Changes for page Tools description
Last modified by marissadiazpier on 2023/06/29 13:09
From version 2.2
edited by marissadiazpier
on 2023/06/29 12:40
on 2023/06/29 12:40
Change comment:
There is no comment for this version
To version 1.1
edited by marissadiazpier
on 2023/06/25 23:08
on 2023/06/25 23:08
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -5,3269 +5,3 @@ 5 5 As a researcher, you might find yourself immersed in a continuous flow of information, data, environments, and platforms which offer different tools and aids to fulfill an investigation and publish your results. This new way to doing science helps us advance at a fast pace and reduces efforts on searching data and tests, also allows us to deploy state-of-the-art simulations that can improve the quality of our work, and increase the capacity of neuroscientists for multiscale neural activity modeling of the human brain network. 6 6 7 7 On this page you will find a quick overview of the different tools and services available in EBRAINS. It will address, in an interactive way, how to use EBRAINS for specific use cases from the participants and focus on exploring all the potential that EBRAINS, as a digital research infrastructure, provides to its users. Researchers will have the opportunity to get creative and combine the different EBRAINS components to respond to existing questions and formulate new avenues based on collaboration, sharing, co-design, and innovation. 8 - 9 -{{html}} 10 -<html> 11 - 12 -<head> 13 -<meta http-equiv=Content-Type content="text/html; charset=windows-1252"> 14 -<meta name=Generator content="Microsoft Word 15 (filtered)"> 15 -<style> 16 -<!-- 17 - /* Font Definitions */ 18 - @font-face 19 - {font-family:"Cambria Math"; 20 - panose-1:2 4 5 3 5 4 6 3 2 4;} 21 -@font-face 22 - {font-family:"Calibri Light"; 23 - panose-1:2 15 3 2 2 2 4 3 2 4;} 24 -@font-face 25 - {font-family:Calibri; 26 - panose-1:2 15 5 2 2 2 4 3 2 4;} 27 - /* Style Definitions */ 28 - p.MsoNormal, li.MsoNormal, div.MsoNormal 29 - {margin-top:0cm; 30 - margin-right:0cm; 31 - margin-bottom:10.0pt; 32 - margin-left:0cm; 33 - line-height:120%; 34 - font-size:10.5pt; 35 - font-family:"Calibri",sans-serif;} 36 -h1 37 - {mso-style-link:"Heading 1 Char"; 38 - margin-top:18.0pt; 39 - margin-right:0cm; 40 - margin-bottom:2.0pt; 41 - margin-left:0cm; 42 - page-break-after:avoid; 43 - font-size:20.0pt; 44 - font-family:"Calibri Light",sans-serif; 45 - color:#538135; 46 - font-weight:normal;} 47 -h2 48 - {mso-style-link:"Heading 2 Char"; 49 - margin-top:4.0pt; 50 - margin-right:0cm; 51 - margin-bottom:0cm; 52 - margin-left:0cm; 53 - margin-bottom:.0001pt; 54 - page-break-after:avoid; 55 - font-size:14.0pt; 56 - font-family:"Calibri Light",sans-serif; 57 - color:#538135; 58 - font-weight:normal;} 59 -h3 60 - {mso-style-link:"Heading 3 Char"; 61 - margin-top:4.0pt; 62 - margin-right:0cm; 63 - margin-bottom:0cm; 64 - margin-left:0cm; 65 - margin-bottom:.0001pt; 66 - page-break-after:avoid; 67 - font-size:12.0pt; 68 - font-family:"Calibri Light",sans-serif; 69 - color:#538135; 70 - font-weight:normal;} 71 -h4 72 - {mso-style-link:"Heading 4 Char"; 73 - margin-top:4.0pt; 74 - margin-right:0cm; 75 - margin-bottom:0cm; 76 - margin-left:0cm; 77 - margin-bottom:.0001pt; 78 - line-height:120%; 79 - page-break-after:avoid; 80 - font-size:11.0pt; 81 - font-family:"Calibri Light",sans-serif; 82 - color:#70AD47; 83 - font-weight:normal;} 84 -h5 85 - {mso-style-link:"Heading 5 Char"; 86 - margin-top:2.0pt; 87 - margin-right:0cm; 88 - margin-bottom:0cm; 89 - margin-left:0cm; 90 - margin-bottom:.0001pt; 91 - line-height:120%; 92 - page-break-after:avoid; 93 - font-size:11.0pt; 94 - font-family:"Calibri Light",sans-serif; 95 - color:#70AD47; 96 - font-weight:normal; 97 - font-style:italic;} 98 -h6 99 - {mso-style-link:"Heading 6 Char"; 100 - margin-top:2.0pt; 101 - margin-right:0cm; 102 - margin-bottom:0cm; 103 - margin-left:0cm; 104 - margin-bottom:.0001pt; 105 - line-height:120%; 106 - page-break-after:avoid; 107 - font-size:10.5pt; 108 - font-family:"Calibri Light",sans-serif; 109 - color:#70AD47; 110 - font-weight:normal;} 111 -p.MsoHeading7, li.MsoHeading7, div.MsoHeading7 112 - {mso-style-link:"Heading 7 Char"; 113 - margin-top:2.0pt; 114 - margin-right:0cm; 115 - margin-bottom:0cm; 116 - margin-left:0cm; 117 - margin-bottom:.0001pt; 118 - line-height:120%; 119 - page-break-after:avoid; 120 - font-size:10.5pt; 121 - font-family:"Calibri Light",sans-serif; 122 - color:#70AD47; 123 - font-weight:bold;} 124 -p.MsoHeading8, li.MsoHeading8, div.MsoHeading8 125 - {mso-style-link:"Heading 8 Char"; 126 - margin-top:2.0pt; 127 - margin-right:0cm; 128 - margin-bottom:0cm; 129 - margin-left:0cm; 130 - margin-bottom:.0001pt; 131 - line-height:120%; 132 - page-break-after:avoid; 133 - font-size:10.0pt; 134 - font-family:"Calibri Light",sans-serif; 135 - color:#70AD47; 136 - font-weight:bold; 137 - font-style:italic;} 138 -p.MsoHeading9, li.MsoHeading9, div.MsoHeading9 139 - {mso-style-link:"Heading 9 Char"; 140 - margin-top:2.0pt; 141 - margin-right:0cm; 142 - margin-bottom:0cm; 143 - margin-left:0cm; 144 - margin-bottom:.0001pt; 145 - line-height:120%; 146 - page-break-after:avoid; 147 - font-size:10.0pt; 148 - font-family:"Calibri Light",sans-serif; 149 - color:#70AD47; 150 - font-style:italic;} 151 -p.MsoToc1, li.MsoToc1, div.MsoToc1 152 - {margin-top:0cm; 153 - margin-right:0cm; 154 - margin-bottom:5.0pt; 155 - margin-left:0cm; 156 - line-height:107%; 157 - font-size:11.0pt; 158 - font-family:"Calibri",sans-serif;} 159 -p.MsoToc2, li.MsoToc2, div.MsoToc2 160 - {margin-top:0cm; 161 - margin-right:0cm; 162 - margin-bottom:5.0pt; 163 - margin-left:10.5pt; 164 - line-height:120%; 165 - font-size:10.5pt; 166 - font-family:"Calibri",sans-serif;} 167 -p.MsoToc3, li.MsoToc3, div.MsoToc3 168 - {margin-top:0cm; 169 - margin-right:0cm; 170 - margin-bottom:5.0pt; 171 - margin-left:22.0pt; 172 - line-height:107%; 173 - font-size:11.0pt; 174 - font-family:"Calibri",sans-serif;} 175 -p.MsoToc4, li.MsoToc4, div.MsoToc4 176 - {margin-top:0cm; 177 - margin-right:0cm; 178 - margin-bottom:5.0pt; 179 - margin-left:33.0pt; 180 - line-height:107%; 181 - font-size:11.0pt; 182 - font-family:"Calibri",sans-serif;} 183 -p.MsoToc5, li.MsoToc5, div.MsoToc5 184 - {margin-top:0cm; 185 - margin-right:0cm; 186 - margin-bottom:5.0pt; 187 - margin-left:44.0pt; 188 - line-height:107%; 189 - font-size:11.0pt; 190 - font-family:"Calibri",sans-serif;} 191 -p.MsoToc6, li.MsoToc6, div.MsoToc6 192 - {margin-top:0cm; 193 - margin-right:0cm; 194 - margin-bottom:5.0pt; 195 - margin-left:55.0pt; 196 - line-height:107%; 197 - font-size:11.0pt; 198 - font-family:"Calibri",sans-serif;} 199 -p.MsoToc7, li.MsoToc7, div.MsoToc7 200 - {margin-top:0cm; 201 - margin-right:0cm; 202 - margin-bottom:5.0pt; 203 - margin-left:66.0pt; 204 - line-height:107%; 205 - font-size:11.0pt; 206 - font-family:"Calibri",sans-serif;} 207 -p.MsoToc8, li.MsoToc8, div.MsoToc8 208 - {margin-top:0cm; 209 - margin-right:0cm; 210 - margin-bottom:5.0pt; 211 - margin-left:77.0pt; 212 - line-height:107%; 213 - font-size:11.0pt; 214 - font-family:"Calibri",sans-serif;} 215 -p.MsoToc9, li.MsoToc9, div.MsoToc9 216 - {margin-top:0cm; 217 - margin-right:0cm; 218 - margin-bottom:5.0pt; 219 - margin-left:88.0pt; 220 - line-height:107%; 221 - font-size:11.0pt; 222 - font-family:"Calibri",sans-serif;} 223 -p.MsoCaption, li.MsoCaption, div.MsoCaption 224 - {margin-top:0cm; 225 - margin-right:0cm; 226 - margin-bottom:10.0pt; 227 - margin-left:0cm; 228 - font-size:10.5pt; 229 - font-family:"Calibri",sans-serif; 230 - font-variant:small-caps; 231 - color:#595959; 232 - font-weight:bold;} 233 -p.MsoTitle, li.MsoTitle, div.MsoTitle 234 - {mso-style-link:"Title Char"; 235 - margin:0cm; 236 - margin-bottom:.0001pt; 237 - font-size:48.0pt; 238 - font-family:"Calibri Light",sans-serif; 239 - color:#262626; 240 - letter-spacing:-.75pt;} 241 -p.MsoTitleCxSpFirst, li.MsoTitleCxSpFirst, div.MsoTitleCxSpFirst 242 - {mso-style-link:"Title Char"; 243 - margin:0cm; 244 - margin-bottom:.0001pt; 245 - font-size:48.0pt; 246 - font-family:"Calibri Light",sans-serif; 247 - color:#262626; 248 - letter-spacing:-.75pt;} 249 -p.MsoTitleCxSpMiddle, li.MsoTitleCxSpMiddle, div.MsoTitleCxSpMiddle 250 - {mso-style-link:"Title Char"; 251 - margin:0cm; 252 - margin-bottom:.0001pt; 253 - font-size:48.0pt; 254 - font-family:"Calibri Light",sans-serif; 255 - color:#262626; 256 - letter-spacing:-.75pt;} 257 -p.MsoTitleCxSpLast, li.MsoTitleCxSpLast, div.MsoTitleCxSpLast 258 - {mso-style-link:"Title Char"; 259 - margin:0cm; 260 - margin-bottom:.0001pt; 261 - font-size:48.0pt; 262 - font-family:"Calibri Light",sans-serif; 263 - color:#262626; 264 - letter-spacing:-.75pt;} 265 -p.MsoSubtitle, li.MsoSubtitle, div.MsoSubtitle 266 - {mso-style-link:"Subtitle Char"; 267 - margin-top:0cm; 268 - margin-right:0cm; 269 - margin-bottom:10.0pt; 270 - margin-left:0cm; 271 - font-size:15.0pt; 272 - font-family:"Calibri Light",sans-serif;} 273 -a:link, span.MsoHyperlink 274 - {color:#0563C1; 275 - text-decoration:underline;} 276 -a:visited, span.MsoHyperlinkFollowed 277 - {color:#954F72; 278 - text-decoration:underline;} 279 -em 280 - {color:#70AD47;} 281 -p.MsoNoSpacing, li.MsoNoSpacing, div.MsoNoSpacing 282 - {margin:0cm; 283 - margin-bottom:.0001pt; 284 - font-size:10.5pt; 285 - font-family:"Calibri",sans-serif;} 286 -p.MsoQuote, li.MsoQuote, div.MsoQuote 287 - {mso-style-link:"Quote Char"; 288 - margin-top:8.0pt; 289 - margin-right:36.0pt; 290 - margin-bottom:10.0pt; 291 - margin-left:36.0pt; 292 - text-align:center; 293 - line-height:120%; 294 - font-size:10.5pt; 295 - font-family:"Calibri",sans-serif; 296 - color:#262626; 297 - font-style:italic;} 298 -p.MsoIntenseQuote, li.MsoIntenseQuote, div.MsoIntenseQuote 299 - {mso-style-link:"Intense Quote Char"; 300 - margin-top:8.0pt; 301 - margin-right:36.0pt; 302 - margin-bottom:8.0pt; 303 - margin-left:36.0pt; 304 - text-align:center; 305 - line-height:110%; 306 - font-size:16.0pt; 307 - font-family:"Calibri Light",sans-serif; 308 - color:#70AD47; 309 - font-style:italic;} 310 -span.MsoSubtleEmphasis 311 - {font-style:italic;} 312 -span.MsoIntenseEmphasis 313 - {font-weight:bold; 314 - font-style:italic;} 315 -span.MsoSubtleReference 316 - {font-variant:small-caps; 317 - color:#595959;} 318 -span.MsoIntenseReference 319 - {font-variant:small-caps; 320 - color:#70AD47; 321 - font-weight:bold;} 322 -span.MsoBookTitle 323 - {font-variant:small-caps; 324 - text-transform:none; 325 - letter-spacing:.35pt; 326 - font-weight:bold;} 327 -p.MsoTocHeading, li.MsoTocHeading, div.MsoTocHeading 328 - {margin-top:18.0pt; 329 - margin-right:0cm; 330 - margin-bottom:2.0pt; 331 - margin-left:0cm; 332 - page-break-after:avoid; 333 - font-size:20.0pt; 334 - font-family:"Calibri Light",sans-serif; 335 - color:#538135;} 336 -span.Heading1Char 337 - {mso-style-name:"Heading 1 Char"; 338 - mso-style-link:"Heading 1"; 339 - font-family:"Calibri Light",sans-serif; 340 - color:#538135;} 341 -span.Heading2Char 342 - {mso-style-name:"Heading 2 Char"; 343 - mso-style-link:"Heading 2"; 344 - font-family:"Calibri Light",sans-serif; 345 - color:#538135;} 346 -span.Heading3Char 347 - {mso-style-name:"Heading 3 Char"; 348 - mso-style-link:"Heading 3"; 349 - font-family:"Calibri Light",sans-serif; 350 - color:#538135;} 351 -span.Heading4Char 352 - {mso-style-name:"Heading 4 Char"; 353 - mso-style-link:"Heading 4"; 354 - font-family:"Calibri Light",sans-serif; 355 - color:#70AD47;} 356 -span.Heading5Char 357 - {mso-style-name:"Heading 5 Char"; 358 - mso-style-link:"Heading 5"; 359 - font-family:"Calibri Light",sans-serif; 360 - color:#70AD47; 361 - font-style:italic;} 362 -span.Heading6Char 363 - {mso-style-name:"Heading 6 Char"; 364 - mso-style-link:"Heading 6"; 365 - font-family:"Calibri Light",sans-serif; 366 - color:#70AD47;} 367 -span.Heading7Char 368 - {mso-style-name:"Heading 7 Char"; 369 - mso-style-link:"Heading 7"; 370 - font-family:"Calibri Light",sans-serif; 371 - color:#70AD47; 372 - font-weight:bold;} 373 -span.Heading8Char 374 - {mso-style-name:"Heading 8 Char"; 375 - mso-style-link:"Heading 8"; 376 - font-family:"Calibri Light",sans-serif; 377 - color:#70AD47; 378 - font-weight:bold; 379 - font-style:italic;} 380 -span.Heading9Char 381 - {mso-style-name:"Heading 9 Char"; 382 - mso-style-link:"Heading 9"; 383 - font-family:"Calibri Light",sans-serif; 384 - color:#70AD47; 385 - font-style:italic;} 386 -span.TitleChar 387 - {mso-style-name:"Title Char"; 388 - mso-style-link:Title; 389 - font-family:"Calibri Light",sans-serif; 390 - color:#262626; 391 - letter-spacing:-.75pt;} 392 -span.SubtitleChar 393 - {mso-style-name:"Subtitle Char"; 394 - mso-style-link:Subtitle; 395 - font-family:"Calibri Light",sans-serif;} 396 -span.QuoteChar 397 - {mso-style-name:"Quote Char"; 398 - mso-style-link:Quote; 399 - color:#262626; 400 - font-style:italic;} 401 -span.IntenseQuoteChar 402 - {mso-style-name:"Intense Quote Char"; 403 - mso-style-link:"Intense Quote"; 404 - font-family:"Calibri Light",sans-serif; 405 - color:#70AD47; 406 - font-style:italic;} 407 -.MsoChpDefault 408 - {font-size:10.5pt; 409 - font-family:"Calibri",sans-serif;} 410 -.MsoPapDefault 411 - {margin-bottom:10.0pt; 412 - line-height:120%;} 413 -@page WordSection1 414 - {size:595.3pt 841.9pt; 415 - margin:72.0pt 72.0pt 72.0pt 72.0pt;} 416 -div.WordSection1 417 - {page:WordSection1;} 418 ---> 419 -</style> 420 - 421 -</head> 422 - 423 -<body lang=EN-US link="#0563C1" vlink="#954F72"> 424 - 425 -<div class=WordSection1> 426 - 427 -<p class=MsoTocHeading>HBP Tools list</p> 428 - 429 -<p class=MsoToc2><span lang=en-DE><span class=MsoHyperlink><a 430 -href="#_Toc138932248">AngoraPy<span style='color:windowtext;display:none; 431 -text-decoration:none'>. </span><span 432 -style='color:windowtext;display:none;text-decoration:none'>5</span></a></span></span></p> 433 - 434 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 435 -href="#_Toc138932249">AnonyMI<span style='color:windowtext;display:none; 436 -text-decoration:none'> </span><span 437 -style='color:windowtext;display:none;text-decoration:none'>5</span></a></span></span></p> 438 - 439 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 440 -href="#_Toc138932250">Arbor<span style='color:windowtext;display:none; 441 -text-decoration:none'> </span><span 442 -style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p> 443 - 444 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 445 -href="#_Toc138932251">Arbor GUI<span style='color:windowtext;display:none; 446 -text-decoration:none'> </span><span 447 -style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p> 448 - 449 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 450 -href="#_Toc138932252">Bayesian Virtual Epileptic Patient (BVEP)<span 451 -style='color:windowtext;display:none;text-decoration:none'> </span><span 452 -style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p> 453 - 454 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 455 -href="#_Toc138932253">BIDS Extension Proposal Computational Model 456 -Specifications<span style='color:windowtext;display:none;text-decoration:none'>. </span><span 457 -style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p> 458 - 459 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 460 -href="#_Toc138932254">BioBB<span style='color:windowtext;display:none; 461 -text-decoration:none'>. </span><span 462 -style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p> 463 - 464 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 465 -href="#_Toc138932255">BioExcel-CV19<span style='color:windowtext;display:none; 466 -text-decoration:none'>. </span><span 467 -style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p> 468 - 469 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 470 -href="#_Toc138932256">BioNAR<span style='color:windowtext;display:none; 471 -text-decoration:none'>. </span><span 472 -style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p> 473 - 474 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 475 -href="#_Toc138932257">BlueNaaS-single cell<span style='color:windowtext; 476 -display:none;text-decoration:none'> </span><span 477 -style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p> 478 - 479 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 480 -href="#_Toc138932258">BlueNaaS-subcellular<span style='color:windowtext; 481 -display:none;text-decoration:none'> </span><span 482 -style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p> 483 - 484 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 485 -href="#_Toc138932259">BluePyEfe<span style='color:windowtext;display:none; 486 -text-decoration:none'>. </span><span 487 -style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p> 488 - 489 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 490 -href="#_Toc138932260">BluePyMM<span style='color:windowtext;display:none; 491 -text-decoration:none'>... </span><span 492 -style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p> 493 - 494 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 495 -href="#_Toc138932261">BluePyOpt<span style='color:windowtext;display:none; 496 -text-decoration:none'> </span><span 497 -style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p> 498 - 499 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 500 -href="#_Toc138932262">Brain Cockpit<span style='color:windowtext;display:none; 501 -text-decoration:none'> </span><span 502 -style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p> 503 - 504 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 505 -href="#_Toc138932263">BrainScaleS<span style='color:windowtext;display:none; 506 -text-decoration:none'>. </span><span 507 -style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p> 508 - 509 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 510 -href="#_Toc138932264">Brayns<span style='color:windowtext;display:none; 511 -text-decoration:none'>. </span><span 512 -style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p> 513 - 514 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 515 -href="#_Toc138932265">Brion<span style='color:windowtext;display:none; 516 -text-decoration:none'>. </span><span 517 -style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p> 518 - 519 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 520 -href="#_Toc138932266">BSB<span style='color:windowtext;display:none;text-decoration: 521 -none'>. </span><span 522 -style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p> 523 - 524 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 525 -href="#_Toc138932267">BSP Service Account<span