simulations in parallel, which can be
3075 +used for parameter space exploration.</span></p>
3076 +
3077 +<h2></h2>
3078 +
3079 +<h2><a name="_Toc138932389"><span lang=en-DE>TVB Web App</span></a></h2>
3080 +
3081 +<p class=MsoNormal><span lang=en-DE>TVB Web App provides The Virtual Brain
3082 +Simulator as an EBRAINS Cloud Service with an HPC back-end. Scientists can run
3083 +intense personalised brain simulations without having to deploy software. Users
3084 +can access the service with their EBRAINS credentials (single sign on). TVB Web
3085 +App uses private/public key cryptography, sandboxing, and access control to
3086 +protect personalised health information contained in digital human brain twins
3087 +while being processed on HPC. Users can upload their connectomes or use
3088 +TVB-ready image-derived data discoverable via the EBRAINS Knowledge Graph.
3089 +Users can also use containerised processing workflows available on EBRAINS to
3090 +render image raw data into simulation-ready formats.</span></p>
3091 +
3092 +<h2></h2>
3093 +
3094 +<h2><a name="_Toc138932390"><span lang=en-DE>TVB Widgets</span></a></h2>
3095 +
3096 +<p class=MsoNormal><span lang=en-DE>In order to support the usability of
3097 +EBRAINS workflows, TVB-widgets has been developed as a set of modular graphic
3098 +components and software solutions, easy to use in the Collaboratory within the
3099 +JupyterLab. These GUI components are based on and under open source licence,
3100 +supporting open neuroscience and support features like: Setup of models and
3101 +region-specific or cohort simulations. Selection of Data sources and their
3102 +links to models. Querying data from siibra and the EBRAINS Knowledge Graph.
3103 +Deployment and monitoring jobs on HPC resources. Analysis and visualisation.
3104 +Visual workflow builder for configuring and launching TVB simulations.</span></p>
3105 +
3106 +<h2></h2>
3107 +
3108 +<h2><a name="_Toc138932391"><span lang=en-DE>TVB-Multiscale</span></a></h2>
3109 +
3110 +<p class=MsoNormal><span lang=en-DE>TVB-Multiscale is a Python toolbox aimed at
3111 +facilitating the configuration of multiscale brain models and their
3112 +co-simulation with TVB and spiking network simulators (currently NEST,
3113 +NetPyNE (NEURON) and ANNarchy). A multiscale brain model consists of a full
3114 +brain model formulated at the coarse scale of networks of tens up to thousands
3115 +of brain regions, and an additional model of networks of spiking neurons
3116 +describing selected brain regions at a finer scale. The toolbox has a
3117 +user-friendly interface for configuring different kinds of models for
3118 +transforming and exchanging data between the two scales during co-simulation.</span></p>
3119 +
3120 +<h2></h2>
3121 +
3122 +<h2><a name="_Toc138932392"><span lang=en-DE>VIOLA</span></a></h2>
3123 +
3124 +<p class=MsoNormal><span lang=en-DE>VIOLA is an interactive, web-based tool to
3125 +visualise activity data in multiple 2D layers such as the simulation output of
3126 +neuronal networks with 2D geometry. As a reference implementation for a
3127 +developed set of interactive visualisation concepts, the tool combines and
3128 +adapts modern interactive visualisation paradigms, such as coordinated multiple
3129 +views, for massively parallel neurophysiological data. The software allows for
3130 +an explorative and qualitative assessment of the spatiotemporal features of
3131 +neuronal activity, which can be performed prior to a detailed quantitative data
3132 +analysis of specific aspects of the data.</span></p>
3133 +
3134 +<h2></h2>
3135 +
3136 +<h2><a name="_Toc138932393"><span lang=en-DE>Vishnu 1.0</span></a></h2>
3137 +
3138 +<p class=MsoNormal><span lang=en-DE>DC Explorer, Pyramidal Explorer and Clint
3139 +Explorer are the core of an application suite designed to help scientists to
3140 +explore their data. Vishnu 1.0 is a communication framework that allows them to
3141 +interchange information and cooperate in real time. It provides a unique access
3142 +point to the three applications and manages a database with the users'
3143 +datasets. Vishnu was originally designed to integrate data for
3144 +Espina.Whole-brain-scale tools.</span></p>
3145 +
3146 +<h2></h2>
3147 +
3148 +<h2><a name="_Toc138932394"><span lang=en-DE>ViSimpl</span></a></h2>
3149 +
3150 +<p class=MsoNormal><span lang=en-DE>ViSimpl integrates a set of visualisation
3151 +and interaction components that provide a semantic view of brain data with the
3152 +aim of improving its analysis procedures. ViSimpl provides 3D particle-based
3153 +rendering that visualises simulation data with their associated spatial and
3154 +temporal information, enhancing the knowledge extraction process. It also
3155 +provides abstract representations of the time-varying magnitudes, supporting
3156 +different data aggregation and disaggregation operations and giving focus and
3157 +context clues. In addition, ViSimpl provides synchronised playback control of
3158 +the simulation being analysed.</span></p>
3159 +
3160 +<h2></h2>
3161 +
3162 +<h2><a name="_Toc138932395"><span lang=en-DE>VisuAlign</span></a></h2>
3163 +
3164 +<p class=MsoNormal><span lang=en-DE>VisuAlign is a tool for user-guided
3165 +nonlinear registration after QuickNII of 2D experimental image data, typically
3166 +high resolution microscopic images, to 3D atlas reference space, facilitating
3167 +data integration through standardised coordinate systems. Key features:
3168 +Generate user-defined cut planes through the atlas templates, matching the
3169 +orientation of the cut plane of the 2D experimental image data, as a first step
3170 +towards anchoring of images to the relevant atlas template. Propagate spatial
3171 +transformations across series of sections following anchoring of selected
3172 +images.</span></p>
3173 +
3174 +<h2></h2>
3175 +
3176 +<h2><a name="_Toc138932396"><span lang=en-DE>VMetaFlow</span></a></h2>
3177 +
3178 +<p class=MsoNormal><span lang=en-DE>VMetaFlow is an abstraction layer placed
3179 +over existing visual grammars and visualisation declarative languages,
3180 +providing them with interoperability mechanisms. The main contribution of this
3181 +research is to provide a user-friendly system to design visualisation and data
3182 +processing operations that can be interconnected to form data analysis
3183 +workflows. Visualisations and data processes can be saved as cards. Cards and
3184 +workflows can be saved, distributed and reused between users.</span></p>
3185 +
3186 +<h2></h2>
3187 +
3188 +<h2><a name="_Toc138932397"><span lang=en-DE>Voluba</span></a></h2>
3189 +
3190 +<p class=MsoNormal><span lang=en-DE>A common problem in high-resolution brain
3191 +atlasing is spatial anchoring of volumes of interest from imaging experiments
3192 +into the detailed anatomical context of an ultrahigh-resolution reference model
3193 +like BigBrain. The interactive volumetric alignment tool voluba is implemented
3194 +as a web service and allows anchoring of volumetric image data to reference
3195 +volumes at microscopical spatial resolutions. It enables interactive
3196 +manipulation of image position, scale, and orientation, flipping of coordinate
3197 +axes, and entering of anatomical point landmarks in 3D. The resulting
3198 +transformation parameters can, amongst others, be downloaded or used to view
3199 +the anchored image volume in the interactive atlas viewer siibra-explorer.</span></p>
3200 +
3201 +<h2></h2>
3202 +
3203 +<h2><a name="_Toc138932398"><span lang=en-DE>WebAlign</span></a></h2>
3204 +
3205 +<p class=MsoNormal><span lang=en-DE>WebAlign is the web version of QuickNII.
3206 +Presently, it is available as a community app in the Collaboratory. Features
3207 +include: Spatial registration of sectional image data. Generation of customised
3208 +atlas maps for your sectional image data.</span></p>
3209 +
3210 +<h2></h2>
3211 +
3212 +<h2><a name="_Toc138932399"><span lang=en-DE>Webilastik</span></a></h2>
3213 +
3214 +<p class=MsoNormal><span lang=en-DE>webilastik brings the popular machine
3215 +learning-based image analysis tool ilastik from the desktop into the browser.
3216 +Users can perform semantic segmentation tasks on their data in the cloud.
3217 +webilastik runs computations on federated EBRAINS HPC resources and uses
3218 +EBRAINS infrastructure for data access and storage. webilastik makes machine
3219 +learning-based image analysis workflows accessible to users without deep
3220 +knowledge of image analysis and machine learning. webilastik is part of the
3221 +QUINT workflow for extraction, quantification and analysis of features from
3222 +rodent histological images.</span></p>
3223 +
3224 +<h2></h2>
3225 +
3226 +<h2><a name="_Toc138932400"><span lang=en-DE>WebWarp</span></a></h2>
3227 +
3228 +<p class=MsoNormal><span lang=en-DE>WebWarp is the web version of VisuAlign.
3229 +Presently, it is available as a community app in the Collaboratory. Features
3230 +include: Nonlinear refinements of atlas registration by WebAlign of sectional
3231 +image data. Generation of customised atlas maps for your sectional image data.</span></p>
3232 +
3233 +<h2></h2>
3234 +
3235 +<h2><a name="_Toc138932401"><span lang=en-DE>ZetaStitcher</span></a></h2>
3236 +
3237 +<p class=MsoNormal><span lang=en-DE>ZetaStitcher is a Python package designed
3238 +to stitch large volumetric images, such as those produced by Light-Sheet
3239 +Fluorescence Microscopes. It is able to quickly compute the optimal alignment
3240 +of large mosaics of tiles thanks to its ability to perform a sampling along the
3241 +tile depth, i.e., pairwise alignment is computed only at certain depths along
3242 +the thickness of the tile. This greatly reduces the amount of data that needs
3243 +to be read and transferred, thus, making the process much faster. ZetaStitcher
3244 +comes with an API that can be used to programmatically access the aligned
3245 +volume in a virtual fashion as if it were a big NumPy array, without having to
3246 +produce the fused 3D image of the whole sample.Cellular- and subcellular-scale
3247 +tools.</span></p>
3248 +
3249 +<h2></h2>
3250 +
3251 +<h2><a name="_Toc138932402"><span lang=en-DE>TauRAMD</span></a></h2>
3252 +
3253 +<p class=MsoNormal><span lang=en-DE>The TauRAMD technique makes use of RAMD
3254 +simulations to compute relative residence times (or dissociation rates) of
3255 +protein-ligand complexes. In the RAMD method, the egress of a molecule from a
3256 +target receptor is accelerated by the application of an adaptive randomly
3257 +oriented force on the ligand. This enables ligand egress events to be observed
3258 +in short, nanosecond timescale simulations without imposing any bias regarding
3259 +the ligand egress route taken. If coupled to the MD-IFP tool, the TauRAMD
3260 +method can be used to investigate dissociation mechanisms and characterize
3261 +transition states.</span></p>
3262 +
3263 +</div>
3264 +
3265 +</body>
3266 +
3267 +</html>
3268 +
3269 +{{/html}}
Public

SLU_HBPB