style='color:windowtext; 526 -display:none;text-decoration:none'> </span><span 527 -style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p> 528 - 529 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 530 -href="#_Toc138932268">bsp-usecase-wizard<span style='color:windowtext; 531 -display:none;text-decoration:none'>. </span><span 532 -style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p> 533 - 534 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 535 -href="#_Toc138932269">CGMD Platform<span style='color:windowtext;display:none; 536 -text-decoration:none'>.. </span><span 537 -style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p> 538 - 539 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 540 -href="#_Toc138932270">CNS-ligands<span style='color:windowtext;display:none; 541 -text-decoration:none'>. </span><span 542 -style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p> 543 - 544 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 545 -href="#_Toc138932271">Cobrawap<span style='color:windowtext;display:none; 546 -text-decoration:none'>. </span><span 547 -style='color:windowtext;display:none;text-decoration:none'>10</span></a></span></span></p> 548 - 549 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 550 -href="#_Toc138932272">Collaboratory Bucket service<span style='color:windowtext; 551 -display:none;text-decoration:none'>. </span><span 552 -style='color:windowtext;display:none;text-decoration:none'>10</span></a></span></span></p> 553 - 554 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 555 -href="#_Toc138932273">Collaboratory Drive<span style='color:windowtext; 556 -display:none;text-decoration:none'>. </span><span 557 -style='color:windowtext;display:none;text-decoration:none'>10</span></a></span></span></p> 558 - 559 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 560 -href="#_Toc138932274">Collaboratory IAM<span style='color:windowtext; 561 -display:none;text-decoration:none'>... </span><span 562 -style='color:windowtext;display:none;text-decoration:none'>10</span></a></span></span></p> 563 - 564 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 565 -href="#_Toc138932275">Collaboratory Lab<span style='color:windowtext; 566 -display:none;text-decoration:none'>. </span><span 567 -style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p> 568 - 569 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 570 -href="#_Toc138932276">Collaboratory Office<span style='color:windowtext; 571 -display:none;text-decoration:none'>. </span><span 572 -style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p> 573 - 574 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 575 -href="#_Toc138932277">Collaboratory Wiki<span style='color:windowtext; 576 -display:none;text-decoration:none'> </span><span 577 -style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p> 578 - 579 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 580 -href="#_Toc138932278">CoreNEURON<span style='color:windowtext;display:none; 581 -text-decoration:none'>.. </span><span 582 -style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p> 583 - 584 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 585 -href="#_Toc138932279">CxSystem2<span style='color:windowtext;display:none; 586 -text-decoration:none'>. </span><span 587 -style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p> 588 - 589 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 590 -href="#_Toc138932280">DeepSlice<span style='color:windowtext;display:none; 591 -text-decoration:none'>. </span><span 592 -style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p> 593 - 594 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 595 -href="#_Toc138932281">EBRAINS Ethics & Society Toolkit<span 596 -style='color:windowtext;display:none;text-decoration:none'> </span><span 597 -style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p> 598 - 599 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 600 -href="#_Toc138932282">EBRAINS Image Service<span style='color:windowtext; 601 -display:none;text-decoration:none'>. </span><span 602 -style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p> 603 - 604 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 605 -href="#_Toc138932283">EBRAINS Knowledge Graph<span style='color:windowtext; 606 -display:none;text-decoration:none'>. </span><span 607 -style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p> 608 - 609 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 610 -href="#_Toc138932284">EDI Toolkit<span style='color:windowtext;display:none; 611 -text-decoration:none'> </span><span 612 -style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p> 613 - 614 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 615 -href="#_Toc138932285">eFEL<span style='color:windowtext;display:none; 616 -text-decoration:none'>. </span><span 617 -style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p> 618 - 619 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 620 -href="#_Toc138932286">Electrophysiology Analysis Toolkit<span style='color: 621 -windowtext;display:none;text-decoration:none'> </span><span 622 -style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p> 623 - 624 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 625 -href="#_Toc138932287">FAConstructor<span style='color:windowtext;display:none; 626 -text-decoration:none'> </span><span 627 -style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p> 628 - 629 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 630 -href="#_Toc138932288">fairgraph<span style='color:windowtext;display:none; 631 -text-decoration:none'>. </span><span 632 -style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p> 633 - 634 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 635 -href="#_Toc138932289">Fast sampling with neuromorphic hardware<span 636 -style='color:windowtext;display:none;text-decoration:none'>. </span><span 637 -style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p> 638 - 639 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 640 -href="#_Toc138932290">fastPLI<span style='color:windowtext;display:none; 641 -text-decoration:none'> </span><span 642 -style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p> 643 - 644 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 645 -href="#_Toc138932291">Feed-forward LFP-MEG estimator from mean-field models<span 646 -style='color:windowtext;display:none;text-decoration:none'>. </span><span 647 -style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p> 648 - 649 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 650 -href="#_Toc138932292">FIL<span style='color:windowtext;display:none;text-decoration: 651 -none'>. </span><span 652 -style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p> 653 - 654 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 655 -href="#_Toc138932293">FMRALIGN<span style='color:windowtext;display:none; 656 -text-decoration:none'>.. </span><span 657 -style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p> 658 - 659 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 660 -href="#_Toc138932294">Foa3D<span style='color:windowtext;display:none; 661 -text-decoration:none'>.. </span><span 662 -style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p> 663 - 664 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 665 -href="#_Toc138932295">Frites<span style='color:windowtext;display:none; 666 -text-decoration:none'>. </span><span 667 -style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p> 668 - 669 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 670 -href="#_Toc138932296">gridspeccer<span style='color:windowtext;display:none; 671 -text-decoration:none'> </span><span 672 -style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p> 673 - 674 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 675 -href="#_Toc138932297">Hal-Cgp<span style='color:windowtext;display:none; 676 -text-decoration:none'>. </span><span 677 -style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p> 678 - 679 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 680 -href="#_Toc138932298">Health Data Cloud<span style='color:windowtext; 681 -display:none;text-decoration:none'>. </span><span 682 -style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p> 683 - 684 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 685 -href="#_Toc138932299">Hodgkin-Huxley Neuron Builder<span style='color:windowtext; 686 -display:none;text-decoration:none'> </span><span 687 -style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p> 688 - 689 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 690 -href="#_Toc138932300">HPC Job Proxy<span style='color:windowtext;display:none; 691 -text-decoration:none'>. </span><span 692 -style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p> 693 - 694 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 695 -href="#_Toc138932301">HPC Status Monitor<span style='color:windowtext; 696 -display:none;text-decoration:none'> </span><span 697 -style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p> 698 - 699 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 700 -href="#_Toc138932302">Human Intracerebral EEG Platform<span style='color:windowtext; 701 -display:none;text-decoration:none'>.. </span><span 702 -style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p> 703 - 704 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 705 -href="#_Toc138932303">Hybrid MM/CG Webserver<span style='color:windowtext; 706 -display:none;text-decoration:none'> </span><span 707 -style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p> 708 - 709 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 710 -href="#_Toc138932304">Insite<span style='color:windowtext;display:none; 711 -text-decoration:none'>. </span><span 712 -style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p> 713 - 714 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 715 -href="#_Toc138932305">Interactive Brain Atlas Viewer<span style='color:windowtext; 716 -display:none;text-decoration:none'> </span><span 717 -style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p> 718 - 719 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 720 -href="#_Toc138932306">JuGEx<span style='color:windowtext;display:none; 721 -text-decoration:none'>. </span><span 722 -style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p> 723 - 724 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 725 -href="#_Toc138932307">KnowledgeSpace<span style='color:windowtext;display:none; 726 -text-decoration:none'>. </span><span 727 -style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p> 728 - 729 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 730 -href="#_Toc138932308">L2L<span style='color:windowtext;display:none;text-decoration: 731 -none'>. </span><span 732 -style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p> 733 - 734 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 735 -href="#_Toc138932309">Leveltlab/SpectralSegmentation<span style='color:windowtext; 736 -display:none;text-decoration:none'>. </span><span 737 -style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p> 738 - 739 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 740 -href="#_Toc138932310">LFPy<span style='color:windowtext;display:none; 741 -text-decoration:none'>. </span><span 742 -style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p> 743 - 744 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 745 -href="#_Toc138932311">libsonata<span style='color:windowtext;display:none; 746 -text-decoration:none'>. </span><span 747 -style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p> 748 - 749 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 750 -href="#_Toc138932312">Live Papers<span style='color:windowtext;display:none; 751 -text-decoration:none'>. </span><span 752 -style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p> 753 - 754 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 755 -href="#_Toc138932313">Livre<span style='color:windowtext;display:none; 756 -text-decoration:none'>. </span><span 757 -style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p> 758 - 759 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 760 -href="#_Toc138932314">LocaliZoom<span style='color:windowtext;display:none; 761 -text-decoration:none'>.. </span><span 762 -style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p> 763 - 764 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 765 -href="#_Toc138932315">MD-IFP<span style='color:windowtext;display:none; 766 -text-decoration:none'>. </span><span 767 -style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p> 768 - 769 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 770 -href="#_Toc138932316">MEDUSA<span style='color:windowtext;display:none; 771 -text-decoration:none'>. </span><span 772 -style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p> 773 - 774 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 775 -href="#_Toc138932317">MeshView<span style='color:windowtext;display:none; 776 -text-decoration:none'>.. </span><span 777 -style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p> 778 - 779 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 780 -href="#_Toc138932318">MIP<span style='color:windowtext;display:none;text-decoration: 781 -none'>. </span><span 782 -style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p> 783 - 784 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 785 -href="#_Toc138932319">Model Validation Service<span style='color:windowtext; 786 -display:none;text-decoration:none'>. </span><span 787 -style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p> 788 - 789 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 790 -href="#_Toc138932320">Model Validation Test Suites<span style='color:windowtext; 791 -display:none;text-decoration:none'>. </span><span 792 -style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p> 793 - 794 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 795 -href="#_Toc138932321">MoDEL-CNS<span style='color:windowtext;display:none; 796 -text-decoration:none'>. </span><span 797 -style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p> 798 - 799 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 800 -href="#_Toc138932322">Modular Science<span style='color:windowtext;display: 801 -none;text-decoration:none'>. </span><span 802 -style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p> 803 - 804 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 805 -href="#_Toc138932323">Monsteer<span style='color:windowtext;display:none; 806 -text-decoration:none'> </span><span 807 -style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p> 808 - 809 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 810 -href="#_Toc138932324">MorphIO<span style='color:windowtext;display:none; 811 -text-decoration:none'>.. </span><span 812 -style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p> 813 - 814 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 815 -href="#_Toc138932325">Morphology alignment tool<span style='color:windowtext; 816 -display:none;text-decoration:none'> </span><span 817 -style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p> 818 - 819 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 820 -href="#_Toc138932326">MorphTool<span style='color:windowtext;display:none; 821 -text-decoration:none'> </span><span 822 -style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p> 823 - 824 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 825 -href="#_Toc138932327">Multi-Brain<span style='color:windowtext;display:none; 826 -text-decoration:none'>. </span><span 827 -style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p> 828 - 829 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 830 -href="#_Toc138932328">Multi-Image-OSD<span style='color:windowtext;display: 831 -none;text-decoration:none'>.. </span><span 832 -style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p> 833 - 834 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 835 -href="#_Toc138932329">MUSIC<span style='color:windowtext;display:none; 836 -text-decoration:none'>. </span><span 837 -style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p> 838 - 839 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 840 -href="#_Toc138932330">NEAT<span style='color:windowtext;display:none; 841 -text-decoration:none'>. </span><span 842 -style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p> 843 - 844 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 845 -href="#_Toc138932331">Neo<span style='color:windowtext;display:none;text-decoration: 846 -none'>. </span><span 847 -style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p> 848 - 849 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 850 -href="#_Toc138932332">Neo Viewer<span style='color:windowtext;display:none; 851 -text-decoration:none'> </span><span 852 -style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p> 853 - 854 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 855 -href="#_Toc138932333">NEST Desktop<span style='color:windowtext;display:none; 856 -text-decoration:none'>. </span><span 857 -style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p> 858 - 859 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 860 -href="#_Toc138932334">NEST Simulator<span style='color:windowtext;display:none; 861 -text-decoration:none'> </span><span 862 -style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p> 863 - 864 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 865 -href="#_Toc138932335">NESTML<span style='color:windowtext;display:none; 866 -text-decoration:none'>. </span><span 867 -style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p> 868 - 869 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 870 -href="#_Toc138932336">NetPyNE<span style='color:windowtext;display:none; 871 -text-decoration:none'>. </span><span 872 -style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p> 873 - 874 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 875 -href="#_Toc138932337">NEURO-CONNECT<span style='color:windowtext;display:none; 876 -text-decoration:none'>. </span><span 877 -style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p> 878 - 879 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 880 -href="#_Toc138932338">NeuroFeatureExtract<span style='color:windowtext; 881 -display:none;text-decoration:none'> </span><span 882 -style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p> 883 - 884 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 885 -href="#_Toc138932339">NeurogenPy<span style='color:windowtext;display:none; 886 -text-decoration:none'>. </span><span 887 -style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p> 888 - 889 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 890 -href="#_Toc138932340">NeuroM<span style='color:windowtext;display:none; 891 -text-decoration:none'>... </span><span 892 -style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p> 893 - 894 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 895 -href="#_Toc138932341">Neuromorphic Computing Job Queue<span style='color:windowtext; 896 -display:none;text-decoration:none'>. </span><span 897 -style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p> 898 - 899 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 900 -href="#_Toc138932342">Neuronize v2<span style='color:windowtext;display:none; 901 -text-decoration:none'>. </span><span 902 -style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p> 903 - 904 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 905 -href="#_Toc138932343">NeuroR<span style='color:windowtext;display:none; 906 -text-decoration:none'>. </span><span 907 -style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p> 908 - 909 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 910 -href="#_Toc138932344">Neurorobotics Platform<span style='color:windowtext; 911 -display:none;text-decoration:none'>.. </span><span 912 -style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p> 913 - 914 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 915 -href="#_Toc138932345">Neurorobotics Platform Robot Designer<span 916 -style='color:windowtext;display:none;text-decoration:none'> </span><span 917 -style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p> 918 - 919 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 920 -href="#_Toc138932346">NeuroScheme<span style='color:windowtext;display:none; 921 -text-decoration:none'>. </span><span 922 -style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p> 923 - 924 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 925 -href="#_Toc138932347">NeuroSuites<span style='color:windowtext;display:none; 926 -text-decoration:none'>. </span><span 927 -style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p> 928 - 929 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 930 -href="#_Toc138932348">NeuroTessMesh<span style='color:windowtext;display:none; 931 -text-decoration:none'>. </span><span 932 -style='color:windowtext;display:none;text-decoration:none'>25</span></a></span></span></p> 933 - 934 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 935 -href="#_Toc138932349">NMODL Framework<span style='color:windowtext;display: 936 -none;text-decoration:none'>. </span><span 937 -style='color:windowtext;display:none;text-decoration:none'>25</span></a></span></span></p> 938 - 939 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 940 -href="#_Toc138932350">NSuite<span style='color:windowtext;display:none; 941 -text-decoration:none'>. </span><span 942 -style='color:windowtext;display:none;text-decoration:none'>25</span></a></span></span></p> 943 - 944 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 945 -href="#_Toc138932351">ODE-toolbox<span style='color:windowtext;display:none; 946 -text-decoration:none'>. </span><span 947 -style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> 948 - 949 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 950 -href="#_Toc138932352">openMINDS<span style='color:windowtext;display:none; 951 -text-decoration:none'>. </span><span 952 -style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> 953 - 954 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 955 -href="#_Toc138932353">openMINDS metadata for TVB-ready data<span 956 -style='color:windowtext;display:none;text-decoration:none'>. </span><span 957 -style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> 958 - 959 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 960 -href="#_Toc138932354">PCI<span style='color:windowtext;display:none;text-decoration: 961 -none'> </span><span 962 -style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> 963 - 964 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 965 -href="#_Toc138932355">PIPSA<span style='color:windowtext;display:none; 966 -text-decoration:none'>. </span><span 967 -style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> 968 - 969 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 970 -href="#_Toc138932356">PoSCE<span style='color:windowtext;display:none; 971 -text-decoration:none'>. </span><span 972 -style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> 973 - 974 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 975 -href="#_Toc138932357">Provenance API<span style='color:windowtext;display:none; 976 -text-decoration:none'> </span><span 977 -style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> 978 - 979 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 980 -href="#_Toc138932358">PyNN<span style='color:windowtext;display:none; 981 -text-decoration:none'>.. </span><span 982 -style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p> 983 - 984 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 985 -href="#_Toc138932359">Pyramidal Explorer<span style='color:windowtext; 986 -display:none;text-decoration:none'> </span><span 987 -style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p> 988 - 989 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 990 -href="#_Toc138932360">QCAlign software<span style='color:windowtext;display: 991 -none;text-decoration:none'>. </span><span 992 -style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p> 993 - 994 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 995 -href="#_Toc138932361">QuickNII<span style='color:windowtext;display:none; 996 -text-decoration:none'> </span><span 997 -style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p> 998 - 999 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1000 -href="#_Toc138932362">Quota Manager<span style='color:windowtext;display:none; 1001 -text-decoration:none'> </span><span 1002 -style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p> 1003 - 1004 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1005 -href="#_Toc138932363">RateML<span style='color:windowtext;display:none; 1006 -text-decoration:none'>. </span><span 1007 -style='color:windowtext;display:none;text-decoration:none'>28</span></a></span></span></p> 1008 - 1009 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1010 -href="#_Toc138932364">Region-wise CBPP using the Julich BrainÊCytoarchitectonic 1011 -Atlas<span style='color:windowtext;display:none;text-decoration:none'>. </span><span 1012 -style='color:windowtext;display:none;text-decoration:none'>28</span></a></span></span></p> 1013 - 1014 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1015 -href="#_Toc138932365">RRI Capacity Development Resources<span style='color: 1016 -windowtext;display:none;text-decoration:none'>. </span><span 1017 -style='color:windowtext;display:none;text-decoration:none'>28</span></a></span></span></p> 1018 - 1019 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1020 -href="#_Toc138932366">rsHRF<span style='color:windowtext;display:none; 1021 -text-decoration:none'>. </span><span 1022 -style='color:windowtext;display:none;text-decoration:none'>28</span></a></span></span></p> 1023 - 1024 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1025 -href="#_Toc138932367">RTNeuron<span style='color:windowtext;display:none; 1026 -text-decoration:none'>. </span><span 1027 -style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p> 1028 - 1029 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1030 -href="#_Toc138932368">sbs: Spike-based Sampling<span style='color:windowtext; 1031 -display:none;text-decoration:none'>. </span><span 1032 -style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p> 1033 - 1034 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1035 -href="#_Toc138932369">SDA 7<span style='color:windowtext;display:none; 1036 -text-decoration:none'>. </span><span 1037 -style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p> 1038 - 1039 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1040 -href="#_Toc138932370">Shape & Appearance Modelling<span style='color:windowtext; 1041 -display:none;text-decoration:none'>. </span><span 1042 -style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p> 1043 - 1044 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1045 -href="#_Toc138932371">siibra-api<span style='color:windowtext;display:none; 1046 -text-decoration:none'> </span><span 1047 -style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p> 1048 - 1049 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1050 -href="#_Toc138932372">siibra-explorer<span style='color:windowtext;display: 1051 -none;text-decoration:none'> </span><span 1052 -style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p> 1053 - 1054 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1055 -href="#_Toc138932373">siibra-python<span style='color:windowtext;display:none; 1056 -text-decoration:none'>. </span><span 1057 -style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p> 1058 - 1059 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1060 -href="#_Toc138932374">Single Cell Model (Re)builder Notebook<span 1061 -style='color:windowtext;display:none;text-decoration:none'>. </span><span 1062 -style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p> 1063 - 1064 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1065 -href="#_Toc138932375">Slurm Plugin for Co-allocation of Compute and Data 1066 -Resources<span style='color:windowtext;display:none;text-decoration:none'>. </span><span 1067 -style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p> 1068 - 1069 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1070 -href="#_Toc138932376">Snudda<span style='color:windowtext;display:none; 1071 -text-decoration:none'>. </span><span 1072 -style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p> 1073 - 1074 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1075 -href="#_Toc138932377">SomaSegmenter<span style='color:windowtext;display:none; 1076 -text-decoration:none'> </span><span 1077 -style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p> 1078 - 1079 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1080 -href="#_Toc138932378">SpiNNaker<span style='color:windowtext;display:none; 1081 -text-decoration:none'> </span><span 1082 -style='color:windowtext;display:none;text-decoration:none'>31</span></a></span></span></p> 1083 - 1084 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1085 -href="#_Toc138932379">SSB toolkit<span style='color:windowtext;display:none; 1086 -text-decoration:none'> </span><span 1087 -style='color:windowtext;display:none;text-decoration:none'>31</span></a></span></span></p> 1088 - 1089 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1090 -href="#_Toc138932380">Subcellular model building and calibration tool set<span 1091 -style='color:windowtext;display:none;text-decoration:none'> </span><span 1092 -style='color:windowtext;display:none;text-decoration:none'>31</span></a></span></span></p> 1093 - 1094 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1095 -href="#_Toc138932381">Synaptic Events Fitting<span style='color:windowtext; 1096 -display:none;text-decoration:none'>. </span><span 1097 -style='color:windowtext;display:none;text-decoration:none'>31</span></a></span></span></p> 1098 - 1099 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1100 -href="#_Toc138932382">Synaptic Plasticity Explorer<span style='color:windowtext; 1101 -display:none;text-decoration:none'> </span><span 1102 -style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p> 1103 - 1104 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1105 -href="#_Toc138932383">Synaptic proteome database (SQLite)<span 1106 -style='color:windowtext;display:none;text-decoration:none'> </span><span 1107 -style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p> 1108 - 1109 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1110 -href="#_Toc138932384">Synaptome.db<span style='color:windowtext;display:none; 1111 -text-decoration:none'>. </span><span 1112 -style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p> 1113 - 1114 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1115 -href="#_Toc138932385">Tide<span style='color:windowtext;display:none; 1116 -text-decoration:none'>. </span><span 1117 -style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p> 1118 - 1119 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1120 -href="#_Toc138932386">TVB EBRAINS<span style='color:windowtext;display:none; 1121 -text-decoration:none'>. </span><span 1122 -style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p> 1123 - 1124 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1125 -href="#_Toc138932387">TVB Image Processing Pipeline<span style='color:windowtext; 1126 -display:none;text-decoration:none'>. </span><span 1127 -style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p> 1128 - 1129 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1130 -href="#_Toc138932388">TVB Inversion<span style='color:windowtext;display:none; 1131 -text-decoration:none'>. </span><span 1132 -style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p> 1133 - 1134 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1135 -href="#_Toc138932389">TVB Web App<span style='color:windowtext;display:none; 1136 -text-decoration:none'>. </span><span 1137 -style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p> 1138 - 1139 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1140 -href="#_Toc138932390">TVB Widgets<span style='color:windowtext;display:none; 1141 -text-decoration:none'>. </span><span 1142 -style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p> 1143 - 1144 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1145 -href="#_Toc138932391">TVB-Multiscale<span style='color:windowtext;display:none; 1146 -text-decoration:none'>. </span><span 1147 -style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p> 1148 - 1149 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1150 -href="#_Toc138932392">VIOLA<span style='color:windowtext;display:none; 1151 -text-decoration:none'>. </span><span 1152 -style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p> 1153 - 1154 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1155 -href="#_Toc138932393">Vishnu 1.0<span style='color:windowtext;display:none; 1156 -text-decoration:none'>. </span><span 1157 -style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p> 1158 - 1159 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1160 -href="#_Toc138932394">ViSimpl<span style='color:windowtext;display:none; 1161 -text-decoration:none'> </span><span 1162 -style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p> 1163 - 1164 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1165 -href="#_Toc138932395">VisuAlign<span style='color:windowtext;display:none; 1166 -text-decoration:none'>. </span><span 1167 -style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p> 1168 - 1169 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1170 -href="#_Toc138932396">VMetaFlow<span style='color:windowtext;display:none; 1171 -text-decoration:none'>.. </span><span 1172 -style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p> 1173 - 1174 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1175 -href="#_Toc138932397">Voluba<span style='color:windowtext;display:none; 1176 -text-decoration:none'>. </span><span 1177 -style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p> 1178 - 1179 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1180 -href="#_Toc138932398">WebAlign<span style='color:windowtext;display:none; 1181 -text-decoration:none'>. </span><span 1182 -style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p> 1183 - 1184 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1185 -href="#_Toc138932399">Webilastik<span style='color:windowtext;display:none; 1186 -text-decoration:none'>. </span><span 1187 -style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p> 1188 - 1189 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1190 -href="#_Toc138932400">WebWarp<span style='color:windowtext;display:none; 1191 -text-decoration:none'>. </span><span 1192 -style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p> 1193 - 1194 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1195 -href="#_Toc138932401">ZetaStitcher<span style='color:windowtext;display:none; 1196 -text-decoration:none'> </span><span 1197 -style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p> 1198 - 1199 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1200 -href="#_Toc138932402">TauRAMD<span style='color:windowtext;display:none; 1201 -text-decoration:none'>.. </span><span 1202 -style='color:windowtext;display:none;text-decoration:none'>36</span></a></span></span></p> 1203 - 1204 -<p class=MsoNormal><span lang=en-DE> </span></p> 1205 - 1206 -<h2><a name="_Toc138932248"><span lang=en-DE>AngoraPy</span></a></h2> 1207 - 1208 -<p class=MsoNormal><span lang=en-DE>AngoraPy is an open-source Python library 1209 -that helps neuroscientists build and train goal-driven models of the sensorimotor 1210 -system. The toolbox comprises state-of-the-art machine learning techniques 1211 -under the hood of an easy-to-use API. With the help of deep reinforcement 1212 -learning, the connectivity required for solving complex, ecologically valid 1213 -tasks, can be learned autonomously, obviating the need for hand-engineered or 1214 -hypothesis-driven connectivity patterns. With AngoraPy, neuroscientists can 1215 -train custom deep neural networks on custom sensorimotor tasks.</span></p> 1216 - 1217 -<h2></h2> 1218 - 1219 -<h2><a name="_Toc138932249"><span lang=en-DE>AnonyMI</span></a></h2> 1220 - 1221 -<p class=MsoNormal><span lang=en-DE>AnonyMI is an MRI de-identification tool 1222 -that uses 3D surface modelling in order to de-identify MRIs while retaining as 1223 -much geometrical information as possible. It can be run automatically or 1224 -manually, which allows precise tailoring for specific needs. AnonyMI is 1225 -distributed as a plug-in of 3D Slicer, a widely used, open-source, stable and 1226 -reliable image-processing software. It leverages the power of this platform for 1227 -reading and saving images, which makes it applicable on almost any MRI file 1228 -type, including all the most commonly used formats (e.g., DICOM, Nifti, Analyze 1229 -etc.).</span></p> 1230 - 1231 -<h2></h2> 1232 - 1233 -<h2><a name="_Toc138932250"><span lang=en-DE>Arbor</span></a></h2> 1234 - 1235 -<p class=MsoNormal><span lang=en-DE>Arbor is a simulation software library for 1236 -neuron models with complex morphologies Ñ from single cells to large 1237 -distributed networks. Developed entirely inside HBP, it enables running 1238 -large-scale simulations on any HPC, including those available through EBRAINS. 1239 -Arbor provides performance portability for native execution on all HPC 1240 -architectures. Optimized vectorized code is generated for Intel, AMD and ARM 1241 -CPUs, NVIDIA and AMD GPUs, and support will be added for new architectures as 1242 -they become available. Model portability is easier due to an interface for 1243 -model description independent of how Arbor represents models internally. 1244 -Interoperability with other simulation engines is enabled via API for spike 1245 -exchange and the output of voltages, currents and model state.</span></p> 1246 - 1247 -<h2></h2> 1248 - 1249 -<h2><a name="_Toc138932251"><span lang=en-DE>Arbor GUI</span></a></h2> 1250 - 1251 -<p class=MsoNormal><span lang=en-DE>Arbor GUI strives to be self-contained, 1252 -fast and easy to use. Design morphologically detailed cells for simulation in 1253 -Arbor. Load morphologies from SWC .swc, NeuroML .nml, NeuroLucida .asc. Define 1254 -and highlight Arbor regions and locsets. Paint ion dynamics and bio-physical 1255 -properties onto morphologies. Place spike detectors and probes. Export cable 1256 -cells to Arbor's internal format (ACC) for direct simulation. Import cable 1257 -cells in ACC format. This project is under active development and welcomes 1258 -early feedback.</span></p> 1259 - 1260 -<h2></h2> 1261 - 1262 -<h2><a name="_Toc138932252"><span lang=en-DE>Bayesian Virtual Epileptic Patient 1263 -(BVEP)</span></a></h2> 1264 - 1265 -<p class=MsoNormal><span lang=en-DE>BVEP relies on the fusion of structural 1266 -data of individuals, a generative model of epileptiform discharges, and the 1267 -state-of-the-art probabilistic machine learning algorithms. It uses self-tuning 1268 -Monte Carlo sampling algorithm, and the deep neural density estimators for 1269 -reliable and efficient model-based inference at source and sensor levels data. 1270 -The Bayesian framework provides an appropriate patient-specific strategy for 1271 -estimating the extent of epileptogenic and propagation zones of the brain 1272 -regions to improve outcome after epilepsy surgery.</span></p> 1273 - 1274 -<h2></h2> 1275 - 1276 -<h2><a name="_Toc138932253"><span lang=en-DE>BIDS Extension Proposal 1277 -Computational Model Specifications</span></a></h2> 1278 - 1279 -<p class=MsoNormal><span lang=en-DE>A data structure schema for neural network 1280 -computational models that aims to be generically applicable to all kinds of 1281 -neural network simulation software, mathematical models, computational models, 1282 -and data models, but with a focus on dynamic circuit models of brain activity. </span></p> 1283 - 1284 -<h2></h2> 1285 - 1286 -<h2><a name="_Toc138932254"><span lang=en-DE>BioBB</span></a></h2> 1287 - 1288 -<p class=MsoNormal><span lang=en-DE>The BioExcel Building Blocks (BioBB) 1289 -software library is a collection of Python wrappers on top of popular 1290 -biomolecular simulation tools. The library offers a layer of interoperability 1291 -between the wrapped tools, which make them compatible and prepared to be 1292 -directly interconnected to build complex biomolecular workflows. Building and 1293 -sharing complex biomolecular simulation workflows just requires joining and 1294 -connecting BioExcelBuilding Blocks together. Biomolecular simulation workflows 1295 -built using the BioBB library are integrated in the Collaboratory Jupyter lab 1296 -infrastructure, allowing the exploration of dynamics and flexibility of 1297 -proteins related to the Central Nervous Systems.</span></p> 1298 - 1299 -<h2></h2> 1300 - 1301 -<h2><a name="_Toc138932255"><span lang=en-DE>BioExcel-CV19</span></a></h2> 1302 - 1303 -<p class=MsoNormal><span lang=en-DE>BioExcel-CV19 is a platform designed to 1304 -provide web access to atomistic-MD trajectories for macromolecules involved in 1305 -the COVID-19 disease. The project is part of the open access initiatives 1306 -promoted by the world-wide scientific community to share information about 1307 -COVID-19 research. BioExcel-CV19 web server interface presents the resulting 1308 -trajectories, with a set of quality control analyses and system information. 1309 -All data produced by the project is available to download from an associated 1310 -programmatic access API.</span></p> 1311 - 1312 -<h2></h2> 1313 - 1314 -<h2><a name="_Toc138932256"><span lang=en-DE>BioNAR</span></a></h2> 1315 - 1316 -<p class=MsoNormal><span lang=en-DE>BioNAR combines a selection of 1317 -existing R protocols for network analysis with newly designed original 1318 -methodological features to support step-by-step analysis of 1319 -biological/biomedical networks. BioNAR supports a pipeline approach where many 1320 -networks and iterative analyses can be performed. BioNAR helps to achieve a 1321 -number of network analysis goals that are difficult to achieve anywhere else, 1322 -e.g., choose the optimal clustering algorithm from a range of options based on 1323 -independent annotation enrichment</span><span lang=en-DE style='font-family: 1324 -"Times New Roman",serif'> </span><span lang=en-DE>predict a proteins influence 1325 -within and across multiple sub-complexes in the network and estimate the 1326 -co-occurrence or linkage between meta-data at the network level.</span></p> 1327 - 1328 -<h2></h2> 1329 - 1330 -<h2><a name="_Toc138932257"><span lang=en-DE>BlueNaaS-single cell</span></a></h2> 1331 - 1332 -<p class=MsoNormal><span lang=en-DE>BlueNaaS-SingleCell is an open-source web 1333 -application. It enables users to quickly visualize single cell model 1334 -morphologies in 3D or as a dendrogram. Using a simple web user interface, single 1335 -cell simulations can be easily configured and launched, producing voltage 1336 -traces from selected compartments.</span></p> 1337 - 1338 -<h2></h2> 1339 - 1340 -<h2><a name="_Toc138932258"><span lang=en-DE>BlueNaaS-subcellular</span></a></h2> 1341 - 1342 -<p class=MsoNormal><span lang=en-DE>BlueNaaS-Subcellular is a web-based 1343 -environment for creation and simulation of reaction-diffusion models. It allows 1344 -the user to import, combine and simulate existing models derived from other 1345 -parts of the pipeline. It is integrated with a number of solvers for 1346 -reaction-diffusion systems of equations and can represent rule-based systems 1347 -using BioNetGen. Additionally, it supports simulation of spatially distributed 1348 -systems using STEPS (stochastic engine for pathway simulation), providing 1349 -spatial stochastic and deterministic solvers for simulation of reactions and 1350 -diffusion on tetrahedral meshes. It includes some visualisation tools such as a 1351 -geometry viewer, a contact map and a reactivity network graph.</span></p> 1352 - 1353 -<h2></h2> 1354 - 1355 -<h2><a name="_Toc138932259"><span lang=en-DE>BluePyEfe</span></a></h2> 1356 - 1357 -<p class=MsoNormal><span lang=en-DE>BluePyEfe eases the process of reading 1358 -experimental recordings and extracting batches of electrical features from 1359 -these recordings. It combines trace reading functions and features extraction 1360 -functions from the eFel library. BluePyEfe outputs protocols and features files 1361 -in the format used by BluePyOpt for neuron electrical model building.</span></p> 1362 - 1363 -<h2></h2> 1364 - 1365 -<h2><a name="_Toc138932260"><span lang=en-DE>BluePyMM</span></a></h2> 1366 - 1367 -<p class=MsoNormal><span lang=en-DE>When building a network simulation, 1368 -biophysically detailed electrical models (e-models) need to be tested for every 1369 -morphology that is possibly used in the circuit. With current resources, 1370 -e-models are not re-optimised for every morphology in the network. In a process 1371 -called Cell Model Management (MM), we test if an existing e-model matches a 1372 -particular morphology 'well enough'. It takes as input a morphology release, a 1373 -circuit recipe and a set of e-models, then finds all possible (morphology, 1374 -e-model)-combinations (me-combos) based on e-type, m-type, and layer as 1375 -described by the circuit recipe, then calculates the scores for every 1376 -combination. Finally, it writes out the resulting accepted me-combos to a 1377 -database and produces a report with information on the number of matches.</span></p> 1378 - 1379 -<h2></h2> 1380 - 1381 -<h2><a name="_Toc138932261"><span lang=en-DE>BluePyOpt</span></a></h2> 1382 - 1383 -<p class=MsoNormal><span lang=en-DE>BluePyOpt simplifies the task of creating 1384 -and sharing these optimisations, and the associated techniques and knowledge. 1385 -This is achieved by abstracting the optimisation and evaluation tasks into 1386 -various reusable and flexible discrete elements according to established best 1387 -practices. Further, BluePyOpt provides methods for setting up both small- and 1388 -large-scale optimisations on a variety of platforms, ranging from laptops to 1389 -Linux clusters and cloud-based computer infrastructures.</span></p> 1390 - 1391 -<h2></h2> 1392 - 1393 -<h2><a name="_Toc138932262"><span lang=en-DE>Brain Cockpit</span></a></h2> 1394 - 1395 -<p class=MsoNormal><span lang=en-DE>Brain Cockpit is a web app comprising a 1396 -Typescript front-end and a Python back-end. It is meant to help explore large 1397 -surface fMRI datasets projected on surface meshes and alignments computed 1398 -between brains, such as those computed with Fused Unbalanced Gromov-Wasserstein 1399 -(fugw) for Python.</span></p> 1400 - 1401 -<h2></h2> 1402 - 1403 -<h2><a name="_Toc138932263"><span lang=en-DE>BrainScaleS</span></a></h2> 1404 - 1405 -<p class=MsoNormal><span lang=en-DE>Emulate spiking neural networks in 1406 -continuous time on the BrainScaleS analog neuromorphic computing system. Models 1407 -and experiments can be described in Python using the PyNN modelling language, 1408 -or in hxtorch, a PyTorch-based machine-learning-friendly API. The platform can 1409 -be used interactively via the EBRAINS JupyterLab service or EBRAINS HPC</span><span 1410 -lang=en-DE style='font-family:"Times New Roman",serif'> </span><span 1411 -lang=en-DE>in addition, the NMPI web service provides batch-style access. The 1412 -modelling APIs employ common data formats for input and output data, e.g., 1413 -neo.</span></p> 1414 - 1415 -<h2></h2> 1416 - 1417 -<h2><a name="_Toc138932264"><span lang=en-DE>Brayns</span></a></h2> 1418 - 1419 -<p class=MsoNormal><span lang=en-DE>Brayns is a large-scale scientific 1420 -visualization platform based on Intel OSPRAY to perform CPU Ray-tracing and 1421 -uses an extension-plugin architecture. The core provides basic functionalities 1422 -that can be reused and/or extended on plugins, which are independent and can be 1423 -loaded or disabled at start-up. This simplifies the process of adding support 1424 -for new scientific visualization use cases, without compromising the 1425 -reliability of the rest of the software. Brayns counts with braynsService, a 1426 -rendering backend which can be accessed over the internet and streams images to 1427 -connected clients. Already-made plugins include CircuitExplorer, DTI, 1428 -AtlasExplorer, CylindricCamera and MoleculeExplorer.</span></p> 1429 - 1430 -<p class=MsoNormal></p> 1431 - 1432 -<h2><a name="_Toc138932265"><span lang=en-DE>Brion</span></a></h2> 1433 - 1434 -<p class=MsoNormal><span lang=en-DE>Brion is a C++ project for read and write 1435 -access to Blue Brain data structures, including BlueConfig/CircuitConfig, 1436 -Circuit, CompartmentReport, Mesh, Morphology, Synapse and Target files. It also 1437 -offers an interface in Python.</span></p> 1438 - 1439 -<h2></h2> 1440 - 1441 -<h2><a name="_Toc138932266"><span lang=en-DE>BSB</span></a></h2> 1442 - 1443 -<p class=MsoNormal><span lang=en-DE>The BSB reconstructs realistic neural 1444 -circuits by placing and connecting fibres and neurons with detailed 1445 -morphologies or only simplified geometrical features. Configure your model the 1446 -way you need. Interfaces with several simulators (CoreNEURON, Arbor, NEST) 1447 -allow simulation of the reconstructed network and investigation of the 1448 -structure-function-dynamics relationships at different levels of resolution. 1449 -The 'scaffold' design allows an easy model reconfiguration reflecting variants 1450 -across brain regions, animal species and physio-pathological conditions without 1451 -dismounting the basic network structure. The BSB provides effortless parallel 1452 -computing both for the reconstruction and simulation phase.</span></p> 1453 - 1454 -<h2></h2> 1455 - 1456 -<h2><a name="_Toc138932267"><span lang=en-DE>BSP Service Account</span></a></h2> 1457 - 1458 -<p class=MsoNormal><span lang=en-DE>The BSP Service Account is a rest API 1459 -service that allows developers to submit user's jobs on HPC systems and 1460 -retrieve results using the EBRAINS authentication, even if users don't have a 1461 -personal account on the available HPC facilities.</span></p> 1462 - 1463 -<h2></h2> 1464 - 1465 -<h2><a name="_Toc138932268"><span lang=en-DE>bsp-usecase-wizard</span></a></h2> 1466 - 1467 -<p class=MsoNormal><span lang=en-DE>The CLS interactive workflows and use cases 1468 -application guides the users through the resolution of realistic scientific 1469 -problems. They are implemented as either front-end or full stack web 1470 -applications or Python-based Jupyter Notebooks that allow the user to 1471 -interactively build, reconstruct or simulate data-driven brain models and 1472 -perform data analysis visualisation. Web applications are freely accessible and 1473 -only require authentication to EBRAINS when specific actions are required 1474 -(e.g., submitting a simulation job to an HBP HPC system). Jupyter Notebooks are 1475 -cloned to the lab.ebrains.eu platform and require authentication via an EBRAINS 1476 -account.</span></p> 1477 - 1478 -<h2></h2> 1479 - 1480 -<h2><a name="_Toc138932269"><span lang=en-DE>CGMD Platform</span></a></h2> 1481 - 1482 -<p class=MsoNormal><span lang=en-DE>Recent advances in CGMD simulations have 1483 -allowed longer and larger molecular dynamics simulations of biological 1484 -macromolecules and their interactions. The CGMD platform is dedicated to the 1485 -preparation, running, and analysis of CGMD simulations, and built on a 1486 -completely revisited version of the Martini coarsE gRained MembrAne proteIn 1487 -Dynamics (MERMAID) web server. In its current version, the platform expands the 1488 -existing implementation of the Martini force field for membrane proteins to 1489 -also allow the simulation of soluble proteins using the Martini and SIRAH force 1490 -fields. Moreover, it offers an automated protocol for carrying out the 1491 -backmapping of the coarse-grained description of the system into an atomistic 1492 -one.</span></p> 1493 - 1494 -<h2></h2> 1495 - 1496 -<h2><a name="_Toc138932270"><span lang=en-DE>CNS-ligands</span></a></h2> 1497 - 1498 -<p class=MsoNormal><span lang=en-DE>The project is part of the Parameter 1499 -generation and mechanistic studies of neuronal cascades using multi-scale 1500 -molecular simulations of the HBP. CNS conformers are generated using a powerful 1501 -multilevel strategy that combines a low-level (LL) method for sampling the 1502 -conformational minima and high-level (HL) ab initio calculations for estimating 1503 -their relative stability. CNS database presents the results in a graphical user 1504 -interface, displaying small molecule properties, analyses and generated 3D 1505 -conformers. All data produced by the project is available to download.</span></p> 1506 - 1507 -<h2></h2> 1508 - 1509 -<h2><a name="_Toc138932271"><span lang=en-DE>Cobrawap</span></a></h2> 1510 - 1511 -<p class=MsoNormal><span lang=en-DE>Cobrawap is an adaptable and reusable 1512 -software tool to study wave-like activity propagation in the cortex. It allows for 1513 -the integration of heterogeneous data from different measurement techniques and 1514 -simulations through alignment to common wave descriptions. Cobrawap provides an 1515 -extendable collection of processing and analysis methods that can be combined 1516 -and adapted to specific input data and research applications. It enables broad 1517 -and rigorous comparisons of wave characteristics across multiple datasets, 1518 -model calibration and validation applications, and its modular building blocks 1519 -may serve to construct related analysis pipelines.</span></p> 1520 - 1521 -<h2></h2> 1522 - 1523 -<h2><a name="_Toc138932272"><span lang=en-DE>Collaboratory Bucket service</span></a></h2> 1524 - 1525 -<p class=MsoNormal><span lang=en-DE>The Bucket service provides object storage 1526 -to EBRAINS users without them having to request an account on Fenix (the 1527 -EBRAINS infrastructure provider) and storage resources there. This is the 1528 -recommended storage for datasets that are shared by data providers, on the 1529 -condition that these do not contain sensitive personal data. For sharing 1530 -datasets with personal data, users should refer to the Health Data Cloud. The 1531 -Bucket service is better suited for larger files that are usually not edited, 1532 -such as datasets and videos. For Docker images, users should refer to the 1533 -EBRAINS Docker registry. For smaller files and files which are more likely to 1534 -be edited, users should consider the Collaboratory Drive service.</span></p> 1535 - 1536 -<h2></h2> 1537 - 1538 -<h2><a name="_Toc138932273"><span lang=en-DE>Collaboratory Drive</span></a></h2> 1539 - 1540 -<p class=MsoNormal><span lang=en-DE>The Drive service offers users cloud 1541 -storage space for their files in each collab (workspace). The Drive storage is 1542 -mounted in the Collaboratory Lab to provide persistent storage (as opposed to 1543 -the Lab containers which are deleted after a few hours of inactivity). All 1544 -files are under version control. The Drive is intended for smaller files 1545 -(currently limited to 1 GB) that change more often. Users must not save files 1546 -containing personal information in the Drive (i.e. data of living human subjects). 1547 -The Drive is also integrated with the Collaboratory Office service to offer 1548 -easy collaborative editing of Office files online.</span></p> 1549 - 1550 -<h2></h2> 1551 - 1552 -<h2><a name="_Toc138932274"><span lang=en-DE>Collaboratory IAM</span></a></h2> 1553 - 1554 -<p class=MsoNormal><span lang=en-DE>The EBRAINS Collaboratory IAM allows the 1555 -developers of different EBRAINS services to benefit from a single sign-on 1556 -solution. End users will benefit from a seamless experience, whereby they can 1557 -access a specific service and have direct access from it to resources in other 1558 -EBRAINS services without re-authentication. For the developer, it is a good way 1559 -for separating concerns and offloading much of the identification and 1560 -authentication to a central service. The EBRAINS IAM is recognised as an 1561 -identity provider at Fenix supercomputing sites. The IAM service also provides 1562 -three ways of managing groups of users: Units, Groups and Teams.</span></p> 1563 - 1564 -<h2></h2> 1565 - 1566 -<h2><a name="_Toc138932275"><span lang=en-DE>Collaboratory Lab</span></a></h2> 1567 - 1568 -<p class=MsoNormal><span lang=en-DE>The Collaboratory Lab provides EBRAINS 1569 -users with a user-friendly programming environment for reproducible science. 1570 -EBRAINS tools are pre-installed for the user. The latest release is selected by 1571 -default, but users can choose to run an older release to reuse an older 1572 -notebook, or try out the very latest features in the weekly experimental 1573 -deployment. Official releases are produced by EBRAINS every few months. End 1574 -users do not need to build and install the tools, and, more importantly, they 1575 -do not need to resolve dependency conflicts among tools as this has been 1576 -handled for them.</span></p> 1577 - 1578 -<h2></h2> 1579 - 1580 -<h2><a name="_Toc138932276"><span lang=en-DE>Collaboratory Office</span></a></h2> 1581 - 1582 -<p class=MsoNormal><span lang=en-DE>With the Office service, EBRAINS users can 1583 -collaboratively edit Office documents (Word, PowerPoint or Excel) with most of 1584 -the key features of the MS Office tools. It uses the open standard formats 1585 -.docx, .pptx and .xlsx so that files can alternately be edited in the 1586 -Collaboratory Office service and in other compatible tools including the MS 1587 -Office suite.</span></p> 1588 - 1589 -<h2></h2> 1590 - 1591 -<h2><a name="_Toc138932277"><span lang=en-DE>Collaboratory Wiki</span></a></h2> 1592 - 1593 -<p class=MsoNormal><span lang=en-DE>The Wiki service offers the user-friendly 1594 -wiki functionality for publishing web content. It acts as central user 1595 -interface and API to access the other Collaboratory services. EBRAINS 1596 -developers can integrate their services as app which can be instantiated by 1597 -users in their collabs. The Wiki is a good place to create tutorials and 1598 -documentation and it is also the place to publish your work on the internet if 1599 -you choose to do so.</span></p> 1600 - 1601 -<h2></h2> 1602 - 1603 -<h2><a name="_Toc138932278"><span lang=en-DE>CoreNEURON</span></a></h2> 1604 - 1605 -<p class=MsoNormal><span lang=en-DE>In order to adapt NEURON to evolving 1606 -computer architectures, the compute engine of the NEURON simulator was 1607 -extracted and optimised as a library called CoreNEURON. CoreNEURON is a compute 1608 -engine library for the NEURON simulator optimised for both memory usage and 1609 -computational speed on modern CPU/GPU architectures. Some of its key goals are 1610 -to: 1) Efficiently simulate large network models, 2) Support execution on 1611 -accelerators such as GPU, 3) Support optimisations such as vectorisation and 1612 -cache-efficient memory layout.</span></p> 1613 - 1614 -<h2></h2> 1615 - 1616 -<h2><a name="_Toc138932279"><span lang=en-DE>CxSystem2</span></a></h2> 1617 - 1618 -<p class=MsoNormal><span lang=en-DE>CxSystem is a cerebral cortex simulation 1619 -framework, which operates on personal computers. The CxSystem enables easy 1620 -testing and build-up of diverse models at single-cell resolution and it is 1621 -implemented on the top of the Python-based Brain2 simulator. The CxSystem 1622 -interface comprises two csv files - one for anatomy and technical details, the 1623 -other for physiological parameters.</span></p> 1624 - 1625 -<h2></h2> 1626 - 1627 -<h2><a name="_Toc138932280"><span lang=en-DE>DeepSlice</span></a></h2> 1628 - 1629 -<p class=MsoNormal><span lang=en-DE>DeepSlice is a deep neural network that 1630 -aligns histological sections of mouse brain to the Allen Mouse Brain Common 1631 -Coordinate Framework, adjusting for anterior-posterior position, angle, 1632 -rotation and scale. At present, DeepSlice only works with tissue cut in the 1633 -coronal plane, although future versions will be compatible with sagittal and 1634 -horizontal sections.</span></p> 1635 - 1636 -<h2></h2> 1637 - 1638 -<h2><a name="_Toc138932281"><span lang=en-DE>EBRAINS Ethics & Society 1639 -Toolkit</span></a></h2> 1640 - 1641 -<p class=MsoNormal><span lang=en-DE>The aim of the toolkit is to offer 1642 -researchers who carry out cross-disciplinary brain research a possibility to 1643 -engage with ethical and societal issues within brain health and brain disease. 1644 -The user is presented with short introductory texts, scenario-based dilemmas, 1645 -animations and quizzes, all tailored to specific areas of ethics and society in 1646 -a setting of brain research. All exercises are reflection-oriented, with an 1647 -interactive approach to inspire users to incorporate these reflections into 1648 -their own research practices. Moreover, it is possible to gain further 1649 -knowledge by utilising the links for relevant publications, teaching modules 1650 -and the EBRAINS Community Space.</span></p> 1651 - 1652 -<h2></h2> 1653 - 1654 -<h2><a name="_Toc138932282"><span lang=en-DE>EBRAINS Image Service</span></a></h2> 1655 - 1656 -<p class=MsoNormal><span lang=en-DE>The Image Service takes large 2D (and 3D) 1657 -images and preprocesses them to generate small 2D tiles (or 3D chunks). 1658 -Applications consuming image data (viewers or other) can then access regions of 1659 -interest by downloading a few tiles rather than the entire large image. Tiles 1660 -are also generated at coarser resolutions to support zooming out of large 1661 -images. The service supports multiple input image formats. The serving of tiles 1662 -to apps is provided by the Collaboratory Bucket (based on OpenStack Swift 1663 -object storage), which provides significantly higher network bandwidth than 1664 -could be provided by any VM.</span></p> 1665 - 1666 -<h2></h2> 1667 - 1668 -<h2><a name="_Toc138932283"><span lang=en-DE>EBRAINS Knowledge Graph</span></a></h2> 1669 - 1670 -<p class=MsoNormal><span lang=en-DE>The EBRAINS Knowledge Graph (KG) is the 1671 -metadata management system of the EBRAINS Data and Knowledge services. It 1672 -provides fundamental services and tools to make neuroscientific data, models 1673 -and related software FAIR. The KG Editor and API (incl. Python SDKs) allow to 1674 -annotate scientific resources in a semantically correct way. The KG Search 1675 -exposes the research information via an intuitive user interface and makes the 1676 -information publicly available to any user. For advanced users, the KG Query 1677 -Builder and KG Core API provide the necessary means to execute detailed queries 1678 -on the graph database whilst enforcing fine-grained permission control.</span></p> 1679 - 1680 -<h2></h2> 1681 - 1682 -<h2><a name="_Toc138932284"><span lang=en-DE>EDI Toolkit</span></a></h2> 1683 - 1684 -<p class=MsoNormal><span lang=en-DE>The EDI Toolkit supports projects in 1685 -integrating EDI in their research content and as guiding principles for team 1686 -collaboration. It is designed for everyday usage by offering: Basic information 1687 -Guiding questions, templates and tools to design responsible research Quick 1688 -checklists, guidance for suitable structures and standard procedures Measures 1689 -to support EDI-based leadership, fair teams and events</span></p> 1690 - 1691 -<h2></h2> 1692 - 1693 -<h2><a name="_Toc138932285"><span lang=en-DE>eFEL</span></a></h2> 1694 - 1695 -<p class=MsoNormal><span lang=en-DE>eFEL allows neuroscientists to 1696 -automatically extract features from time series data recorded from neurons 1697 -(both in vitro and in silico). Examples include action potential width and 1698 -amplitude in voltage traces recorded during whole-cell patch clamp experiments. 1699 -Users can provide a set of traces and select which features to calculate. The 1700 -library will then extract the requested features and return the values.</span></p> 1701 - 1702 -<h2></h2> 1703 - 1704 -<h2><a name="_Toc138932286"><span lang=en-DE>Electrophysiology Analysis Toolkit</span></a></h2> 1705 - 1706 -<p class=MsoNormal><span lang=en-DE>The Electrophysiology Analysis Toolkit 1707 -(Elephant) is a Python library that provides a modular framework for the 1708 -analysis of experimental and simulated neuronal activity data, such as spike 1709 -trains, local field potentials, and intracellular data. Elephant builds on the 1710 -Neo data model to facilitate usability, enable interoperability, and support 1711 -data from dozens of file formats and network simulation tools. Its analysis 1712 -functions are continuously validated against reference implementations and 1713 -reports in the literature. Visualisations of analysis results are made 1714 -available via the Viziphant companion library. Elephant aims to act as a 1715 -platform for sharing analysis methods across the field.</span></p> 1716 - 1717 -<h2></h2> 1718 - 1719 -<h2><a name="_Toc138932287"><span lang=en-DE>FAConstructor</span></a></h2> 1720 - 1721 -<p class=MsoNormal><span lang=en-DE>FAConstructor allows a simple and effective 1722 -creation of fibre models based on mathematical functions or the manual input of 1723 -data points. Models are visualised during creation and can be interacted with 1724 -by translating them in 3D space.</span></p> 1725 - 1726 -<h2></h2> 1727 - 1728 -<h2><a name="_Toc138932288"><span lang=en-DE>fairgraph</span></a></h2> 1729 - 1730 -<p class=MsoNormal><span lang=en-DE>fairgraph is a Python library for working 1731 -with metadata in the EBRAINS Knowledge Graph (KG), with a particular focus on 1732 -data reuse, although it is also useful in registering and curating metadata. 1733 -The library represents metadata nodes (also known as openMINDS instances) from 1734 -the KG as Python objects. fairgraph supports querying the KG, following links 1735 -in the graph, downloading data and metadata, and creating new nodes in the KG. 1736 -It builds on openMINDS and on the KG Core Python library.</span></p> 1737 - 1738 -<h2></h2> 1739 - 1740 -<h2><a name="_Toc138932289"><span lang=en-DE>Fast sampling with neuromorphic 1741 -hardware</span></a></h2> 1742 - 1743 -<p class=MsoNormal><span lang=en-DE>Compared to conventional neural networks, 1744 -physical model devices offer a fast, efficient, and inherently parallel 1745 -substrate capable of related forms of Markov chain Monte Carlo sampling. This 1746 -software suite enables the use of a neuromorphic chip to replicate the 1747 -properties of quantum systems through spike-based sampling.</span></p> 1748 - 1749 -<h2></h2> 1750 - 1751 -<h2><a name="_Toc138932290"><span lang=en-DE>fastPLI</span></a></h2> 1752 - 1753 -<p class=MsoNormal><span lang=en-DE>fastPLI is an open-source toolbox based on 1754 -Python and C++ for modelling myelinated axons, i.e., nerve fibres, and 1755 -simulating the results of measurement of fibre orientations with a polarisation 1756 -microscope using 3D-PLI. The fastPLI package includes the following modules: 1757 -nerve fibre modelling, simulation, and analysis. All computationally intensive 1758 -calculations are optimised either with Numba on the Python side or with 1759 -multithreading C++ algorithms, which can be accessed via pybind11 inside the 1760 -Python package. Additionally, the simulation module supports the Message 1761 -Passing Interface (MPI) to facilitate the simulation of very large volumes on 1762 -multiple computer nodes.</span></p> 1763 - 1764 -<h2></h2> 1765 - 1766 -<h2><a name="_Toc138932291"><span lang=en-DE>Feed-forward LFP-MEG estimator 1767 -from mean-field models</span></a></h2> 1768 - 1769 -<p class=MsoNormal><span lang=en-DE>This tool was developed to calculate the 1770 -local field potentials (LFP) and magnetoencephalogram (MEG) signals generated 1771 -by a population of neurons described by a mean-field model. The calculation of 1772 -LFP is done via a kernel method based on unitary LFP's (the LFP generated by a 1773 -single axon) which was recently introduced for spiking-networks simulations and 1774 -that we adapt here for mean-field models. The calculation of the magnetic field 1775 -is based on current-dipole and volume-conductor models, where the secondary 1776 -currents (due to the conducting extracellular medium) are estimated using the 1777 -LFP calculated via the kernel method and where the effects of 1778 -medium-inhomogeneities are incorporated.</span></p> 1779 - 1780 -<h2></h2> 1781 - 1782 -<h2><a name="_Toc138932292"><span lang=en-DE>FIL</span></a></h2> 1783 - 1784 -<p class=MsoNormal><span lang=en-DE>This is a scheme for training and applying 1785 -the FIL framework. Some functionality from SPM12 is required for handling 1786 -images. After training, labelling a new image is relatively fast because 1787 -optimising the latent variables can be formulated within a scheme similar to a recurrent 1788 -Residual Network (ResNet).</span></p> 1789 - 1790 -<h2></h2> 1791 - 1792 -<h2><a name="_Toc138932293"><span lang=en-DE>FMRALIGN</span></a></h2> 1793 - 1794 -<p class=MsoNormal><span lang=en-DE>This library is meant to be a light-weight 1795 -Python library that handles functional alignment tasks (also known as 1796 -hyperalignment). It is compatible with and inspired by Nilearn. Alternative 1797 -implementations of these ideas can be found in the pymvpa or brainiak packages.</span></p> 1798 - 1799 -<h2></h2> 1800 - 1801 -<h2><a name="_Toc138932294"><span lang=en-DE>Foa3D</span></a></h2> 1802 - 1803 -<p class=MsoNormal><span lang=en-DE>Foa3D is a tool for multiscale nerve fibre 1804 -enhancement and orientation analysis in high-resolution volume images acquired 1805 -by two-photon scanning or light-sheet fluorescence microscopy, exploiting the 1806 -brain tissue autofluorescence or exogenous myelin stains. Its image processing 1807 -pipeline is built around a 3D Frangi filter that enables the enhancement of 1808 -fibre structures of varying diameters, and the generation of accurate 3D 1809 -orientation maps in both grey and white matter. Foa3D features the computation 1810 -of multiscale orientation distribution functions that facilitate the comparison 1811 -with orientations assessed via 3D-PLI or 3D PS-OCT, and the validation of 1812 -mesoscale dMRI-based connectivity information.</span></p> 1813 - 1814 -<h2></h2> 1815 - 1816 -<h2><a name="_Toc138932295"><span lang=en-DE>Frites</span></a></h2> 1817 - 1818 -<p class=MsoNormal><span lang=en-DE>Frites allows the characterisation of 1819 -task-related cognitive brain networks. Neural correlates of cognitive functions 1820 -can be extracted both at the single brain area (or channel) and network level. 1821 -The toolbox includes time-resolved directed (e.g., Granger causality) and 1822 -undirected (e.g., Mutual Information) functional connectivity metrics. In 1823 -addition, it includes cluster-based and permutation-based statistical methods 1824 -for single-subject and group-level inference.</span></p> 1825 - 1826 -<h2></h2> 1827 - 1828 -<h2><a name="_Toc138932296"><span lang=en-DE>gridspeccer</span></a></h2> 1829 - 1830 -<p class=MsoNormal><span lang=en-DE>Plotting tool to make plotting with many 1831 -subfigures easier, especially for publications. After installation, gridspeccer 1832 -can be used from the command line to create plots.</span></p> 1833 - 1834 -<h2></h2> 1835 - 1836 -<h2><a name="_Toc138932297"><span lang=en-DE>Hal-Cgp</span></a></h2> 1837 - 1838 -<p class=MsoNormal><span lang=en-DE>Hal-Cgp is an extensible pure Python 1839 -library implementing Cgp to represent, mutate and evaluate populations of 1840 -individuals encoding symbolic expressions targeting applications with 1841 -computationally expensive fitness evaluations. It supports the translation from 1842 -a CGP genotype, a two-dimensional Cartesian graph, into the corresponding 1843 -phenotype, a computational graph implementing a particular mathematical expression. 1844 -These computational graphs can be exported as pure Python functions, in a 1845 -NumPy-compatible format, SymPy expressions or PyTorch modules. The library 1846 -implements a mu + lambda evolution strategy to evolve a population of 1847 -individuals to optimise an objective function.</span></p> 1848 - 1849 -<h2></h2> 1850 - 1851 -<h2><a name="_Toc138932298"><span lang=en-DE>Health Data Cloud</span></a></h2> 1852 - 1853 -<p class=MsoNormal><span lang=en-DE>The Health Data Cloud (HDC) provides 1854 -EBRAINS services for sensitive data as a federated research data ecosystem that 1855 -enables scientists across Europe and beyond to collect, process and share 1856 -sensitive data in compliance with EU General Data Protection Regulations 1857 -(GDPR). The HDC is a federation of interoperable nodes. Nodes share a common 1858 -system architecture based on CharitŽ Virtual Research Environment (VRE), 1859 -enabling research consortia to manage and process data, and making data 1860 -discoverable and sharable via the EBRAINS Knowledge Graph.</span></p> 1861 - 1862 -<p class=MsoNormal></p> 1863 - 1864 -<p class=MsoNormal><a name="_Toc138932299"><span class=Heading2Char><span 1865 -lang=en-DE style='font-size:14.0pt;line-height:120%'>Hodgkin-Huxley Neuron 1866 -Builder</span></span></a></p> 1867 - 1868 -<p class=MsoNormal><span lang=en-DE>The Hodgkin-Huxley Neuron Builder is a 1869 -web-application that allows users to interactively go through an entire NEURON 1870 -model building pipeline of individual biophysically detailed cells. 2. Model 1871 -parameter optimisation via HPC systems. 3. In silico experiments using the 1872 -optimised model cell. </span></p> 1873 - 1874 -<h2></h2> 1875 - 1876 -<h2><a name="_Toc138932300"><span lang=en-DE>HPC Job Proxy</span></a></h2> 1877 - 1878 -<p class=MsoNormal><span lang=en-DE>The HPC Job Proxy provides a simplified way 1879 -for EBRAINS service providers to launch jobs on Fenix supercomputers on behalf 1880 -of EBRAINS end users. The proxy offers a wrapper over the Unicore service which 1881 -adds logging, access to stdout/stderr/status, verification of user quota, and 1882 -updating of user quota at the end of the job.</span></p> 1883 - 1884 -<h2></h2> 1885 - 1886 -<h2><a name="_Toc138932301"><span lang=en-DE>HPC Status Monitor</span></a></h2> 1887 - 1888 -<p class=MsoNormal><span lang=en-DE>The HPC Status Monitor allows a real-time 1889 -check of the availability status of the HPC Systems accessible from HBP tools 1890 -and services and provides an instant snapshot of the resource quotas available 1891 -to individual users on each system.</span></p> 1892 - 1893 -<h2></h2> 1894 - 1895 -<h2><a name="_Toc138932302"><span lang=en-DE>Human Intracerebral EEG Platform</span></a></h2> 1896 - 1897 -<p class=MsoNormal><span lang=en-DE>The HIP is an open-source platform designed 1898 -for collecting, managing, analysing and sharing multi-scale iEEG data at an 1899 -international level. Its mission is to assist clinicians and researchers in 1900 -improving research capabilities by simplifying iEEG data analysis and 1901 -interpretation. The HIP integrates different software, modules and services 1902 -necessary for investigating spatio-temporal dynamics of neural processes in a 1903 -secure and optimised fashion. The interface is browser-based and allows 1904 -selecting sets of tools according to specific research needs.</span></p> 1905 - 1906 -<h2></h2> 1907 - 1908 -<h2><a name="_Toc138932303"><span lang=en-DE>Hybrid MM/CG Webserver</span></a></h2> 1909 - 1910 -<p class=MsoNormal><span lang=en-DE>MM/CG simulations help predict ligand poses 1911 -in hGPCRs for pharmacological applications. This approach allows for the 1912 -description of the ligand, the binding cavity and the surrounding water 1913 -molecules at atomistic resolution, while coarse-graining the rest of the 1914 -receptor. The webserver automatises and speeds up the simulation set-up of 1915 -hGPCR/ligand complexes. It also allows for equilibration of the systems, either 1916 -fully automatically or interactively. The results are visualised online, 1917 -helping the user identify possible issues and modify the set-up parameters. 1918 -This framework allows for the automatic preparation and running of hybrid 1919 -molecular dynamics simulations of molecules and their cognate receptors.</span></p> 1920 - 1921 -<h2></h2> 1922 - 1923 -<h2><a name="_Toc138932304"><span lang=en-DE>Insite</span></a></h2> 1924 - 1925 -<p class=MsoNormal><span lang=en-DE>Insite enables users to access data via the 1926 -in transit paradigm for NEST, TVB and Arbor simulations. Compared to the 1927 -traditional approach of offline processing, in transit paradigms allow 1928 -accessing of data while the simulation runs. This is especially useful for 1929 -simulations that produce large amounts of data and are running for a long time. 1930 -In transit allows the user to access only parts of the data and prevents the 1931 -need for storing all data. It also allows the user early insights into the data 1932 -even before the simulation finishes. Insite provides an easy-to-use and 1933 -easy-to-integrate architecture to enable in transit features in other tools.</span></p> 1934 - 1935 -<h2></h2> 1936 - 1937 -<h2><a name="_Toc138932305"><span lang=en-DE>Interactive Brain Atlas Viewer</span></a></h2> 1938 - 1939 -<p class=MsoNormal><span lang=en-DE>The Interactive Brain Atlas Viewer provides 1940 -various kinds of interactive visualisations for multi-modal brain and head 1941 -image data: different parcellations, degrees of transparency and overlays. The 1942 -Viewer provides the following functions and supports data from the following 1943 -sources: EEG, white matter tracts, MRI and PET 3D volumes, 2D slices, 1944 -intracranial electrodes, brain activity, multiscale brain network models, 1945 -supplementary information for brain regions and functional brain networks in 1946 -multiple languages. It comes as a web app, mobile app and desktop app.</span></p> 1947 - 1948 -<h2></h2> 1949 - 1950 -<h2><a name="_Toc138932306"><span lang=en-DE>JuGEx</span></a></h2> 1951 - 1952 -<p class=MsoNormal><span lang=en-DE>Decoding the chain from genes to cognition 1953 -requires detailed insights into how areas with specific gene activities and 1954 -microanatomical architectures contribute to brain function and dysfunction. The 1955 -Allen Human Brain Atlas contains regional gene expression data, while the 1956 -Julich Brain Atlas, which can be accessed via siibra, offers 3D 1957 -cytoarchitectonic maps reflecting the interindividual variability. JuGEx offers 1958 -an integrated framework that combines the analytical benefits of both 1959 -repositories towards a multilevel brain atlas of adult humans. JuGEx is a new 1960 -method for integrating tissue transcriptome and cytoarchitectonic segregation.</span></p> 1961 - 1962 -<h2></h2> 1963 - 1964 -<h2><a name="_Toc138932307"><span lang=en-DE>KnowledgeSpace</span></a></h2> 1965 - 1966 -<p class=MsoNormal><span lang=en-DE>KnowledgeSpace (KS) is a globally-used, 1967 -data-driven encyclopaedia and search engine for the neuroscience community. As 1968 -an encyclopaedia, KS provides curated definitions of brain research concepts 1969 -found in different neuroscience community ontologies, Wikipedia and 1970 -dictionaries. The dataset discovery in KS makes research datasets across many 1971 -large-scale brain initiatives universally accessible and useful. It also 1972 -promotes FAIR data principles that will help data publishers to follow best 1973 -practices for data storage and publication. As more and more data publishers 1974 -follow data standards like OpenMINDS or DATS, the quality of data discovery 1975 -through KS will improve. The related publications are also curated from PubMed 1976 -and linked to the concepts in KS to provide an improved search capability.</span></p> 1977 - 1978 -<h2></h2> 1979 - 1980 -<h2><a name="_Toc138932308"><span lang=en-DE>L2L</span></a></h2> 1981 - 1982 -<p class=MsoNormal><span lang=en-DE>L2L is an easy-to-use and flexible 1983 -framework to perform parameter and hyper-parameter space exploration of 1984 -mathematical models on HPC infrastructure. L2L is an implementation of the 1985 -learning-to-learn concept written in Python. This open-source software allows 1986 -several instances of an optimisation target to be executed with different 1987 -parameters in an massively parallel fashion on HPC. L2L provides a set of 1988 -built-in optimiser algorithms, which make adaptive and efficient exploration of 1989 -parameter spaces possible. Different from other optimisation toolboxes, L2L 1990 -provides maximum flexibility for the way the optimisation target can be 1991 -executed.</span></p> 1992 - 1993 -<h2></h2> 1994 - 1995 -<h2><a name="_Toc138932309"><span lang=en-DE>Leveltlab/SpectralSegmentation</span></a></h2> 1996 - 1997 -<p class=MsoNormal><span lang=en-DE>SpecSeg is a toolbox that segments neurons 1998 -and neurites in chronic calcium imaging datasets based on low-frequency 1999 -cross-spectral power. The pipeline includes a graphical user interface to edit 2000 -the automatically extracted ROIs, to add new ones or delete ROIs by further 2001 -constraining their properties.</span></p> 2002 - 2003 -<h2></h2> 2004 - 2005 -<h2><a name="_Toc138932310"><span lang=en-DE>LFPy</span></a></h2> 2006 - 2007 -<p class=MsoNormal><span lang=en-DE>LFPy is an open-source Python module linking 2008 -simulated neural activity with measurable brain signals. This is done by 2009 -enabling calculation of brain signals from neural activity simulated with 2010 -multi-compartment neuron models (single cells or networks). LFPy can be used to 2011 -simulate brain signals like extracellular action potentials, local field 2012 -potentials (LFP), and in vitro MEA recordings, as well as ECoG, EEG, and MEG 2013 -signals. LFPy is well-integrated with the NEURON simulator and can, through 2014 -LFPykit, also be used with other simulators like Arbor. Through the recently 2015 -developed extensions hybridLFPy and LFPykernels, LFPy can also be used to 2016 -calculate brain signals directly from point-neuron network models or 2017 -population-based models.</span></p> 2018 - 2019 -<h2></h2> 2020 - 2021 -<h2><a name="_Toc138932311"><span lang=en-DE>libsonata</span></a></h2> 2022 - 2023 -<p class=MsoNormal><span lang=en-DE>libsonata allows circuit and simulation 2024 -config loading, node set materialisation, and access to node and edge 2025 -populations in an efficient manner. It is generally a read-only library, but 2026 -support for writing edge indices has been added.</span></p> 2027 - 2028 -<h2></h2> 2029 - 2030 -<h2><a name="_Toc138932312"><span lang=en-DE>Live Papers</span></a></h2> 2031 - 2032 -<p class=MsoNormal><span lang=en-DE>EBRAINS Live Papers are structured and 2033 -interactive documents that complement published scientific articles. Live 2034 -Papers feature integrated tools and services that allow users to download, 2035 -visualise or simulate data, models and results presented in the corresponding 2036 -publications: Build interactive documents to showcase your data and the 2037 -simulation or data analysis code used in your research. Easily link to 2038 -resources in community databases such as EBRAINS, NeuroMorpho.org, ModelDB, and 2039 -Allen Brain Atlas. Embedded, interactive visualisation of electrophysiology 2040 -data and neuronal reconstructions. Launch EBRAINS simulation tools to explore 2041 -single neuron models in your browser. Share live papers pre-publication with 2042 -anonymous reviewers during peer review of your manuscript. Explore already 2043 -published live papers, or develop your own live paper with our authoring tool.</span></p> 2044 - 2045 -<h2></h2> 2046 - 2047 -<h2><a name="_Toc138932313"><span lang=en-DE>Livre</span></a></h2> 2048 - 2049 -<p class=MsoNormal><span lang=en-DE>Livre is an out-of-core, multi-node, 2050 -multi-GPU, OpenGL volume rendering engine to visualise large volumetric 2051 -datasets. It provides the following major features to facilitate rendering of 2052 -large volumetric datasets: Visualisation of pre-processed UVF format volume 2053 -datasets. Real-time voxelisation of different data sources (surface meshes, BBP 2054 -morphologies, local field potentials, etc.) through the use of plugins. 2055 -Multi-node, multi-GPU rendering (only sort-first rendering).</span></p> 2056 - 2057 -<h2></h2> 2058 - 2059 -<h2><a name="_Toc138932314"><span lang=en-DE>LocaliZoom</span></a></h2> 2060 - 2061 -<p class=MsoNormal><span lang=en-DE>Pan-and-zoom type viewer displaying image 2062 -series with overlaid atlas delineations. LocaliZoom is a pan-and-zoom type 2063 -viewer displaying high-resolution image series coupled with overlaid atlas 2064 -delineations. It has three operating modes: Display series with atlas overlay. 2065 -Both linear and nonlinear alignments are supported (created with QuickNII or 2066 -VisuAlign). Create or edit nonlinear alignments. Create markup which can be 2067 -exported as MeshView point clouds or to Excel for further numerical analysis.</span></p> 2068 - 2069 -<h2></h2> 2070 - 2071 -<h2><a name="_Toc138932315"><span lang=en-DE>MD-IFP</span></a></h2> 2072 - 2073 -<p class=MsoNormal><span lang=en-DE>MD-IFP is a python workflow for the 2074 -generation and analysis of protein-ligand interaction fingerprints from 2075 -molecular dynamics trajectories. If used for the analysis of Random 2076 -Acceleration Molecular Dynamics (RAMD) trajectories, it can help to investigate 2077 -dissociation mechanisms by characterising transition states as well as the 2078 -determinants and hot-spots for dissociation. As such, the combined use of 2079 -RAMD and MD-IFP may assist the early stages of drug discovery campaigns for the 2080 -design of new molecules or ligand optimisation.</span></p> 2081 - 2082 -<h2></h2> 2083 - 2084 -<h2><a name="_Toc138932316"><span lang=en-DE>MEDUSA</span></a></h2> 2085 - 2086 -<p class=MsoNormal><span lang=en-DE>Using a spherical meshing technique that 2087 -decomposes each microstructural item into a set of overlapping spheres, the 2088 -phantom construction is made very fast while reliably avoiding the collisions 2089 -between items in the scene. This novel method is applied to the construction of 2090 -human brain white matter microstructural components, namely axonal fibers, 2091 -oligodendrocytes and astrocytes. The algorithm reaches high values of packing 2092 -density and angular dispersion for the axonal fibers, even in the case of 2093 -multiple white matter fiber populations and enables the construction of complex 2094 -biomimicking geometries including myelinated axons, beaded axons and glial 2095 -cells.</span></p> 2096 - 2097 -<h2></h2> 2098 - 2099 -<h2><a name="_Toc138932317"><span lang=en-DE>MeshView</span></a></h2> 2100 - 2101 -<p class=MsoNormal><span lang=en-DE>MeshView is a web application for real-time 2102 -3D display of surface mesh data representing structural parcellations from 2103 -volumetric atlases, such as the Waxholm Space atlas of the Sprague Dawley rat 2104 -brain. Key features: orbiting view with toggleable opaque/transparent/hidden 2105 -parcellation meshes, rendering user-defined cut surface as if meshes were solid 2106 -objects, rendering point-clouds (simple type-in, or loaded from JSON). The 2107 -coordinate system is compatible with QuickNII.</span></p> 2108 - 2109 -<h2></h2> 2110 - 2111 -<h2><a name="_Toc138932318"><span lang=en-DE>MIP</span></a></h2> 2112 - 2113 -<p class=MsoNormal><span lang=en-DE>MIP is an open-source platform enabling 2114 -federated data analysis in a secure environment for centres involved in 2115 -collaborative initiatives. It allows users to initiate or join disease-oriented 2116 -federations with the aim of analysing large-scale distributed clinical 2117 -datasets. For each federation, users can create specific data models based on 2118 -well-accepted common data elements, approved by all participating centres. MIP 2119 -experts assist in creating the data models and facilitate coordination and 2120 -communication among centres. They provide advice and support for data curation, 2121 -harmonisation, and anonymisation, as well as data governance, especially with 2122 -regards to Data Sharing Agreements and general ethical considerations.</span></p> 2123 - 2124 -<h2></h2> 2125 - 2126 -<h2><a name="_Toc138932319"><span lang=en-DE>Model Validation Service</span></a></h2> 2127 - 2128 -<p class=MsoNormal><span lang=en-DE>The HBP/EBRAINS Model Validation Service is 2129 -a set of tools for performing and tracking validation of models with respect to 2130 -experimental data. It consists of a web API, a GUI client (the Model Catalog 2131 -app) and a Python client. The service enables users to store, query, view and 2132 -download: (i) model descriptions/scripts, (ii) validation test definitions and 2133 -(iii) validation results. In a typical workflow, users will find models and 2134 -validation tests by searching the Model Catalog (or upload their own), run the 2135 -tests using the Python client in a Jupyter notebook, with simulations running 2136 -locally or on HPC, and then upload the results.</span></p> 2137 - 2138 -<h2></h2> 2139 - 2140 -<h2><a name="_Toc138932320"><span lang=en-DE>Model Validation Test Suites</span></a></h2> 2141 - 2142 -<p class=MsoNormal><span lang=en-DE>As part of the HBP/EBRAINS model validation 2143 -framework, we provide a Python Software Development Kit (SDK) for model 2144 -validation, which provides: (i) validation test definitions and (ii) interface 2145 -definitions intended to decouple model validation from the details of model 2146 -implementation. This more formal approach to model validation aims to make it 2147 -quicker and easier to compare models, to provide validation test suites for 2148 -models and to develop new validations of existing models. The SDK consists of a 2149 -collection of Python packages all using the sciunit framework: HippoUnit, 2150 -MorphoUnit, NetworkUnit, BasalUnit, CerebUnit, eFELUnit, HippoNetworkUnit.</span></p> 2151 - 2152 -<h2></h2> 2153 - 2154 -<h2><a name="_Toc138932321"><span lang=en-DE>MoDEL-CNS</span></a></h2> 2155 - 2156 -<p class=MsoNormal><span lang=en-DE>MoDEL-CNS is a database and server platform 2157 -designed to provide web access to atomistic MD trajectories for relevant signal 2158 -transduction proteins. The project is part of the service for providing 2159 -molecular simulation-based predictions for systems neurobiology of the HBP. 2160 -MoDEL-CNS expands the MD Extended Library database of atomistic MD trajectories 2161 -with proteins involved in CNS processes, including membrane proteins. MoDEL-CNS 2162 -web server interface presents the resulting trajectories, analyses and protein 2163 -properties. All data produced are available to download.</span></p> 2164 - 2165 -<h2></h2> 2166 - 2167 -<h2><a name="_Toc138932322"><span lang=en-DE>Modular Science</span></a></h2> 2168 - 2169 -<p class=MsoNormal><span lang=en-DE>Modular Science is a middleware that 2170 -provides robust deployment of complex multi-application workflows. It contains 2171 -protocols and interfaces for multi-scale co-simulation workloads on 2172 -high-performance computers and local hardware. It allows for synchronisation 2173 -and coordination of individual components and contains dedicated and 2174 -parallelised modules for data transformations between scales. Modular Science 2175 -offers insight into both the system level and the individual subsystems to 2176 -steer the execution, to monitor resource usage, and system health & status 2177 -with small overheads on performance. Modular Science comes with a number of 2178 -neuroscience co-simulation use cases including NEST-TVB, NEST-Arbor, LFPy and neurorobotics.</span></p> 2179 - 2180 -<h2></h2> 2181 - 2182 -<h2><a name="_Toc138932323"><span lang=en-DE>Monsteer</span></a></h2> 2183 - 2184 -<p class=MsoNormal><span lang=en-DE>Monsteer is a library for interactive 2185 -supercomputing in the neuroscience domain. It facilitates the coupling of 2186 -running simulations (currently NEST) with interactive visualization and 2187 -analysis applications. Monsteer supports streaming of simulation data to 2188 -clients (currently limited to spikes) as well as control of the simulator from 2189 -the clients (also known as computational steering). Monsteer's main components 2190 -are a C++ library, a MUSIC-based application and Python helpers.</span></p> 2191 - 2192 -<h2></h2> 2193 - 2194 -<h2><a name="_Toc138932324"><span lang=en-DE>MorphIO</span></a></h2> 2195 - 2196 -<p class=MsoNormal><span lang=en-DE>MorphIO is a library for reading and 2197 -writing neuron morphology files. It supports the following formats: SWC, ASC 2198 -(also known as neurolucida), H5. There are two APIs: mutable, for creating or 2199 -editing morphologies, and immutable, for read-only operations. Both are 2200 -represented in C++ and Python. Extended formats include glia, mitochondria and 2201 -endoplasmic reticulum.</span></p> 2202 - 2203 -<h2></h2> 2204 - 2205 -<h2><a name="_Toc138932325"><span lang=en-DE>Morphology alignment tool</span></a></h2> 2206 - 2207 -<p class=MsoNormal><span lang=en-DE>Starting with serial sections of a brain in 2208 -which a complete single morphology has been labelled, the pieces of neurite 2209 -(axons/dendrites) in each section are traced with Neurolucida or similar 2210 -microscope-attached software. The slices are then aligned, first using an 2211 -automated algorithm that tries to find matching pieces in adjacent sections 2212 -(Python script), and second using a GUI-driven tool (web-based, JavaScript). 2213 -Finally, the pieces are stitched into a complete neuron (Python script). The 2214 -neuron and tissue volume are then registered to one of the EBRAINS-supported 2215 -reference templates (Python script). The web-based tool can also be used to align 2216 -slices without a neuron being present.</span></p> 2217 - 2218 -<h2></h2> 2219 - 2220 -<h2><a name="_Toc138932326"><span lang=en-DE>MorphTool</span></a></h2> 2221 - 2222 -<p class=MsoNormal><span lang=en-DE>MorphTool is a python toolkit designed for 2223 -editing morphological skeletons of cell reconstructions. It has been developed 2224 -to provide helper programmes that perform simple tasks such as morphology 2225 -diffing, file conversion, soma area calculation, skeleton simplification, 2226 -process resampling, morphology repair and spatial transformations. It allows 2227 -neuroscientists to curate and manipulate morphological reconstruction and 2228 -correct morphological artifacts due to the manual reconstruction process.</span></p> 2229 - 2230 -<h2></h2> 2231 - 2232 -<h2><a name="_Toc138932327"><span lang=en-DE>Multi-Brain</span></a></h2> 2233 - 2234 -<p class=MsoNormal><span lang=en-DE>The Multi-Brain (MB) model has the 2235 -general aim of integrating a number of disparate image analysis components 2236 -within a single unified generative modelling framework. Its objective is to 2237 -achieve diffeomorphic alignment of a wide variety of medical image modalities 2238 -into a common anatomical space. This involves the ability to construct a 2239 -"tissue probability template" from a population of scans 2240 -through group-wise alignment. The MB model has been shown to provide accurate 2241 -modelling of the intensity distributions of different imaging modalities.</span></p> 2242 - 2243 -<h2></h2> 2244 - 2245 -<h2><a name="_Toc138932328"><span lang=en-DE>Multi-Image-OSD</span></a></h2> 2246 - 2247 -<p class=MsoNormal><span lang=en-DE>It has browser-based classic pan and zoom 2248 -capabilities. A collection of images can be displayed as a filmstrip (Filmstrip 2249 -Mode) or as a table (Collection Mode) with adjustable number of rows and 2250 -columns. The tool supports keyboard or/and mouse navigation options, as well as 2251 -touch devices. Utilising the open standard Deep Zoom Image (DZI) format, it is 2252 -able to efficiently visualise very large brain images in the gigapixel range, 2253 -allowing to zoom from common, display-sized overview resolutions down to the 2254 -microscopic resolution without downloading the underlying, very large image 2255 -dataset.</span></p> 2256 - 2257 -<h2></h2> 2258 - 2259 -<h2><a name="_Toc138932329"><span lang=en-DE>MUSIC</span></a></h2> 2260 - 2261 -<p class=MsoNormal><span lang=en-DE>MUSIC is a communication framework in the 2262 -domain of computational neuroscience and neuromorphic computing which enables 2263 -co-simulations, where components of a model are simulated by different 2264 -simulators or hardware. It consists of an API and C++ library which can be 2265 -linked into existing software with minor modifications. MUSIC enables the 2266 -communication of neuronal spike events, continuous values and text messages 2267 -while hiding the complexity of data distribution over ranks, as well as 2268 -scheduling of communication in the face of loops. MUSIC is light-weight with a 2269 -simple API.</span></p> 2270 - 2271 -<h2></h2> 2272 - 2273 -<h2><a name="_Toc138932330"><span lang=en-DE>NEAT</span></a></h2> 2274 - 2275 -<p class=MsoNormal><span lang=en-DE>NEAT allows for the convenient definition 2276 -of morphological neuron models. These models can be simulated through an 2277 -interface with the NEURON simulator or analysed with two classical methods: (i) 2278 -the separation-of-variables method to obtain impedance kernels as a 2279 -superposition of exponentials and (ii) Koch's method to compute impedances with 2280 -linearised ion channels analytically in the frequency domain. NEAT also 2281 -implements the neural evaluation tree framework and an associated C++ simulator 2282 -to analyse sub-unit independence. Finally, NEAT implements a new method to 2283 -simplify morphological neuron models into models with few compartments, which 2284 -can also be simulated with NEURON.</span></p> 2285 - 2286 -<h2></h2> 2287 - 2288 -<h2><a name="_Toc138932331"><span lang=en-DE>Neo</span></a></h2> 2289 - 2290 -<p class=MsoNormal><span lang=en-DE>Neo implements a hierarchical data model 2291 -well adapted to intracellular and extracellular electrophysiology and EEG data. 2292 -It improves interoperability between Python tools for analysing, visualising 2293 -and generating electrophysiology data by providing a common, shared object 2294 -model. It reads a wide range of neurophysiology file formats, including Spike2, 2295 -NeuroExplorer, AlphaOmega, Axon, Blackrock, Plexon, Tdt and Igor Pro and writes 2296 -to open formats such as NWB and NIX. Neo objects behave just like normal NumPy 2297 -arrays, but with additional metadata, checks for dimensional consistency and 2298 -automatic unit conversion. Neo has been endorsed as a community standard by the 2299 -International Neuroinformatics Coordinating Facility (INCF).</span></p> 2300 - 2301 -<h2></h2> 2302 - 2303 -<h2><a name="_Toc138932332"><span lang=en-DE>Neo Viewer</span></a></h2> 2304 - 2305 -<p class=MsoNormal><span lang=en-DE>Neo Viewer consists of a REST-API and a 2306 -Javascript component that can be embedded in any web page. Electrophysiology 2307 -traces can be zoomed, scrolled and saved as images. Individual points can be 2308 -measured off the graphs. Neo Viewer can visualise data from most of the 2309 -widely-used file formats in neurophysiology, including community standards such 2310 -as NWB.</span></p> 2311 - 2312 -<h2></h2> 2313 - 2314 -<h2><a name="_Toc138932333"><span lang=en-DE>NEST Desktop</span></a></h2> 2315 - 2316 -<p class=MsoNormal><span lang=en-DE>NEST Desktop comprises of GUI components 2317 -for creating and configuring network models, running simulations, and 2318 -visualising and analysing simulation results. NEST Desktop allows students to 2319 -explore important concepts in computational neuroscience without the need to 2320 -first learn a simulator control language. This is done by offering a 2321 -server-side NEST simulator, which can also be installed as a package together 2322 -with a web server providing NEST Desktop as visual front-end. Besides local 2323 -installations, distributed setups can be installed, and direct use through 2324 -EBRAINS is possible. NEST Desktop has also been used as a modelling front-end 2325 -of the Neurorobotics Platform.</span></p> 2326 - 2327 -<h2></h2> 2328 - 2329 -<h2><a name="_Toc138932334"><span lang=en-DE>NEST Simulator</span></a></h2> 2330 - 2331 -<p class=MsoNormal><span lang=en-DE>NEST is used in computational neuroscience 2332 -to model and study behaviour of large networks of neurons. The models describe 2333 -single neuron and synapse behaviour and their connections. Different mechanisms 2334 -of plasticity can be used to investigate artificial learning and help to shed 2335 -light on the fundamental principles of how the brain works. NEST offers 2336 -convenient and efficient commands to define and connect large networks, ranging 2337 -from algorithmically determined connections to data-driven connectivity. Create 2338 -connections between neurons using numerous synapse models from STDP to gap 2339 -junctions.</span></p> 2340 - 2341 -<h2></h2> 2342 - 2343 -<h2><a name="_Toc138932335"><span lang=en-DE>NESTML</span></a></h2> 2344 - 2345 -<p class=MsoNormal><span lang=en-DE>NESTML is a domain-specific language for 2346 -neuron and synapse models. These dynamical models can be used in simulations of 2347 -brain activity on several platforms, in particular NEST Simulator. NESTML 2348 -combines an easy to understand, yet powerful syntax with good simulation 2349 -performance by means of code generation (C++ for NEST Simulator), but flexibly 2350 -supports other simulation engines including neuromorphic hardware.</span></p> 2351 - 2352 -<h2></h2> 2353 - 2354 -<h2><a name="_Toc138932336"><span lang=en-DE>NetPyNE</span></a></h2> 2355 - 2356 -<p class=MsoNormal><span lang=en-DE>NetPyNE provides programmatic and graphical 2357 -interfaces to develop data-driven multiscale brain neural circuit models using 2358 -Python and NEURON. Users can define models using a standardised 2359 -JSON-compatible, rule-based, declarative format. Based on these specifications, 2360 -NetPyNE will generate the network in CoreNEURON, enabling users to run 2361 -parallel simulations, optimise and explore network parameters through automated 2362 -batch runs, and use built-in functions for visualisation and analysis (e.g., 2363 -generate connectivity matrices, voltage traces, spike raster plots, local field 2364 -potentials and information theoretic measures). NetPyNE also facilitates model 2365 -sharing by exporting and importing standardised formats: NeuroML and SONATA.</span></p> 2366 - 2367 -<h2></h2> 2368 - 2369 -<h2><a name="_Toc138932337"><span lang=en-DE>NEURO-CONNECT</span></a></h2> 2370 - 2371 -<p class=MsoNormal><span lang=en-DE>The NEURO-CONNECT platform provides 2372 -functions to integrate multimodal brain imaging information in a unifying 2373 -feature space. Thus, Surface Based Morphometry (SBM), Functional Magnetic 2374 -Resonance Imaging (fMRI) and Diffusion Tensor Imaging (DTI) can be combined and 2375 -visualised at the whole-brain scale. Moreover, multiple brain atlases are 2376 -aligned to match research outcomes to neuroanatomical entities. The datasets 2377 -are appended with openMINDS metadata and thus enable integrative data analysis 2378 -and machine learning.</span></p> 2379 - 2380 -<h2></h2> 2381 - 2382 -<h2><a name="_Toc138932338"><span lang=en-DE>NeuroFeatureExtract</span></a></h2> 2383 - 2384 -<p class=MsoNormal><span lang=en-DE>The NeuroFeatureExtract is a web 2385 -application that allows the users to extract an ensemble of 2386 -electrophysiological properties from voltage traces recorded upon electrical 2387 -stimulation of neuronal cells. The main outcome of the application is the 2388 -generation of two files Ð features.json and protocol.json Ð that can be used 2389 -for later analysis and model parameter optimisations via the Hodgkin-Huxley 2390 -Neuron Builder application.</span></p> 2391 - 2392 -<h2></h2> 2393 - 2394 -<h2><a name="_Toc138932339"><span lang=en-DE>NeurogenPy</span></a></h2> 2395 - 2396 -<p class=MsoNormal><span lang=en-DE>NeurogenPy is a Python package for working 2397 -with Bayesian networks. It is focused on the analysis of gene expression data 2398 -and learning of gene regulatory networks, modelled as Bayesian networks. For 2399 -that reason, at the moment, only the Gaussian and fully discrete cases are 2400 -supported. The package provides different structure learning algorithms, 2401 -parameters estimation and input/output formats. For some of them, already 2402 -existing implementations have been used, with bnlearn, pgmpy, networkx and 2403 -igraph being the most relevant used packages. This project has been conceived 2404 -to be included as a plugin in the EBRAINS interactive atlas viewer, but it may 2405 -be used for other purposes.</span></p> 2406 - 2407 -<h2></h2> 2408 - 2409 -<h2><a name="_Toc138932340"><span lang=en-DE>NeuroM</span></a></h2> 2410 - 2411 -<p class=MsoNormal><span lang=en-DE>NeuroM is a Python toolkit for the analysis 2412 -and processing of neuron morphologies. It allows the extraction of various 2413 -information about morphologies, e.g., the segment lengths of a morphology via 2414 -the segment_lengths feature. More than 50 features that can be extracted.</span></p> 2415 - 2416 -<h2></h2> 2417 - 2418 -<h2><a name="_Toc138932341"><span lang=en-DE>Neuromorphic Computing Job Queue</span></a></h2> 2419 - 2420 -<p class=MsoNormal><span lang=en-DE>The Neuromorphic Computing Job Queue allows 2421 -users to run simulations/emulations on the SpiNNaker and BrainScaleS systems by 2422 -submitting a PyNN script and associated job configuration information to a 2423 -central queue. The system consists of a web API, a GUI client (the Job Manager 2424 -app) and a Python client. Users can submit scripts stored locally on their own 2425 -machine, in a Git repository, in the KG, or in EBRAINS Collaboratory storage 2426 -(Drive/Bucket). Users can track the progress of their job, and view and/or 2427 -download the results, log files, and provenance information.</span></p> 2428 - 2429 -<h2></h2> 2430 - 2431 -<h2><a name="_Toc138932342"><span lang=en-DE>Neuronize v2</span></a></h2> 2432 - 2433 -<p class=MsoNormal><span lang=en-DE>Neuronize v2 has been developed to generate 2434 -a connected neural 3D mesh. If the input is a neuron tracing, it generates a 3D 2435 -mesh from it, including the shape of the soma. If the input is data extracted 2436 -with Imaris Filament Tracer (a set of unconnected meshes of a neuron), 2437 -Neuronize v2 generates a single connected 3D mesh of the whole neuron (also 2438 -generating the soma) and provides its neural tracing, which can then be 2439 -imported into tools such as Neurolucida, facilitating the interoperability of 2440 -two of the most widely used proprietary tools.</span></p> 2441 - 2442 -<h2></h2> 2443 - 2444 -<h2><a name="_Toc138932343"><span lang=en-DE>NeuroR</span></a></h2> 2445 - 2446 -<p class=MsoNormal><span lang=en-DE>NeuroR is a collection of tools to repair 2447 -morphologies. This includes cut plane detection, sanitisation (removing 2448 -unifurcations, invalid soma counts, short segments) and 'unravelling': the 2449 -action of 'stretching' the cell that has been shrunk due to the dehydratation 2450 -caused by the slicing.</span></p> 2451 - 2452 -<h2></h2> 2453 - 2454 -<h2><a name="_Toc138932344"><span lang=en-DE>Neurorobotics Platform</span></a></h2> 2455 - 2456 -<p class=MsoNormal><span lang=en-DE>The Neurorobotics Platform (NRP) is an 2457 -integrative simulation framework that enables in silico experimentation and 2458 -embodiment of brain models inside virtual agents interacting with realistic 2459 -simulated environments. Entirely Open Source, it offers a browser-based 2460 -graphical user interface for online access. It can be installed locally (Docker 2461 -or source install). It can be interfaced with multiple spike-based neuromorphic 2462 -chips (SpiNNaker, Intel Loihi). You can download and install the NRP locally 2463 -for maximum experimental convenience or access it online in order to leverage 2464 -the HBP High Performance Computing infrastructure for large-scale experiments.</span></p> 2465 - 2466 -<h2></h2> 2467 - 2468 -<h2><a name="_Toc138932345"><span lang=en-DE>Neurorobotics Platform Robot 2469 -Designer</span></a></h2> 2470 - 2471 -<p class=MsoNormal><span lang=en-DE>The Robot Designer is a plugin for the 3D 2472 -modeling suite Blender that enables researchers to design morphologies for 2473 -simulation experiments in, particularly but not restricted to, the 2474 -Neurorobotics Platform. This plugin helps researchers design and parameterize 2475 -models with a Graphical User Interface, simplifying and speeding up the design 2476 -process.cess. It includes design capabilities for musculoskeletal bodies as 2477 -well as robotic systems, fostering not only the understanding of biological 2478 -motions and enabling better robot designs, but also enabling true Neurorobotic 2479 -experiments that consist of biomimetic models such as tendon-driven robots or a 2480 -transition between biology and technology.</span></p> 2481 - 2482 -<h2></h2> 2483 - 2484 -<h2><a name="_Toc138932346"><span lang=en-DE>NeuroScheme</span></a></h2> 2485 - 2486 -<p class=MsoNormal><span lang=en-DE>NeuroScheme uses schematic 2487 -representations, such as icons and glyphs, to encode attributes of neural 2488 -structures (neurons, columns, layers, populations, etc.), alleviating problems 2489 -with displaying, navigating and analysing large datasets. It manages 2490 -hierarchically organised neural structures</span><span lang=en-DE 2491 -style='font-family:"Times New Roman",serif'> </span><span lang=en-DE>users can 2492 -navigate through the levels of the hierarchy and hone in on and explore the 2493 -data at their desired level of detail. NeuroScheme has currently two built-in 2494 -"domains", which specify entities, attributes and 2495 -relationships used for specific use cases: the 'cortex' domain, designed for 2496 -navigating and analysing cerebral cortex structures</span><span lang=en-DE 2497 -style='font-family:"Times New Roman",serif'> </span><span lang=en-DE>and the 2498 -'congen' domain, used to define the properties of cells and connections, create 2499 -circuits of neurons and build populations.</span></p> 2500 - 2501 -<h2></h2> 2502 - 2503 -<h2><a name="_Toc138932347"><span lang=en-DE>NeuroSuites</span></a></h2> 2504 - 2505 -<p class=MsoNormal><span lang=en-DE>NeuroSuites is a web-based platform 2506 -designed to handle large-scale, high-dimensional data in the field of 2507 -neuroscience. It offers neuroscience-oriented applications and tools for data 2508 -analysis, machine learning and visualisation, while also providing 2509 -general-purpose tools for data scientists in other research fields. NeuroSuites 2510 -requires no software installation and runs on the backend of a server, making 2511 -it accessible from various devices. The platform's main strengths include its 2512 -defined architecture, ability to handle complex neuroscience data and the 2513 -variety of available tools.</span></p> 2514 - 2515 -<h2></h2> 2516 - 2517 -<h2><a name="_Toc138932348"><span lang=en-DE>NeuroTessMesh</span></a></h2> 2518 - 2519 -<p class=MsoNormal><span lang=en-DE>NeuroTessMesh takes morphological tracings 2520 -of cells acquired by neuroscientists and generates 3D models that approximate 2521 -the neuronal membrane. The resolution of the models can be adapted at the time 2522 -of visualisation. You can colour-code different parts of a morphology, 2523 -differentiating relevant morphological variables or even neuronal activity. 2524 -NeuroTessMesh copes with many of the problems associated with the visualisation 2525 -of neural circuits consisting of large numbers of cells. It facilitates the 2526 -recovery and visualisation of the 3D geometry of cells included in databases, 2527 -such as NeuroMorpho, and allows to approximate missing information such as the 2528 -soma's morphology.</span></p> 2529 - 2530 -<h2></h2> 2531 - 2532 -<h2><a name="_Toc138932349"><span lang=en-DE>NMODL Framework</span></a></h2> 2533 - 2534 -<p class=MsoNormal><span lang=en-DE>NMODL Framework is designed with 2535 -modern compiler and code generation techniques. It provides modular tools for 2536 -parsing, analysing and transforming NMODL it provides an easy to use, high 2537 -level Python API</span><span lang=en-DE style='font-family:"Times New Roman",serif'> 2538 -</span><span lang=en-DE> it generates optimised code for modern compute architectures 2539 -including CPUs and GPUs</span><span lang=en-DE style='font-family:"Times New Roman",serif'> 2540 -</span><span lang=en-DE> it provides flexibility to implement new simulator 2541 -backends and it supports full NMODL specification.</span></p> 2542 - 2543 -<h2></h2> 2544 - 2545 -<h2><a name="_Toc138932350"><span lang=en-DE>NSuite</span></a></h2> 2546 - 2547 -<p class=MsoNormal><span lang=en-DE>NSuite is a framework for maintaining and 2548 -running benchmarks and validation tests for multi-compartment neural network 2549 -simulations on HPC systems. NSuite automates the process of building simulation 2550 -engines, and running benchmarks and validation tests. NSuite is specifically 2551 -designed to allow easy deployment on HPC systems in testing workflows, such as 2552 -benchmark-driven development or continuous integration. The development of 2553 -NSuite has been driven by the need (1) for a definitive resource for comparing 2554 -performance and correctness of simulation engines on HPC systems, (2) to verify 2555 -the performance and correctness of individual simulation engines as they change 2556 -over time and (3) to test that changes to an HPC system do not cause 2557 -performance or correctness regressions in simulation engines. The framework 2558 -currently supports the simulation engines Arbor, NEURON, and CoreNeuron, while 2559 -allowing other simulation engines to be added.</span></p> 2560 - 2561 -<p class=MsoNormal></p> 2562 - 2563 -<p class=MsoNormal><span lang=en-DE>Nutil</span></p> 2564 - 2565 -<p class=MsoNormal><span lang=en-DE>Nutil is a pre- and post-processing toolbox 2566 -that enables analysis of large collections of histological images of rodent 2567 -brain sections. The software is open source and has both a graphical user 2568 -interface for specifying the input and output parameters and a command-line 2569 -execution option for batch processing. Nutil includes a transformation tool for 2570 -automated scaling, rotation, mirroring and renaming of image files, a file 2571 -format converter, a simple resize tool and a post-processing method for 2572 -quantifying and localising labelled features based on a reference atlas of the 2573 -brain (mouse or rat). The quantification method requires input from customised 2574 -brain atlas maps generated with the QuickNII software, and segmentations 2575 -generated with ilastik or another image analysis tool. The output from Nutil 2576 -include csv reports, 3D point cloud coordinate files and atlas map images 2577 -superimposed with colour-coded objects.</span></p> 2578 - 2579 -<h2></h2> 2580 - 2581 -<h2><a name="_Toc138932351"><span lang=en-DE>ODE-toolbox</span></a></h2> 2582 - 2583 -<p class=MsoNormal><span lang=en-DE>ODE-toolbox is a Python package that 2584 -assists in solver benchmarking, and recommends solvers on the basis of a set of 2585 -user-configurable heuristics. For all dynamical equations that admit an 2586 -analytic solution, ODE-toolbox generates propagator matrices that allow the 2587 -solution to be calculated at machine precision. For all others, first-order 2588 -update expressions are returned based on the Jacobian matrix. In addition to 2589 -continuous dynamics, discrete events can be used to model instantaneous changes 2590 -in system state, such as a neuronal action potential. These can be generated by 2591 -the system under test as well as applied as external stimuli, making 2592 -ODE-toolbox particularly well-suited for applications in computational 2593 -neuroscience.</span></p> 2594 - 2595 -<h2></h2> 2596 - 2597 -<h2><a name="_Toc138932352"><span lang=en-DE>openMINDS</span></a></h2> 2598 - 2599 -<p class=MsoNormal><span lang=en-DE>openMINDS is composed of: (i) integrated 2600 -metadata models adoptable by any graph database system (GDBS), (ii) a set of 2601 -libraries of serviceable metadata instances with external resource references 2602 -for local and global knowledge integration, and (iii) supportive tooling for 2603 -handling the metadata models and instances. Moreover, the framework provides 2604 -machine-readable mappings to other standardisation efforts (e.g., schema.org). 2605 -With this, openMINDS is a unique and powerful metadata framework for flexible 2606 -knowledge integration within and beyond any GDBS.</span></p> 2607 - 2608 -<h2></h2> 2609 - 2610 -<h2><a name="_Toc138932353"><span lang=en-DE>openMINDS metadata for TVB-ready 2611 -data</span></a></h2> 2612 - 2613 -<p class=MsoNormal><span lang=en-DE>Jupyter Python notebook with code and 2614 -commentaries for creating openMINDS metadata version 1.0 in JSON-LD format for 2615 -ingestion of TVB-ready data in EBRAINS Knowledge Graph.</span></p> 2616 - 2617 -<h2></h2> 2618 - 2619 -<h2><a name="_Toc138932354"><span lang=en-DE>PCI</span></a></h2> 2620 - 2621 -<p class=MsoNormal><span lang=en-DE>The notebook allows the computation of the 2622 -PCI Lempel-Ziv and PCI state transitions. In order to run the examples, a wake 2623 -and sleep data set needs to be provided in the Python-MNE format.</span></p> 2624 - 2625 -<h2></h2> 2626 - 2627 -<h2><a name="_Toc138932355"><span lang=en-DE>PIPSA</span></a></h2> 2628 - 2629 -<p class=MsoNormal><span lang=en-DE>PIPSA enables the comparison of the 2630 -electrostatic interaction properties of proteins. It permits the classification 2631 -of proteins according to their interaction properties. PIPSA may assist in 2632 -function assignment, the estimation of binding properties and enzyme kinetic 2633 -parameters.</span></p> 2634 - 2635 -<h2></h2> 2636 - 2637 -<h2><a name="_Toc138932356"><span lang=en-DE>PoSCE</span></a></h2> 2638 - 2639 -<p class=MsoNormal><span lang=en-DE>PoSCE is a functional connectivity 2640 -estimator of fMRI time-series. It relies on the Riemannian geometry of 2641 -covariances and integrates prior knowledge of covariance distribution over a 2642 -population.</span></p> 2643 - 2644 -<h2></h2> 2645 - 2646 -<h2><a name="_Toc138932357"><span lang=en-DE>Provenance API</span></a></h2> 2647 - 2648 -<p class=MsoNormal><span lang=en-DE>The EBRAINS Provenance API is a web service 2649 -to facilitate working with computational provenance metadata. Metadata are 2650 -stored in the EBRAINS Knowledge Graph (KG) using openMINDS schemas. The 2651 -Provenance API provides a somewhat simplified interface compared to accessing 2652 -the KG directly and performs checks of metadata consistency. The service covers 2653 -workflows involving simulation, data analysis, visualisation, optimisation, 2654 -data movement and model validation.</span></p> 2655 - 2656 -<h2></h2> 2657 - 2658 -<h2><a name="_Toc138932358"><span lang=en-DE>PyNN</span></a></h2> 2659 - 2660 -<p class=MsoNormal><span lang=en-DE>A model description written with the PyNN 2661 -API and the Python programming language runs on any simulator that PyNN 2662 -supports (currently NEURON, NEST and Brian 2) as well as on the BrainScaleS 2663 -and SpiNNaker neuromorphic hardware systems. PyNN provides a library of 2664 -standard neuron, synapse and synaptic plasticity models, verified to work the 2665 -same on different simulators. PyNN also provides commonly used connectivity 2666 -algorithms (e.g. all-to-all, random, distance-dependent, small-world) but makes 2667 -it easy to provide your own connectivity in a simulator-independent way. PyNN 2668 -transparently supports distributed simulations using MPI.</span></p> 2669 - 2670 -<h2></h2> 2671 - 2672 -<h2><a name="_Toc138932359"><span lang=en-DE>Pyramidal Explorer</span></a></h2> 2673 - 2674 -<p class=MsoNormal><span lang=en-DE>PyramidalExplorer is a tool to 2675 -interactively explore and reveal the detailed organisation of the microanatomy 2676 -of pyramidal neurons with functionally related models. Possible regional 2677 -differences in the pyramidal cell architecture can be interactively discovered 2678 -by combining quantitative morphological information about the structure of the 2679 -cell with implemented functional models. The key contribution of this tool is the 2680 -morpho-functional oriented design, allowing the user to navigate within the 3D 2681 -dataset, filter and perform content-based retrieval operations to find the 2682 -spines that are alike and dissimilar within the neuron, according to particular 2683 -morphological or functional variables.</span></p> 2684 - 2685 -<h2></h2> 2686 - 2687 -<h2><a name="_Toc138932360"><span lang=en-DE>QCAlign software</span></a></h2> 2688 - 2689 -<p class=MsoNormal><span lang=en-DE>The QUINT workflow enables spatial analysis 2690 -of labelling in series of brain sections from mouse and rat based on 2691 -registration to a reference brain atlas. The QCAlign software supports the use 2692 -of QUINT for high-throughput studies by providing information about: 1. The 2693 -quality of the section images used as input to the QUINT workflow. 2. The 2694 -quality of the atlas registration performed in the QUINT workflow. 3. QCAlign 2695 -also makes it easier for the user to explore the atlas hierarchy and decide on 2696 -a customised hierarchy level to use for the investigation</span></p> 2697 - 2698 -<h2></h2> 2699 - 2700 -<h2><a name="_Toc138932361"><span lang=en-DE>QuickNII</span></a></h2> 2701 - 2702 -<p class=MsoNormal><span lang=en-DE>QuickNII is a tool for user-guided affine 2703 -registration (anchoring) of 2D experimental image data, typically high 2704 -resolution microscopic images, to 3D atlas reference space, facilitating data 2705 -integration through standardised coordinate systems. Key features: Generate 2706 -user-defined cut planes through the atlas templates, matching the orientation 2707 -of the cut plane of the 2D experimental image data, as a first step towards 2708 -anchoring of images to the relevant atlas template. Propagate spatial 2709 -transformations across series of sections following anchoring of selected 2710 -images.</span></p> 2711 - 2712 -<h2></h2> 2713 - 2714 -<h2><a name="_Toc138932362"><span lang=en-DE>Quota Manager</span></a></h2> 2715 - 2716 -<p class=MsoNormal><span lang=en-DE>The Quota Manager enables each EBRAINS 2717 -service to manage user quotas for resources EBRAINS users consume in their 2718 -respective services. The goal is to encourage the responsible use of resources. 2719 -It is recommended that all users (except possibly guest accounts) are provided 2720 -with a default quota, and that specific users have the option of receiving 2721 -larger quotas based on their affiliation, role or motivated requests.</span></p> 2722 - 2723 -<h2></h2> 2724 - 2725 -<h2><a name="_Toc138932363"><span lang=en-DE>RateML</span></a></h2> 2726 - 2727 -<p class=MsoNormal><span lang=en-DE>RateML enables users to generate 2728 -whole-brain network models from a succinct declarative description, in which 2729 -the mathematics of the model are described without specifying how their 2730 -simulation should be implemented. RateML builds on NeuroML's Low Entropy Model 2731 -Specification (LEMS), an XML-based language for specifying models of dynamical systems, 2732 -allowing descriptions of neural mass and discretized neural field models, as 2733 -implemented by the TVB simulator. The end user describes their model's 2734 -mathematics once and generates and runs code for different languages, targeting 2735 -both CPUs for fast single simulations and GPUs for parallel ensemble 2736 -simulations.</span></p> 2737 - 2738 -<h2></h2> 2739 - 2740 -<h2><a name="_Toc138932364"><span lang=en-DE>Region-wise CBPP using the Julich 2741 -BrainÊCytoarchitectonic Atlas</span></a></h2> 2742 - 2743 -<p class=MsoNormal><span lang=en-DE>Many studies have been investigating the 2744 -relationships between interindividual variability in brain regions' 2745 -connectivity and behavioural phenotypes, by utilising connectivity-based 2746 -prediction models. Recently, we demonstrated that an approach based on the 2747 -combination of whole-brain and region-wise CBPP can provide important insight 2748 -into the predictive model, and hence in brain-behaviour relationships, by 2749 -offering interpretable patterns. Here, we applied this approach using the 2750 -Julich Brain Cytoarchitectonic Atlas with the resting-state functional 2751 -connectivity and psychometric variables from the Human Connectome Project 2752 -dataset, illustrating each brain region's predictive power for a range of 2753 -psychometric variables. As a result, a psychometric prediction profile was 2754 -established for each brain region, which can be validated against brain mapping 2755 -literature.</span></p> 2756 - 2757 -<h2></h2> 2758 - 2759 -<h2><a name="_Toc138932365"><span lang=en-DE>RRI Capacity Development Resources</span></a></h2> 2760 - 2761 -<p class=MsoNormal><span lang=en-DE>A series of training resources developed to 2762 -enable anticipation, critical reflection and public engagement/deliberation of 2763 -societal consequences of brain research and innovation activities. These 2764 -resources were designed primarily for HBP researchers and EBRAINS leadership 2765 -and management, involving EBRAINS data and infrastructure providers. However, 2766 -they are also useful for engaging the wider public with RRI. The resources are 2767 -based on the legacy of over 10 years of research and activities of the ethics 2768 -and society-team in the HBP. They cover important RRI-related topics on 2769 -neuroethics, data governance, dual-use, public engagement and foresight, 2770 -diversity, search integrity etc.</span></p> 2771 - 2772 -<h2></h2> 2773 - 2774 -<h2><a name="_Toc138932366"><span lang=en-DE>rsHRF</span></a></h2> 2775 - 2776 -<p class=MsoNormal><span lang=en-DE>This toolbox is aimed to retrieve the 2777 -onsets of pseudo-events triggering an hemodynamic response from resting state 2778 -fMRI BOLD signals. It is based on point process theory and fits a model to 2779 -retrieve the optimal lag between the events and the HRF onset, as well as the 2780 -HRF shape, using different shape parameters or combinations of basis functions. 2781 -Once the HRF has been retrieved for each voxel/vertex, it can be deconvolved 2782 -from the time series (for example, to improve lag-based connectivity 2783 -estimates), or one can map the shape parameters everywhere in the brain 2784 -(including white matter) and use it as a pathophysiological indicator.</span></p> 2785 - 2786 -<h2></h2> 2787 - 2788 -<h2><a name="_Toc138932367"><span lang=en-DE>RTNeuron</span></a></h2> 2789 - 2790 -<p class=MsoNormal><span lang=en-DE>The main utility of RTNeuron is twofold: 2791 -(i) the interactive visual inspection of structural and functional features of 2792 -the cortical column model and (ii) the generation of high-quality movies and 2793 -images for presentations and publications.RTNeuron provides a C++ library with 2794 -an OpenGL-based rendering backend, a Python wrapping and a Python application 2795 -called rtneuron. RTNeuron is only supported in GNU/Linux systems. However, it 2796 -should also be possible to build it on Windows systems. For OS/X it may be 2797 -quite challenging and require changes in OpenGL-related code to get it working.</span></p> 2798 - 2799 -<h2></h2> 2800 - 2801 -<h2><a name="_Toc138932368"><span lang=en-DE>sbs: Spike-based Sampling</span></a></h2> 2802 - 2803 -<p class=MsoNormal><span lang=en-DE>Spike-based sampling, sbs, is a software 2804 -suite that takes care of calibrating spiking neurons for given target 2805 -distributions and allows the evaluation of these distributions as they are 2806 -produced by stochastic spiking networks.</span></p> 2807 - 2808 -<h2></h2> 2809 - 2810 -<h2><a name="_Toc138932369"><span lang=en-DE>SDA 7</span></a></h2> 2811 - 2812 -<p class=MsoNormal><span lang=en-DE>SDA 7 can be used to carry out Brownian 2813 -dynamics simulations of the diffusional association in a continuum aqueous 2814 -solvent of two solute molecules, e.g., proteins, or of a solute molecule to an 2815 -inorganic surface. SDA 7 can also be used to simulate the diffusion of multiple 2816 -proteins, in dilute or concentrated solutions, e.g., to study the effects of 2817 -macromolecular crowding.</span></p> 2818 - 2819 -<h2></h2> 2820 - 2821 -<h2><a name="_Toc138932370"><span lang=en-DE>Shape & Appearance Modelling</span></a></h2> 2822 - 2823 -<p class=MsoNormal><span lang=en-DE>A framework for automatically learning 2824 -shape and appearance models for medical (and certain other) images. The 2825 -algorithm was developed with the aim of eventually enabling distributed 2826 -privacy-preserving analysis of brain image data, such that shared information 2827 -(shape and appearance basis functions) may be passed across sites, whereas 2828 -latent variables that encode individual images remain secure within each site. 2829 -These latent variables are proposed as features for privacy-preserving data 2830 -mining applications.</span></p> 2831 - 2832 -<h2></h2> 2833 - 2834 -<h2><a name="_Toc138932371"><span lang=en-DE>siibra-api</span></a></h2> 2835 - 2836 -<p class=MsoNormal><span lang=en-DE>siibra-api provides an HTTP wrapper around 2837 -siibra-python, allowing developers to access atlas (meta)data over HTTP 2838 -protocol. Deployed on the EBRAINS infrastructure, developers can access the 2839 -centralised (meta)data on atlases, as provided by siibra-python, regardless of 2840 -the programming language.</span></p> 2841 - 2842 -<h2></h2> 2843 - 2844 -<h2><a name="_Toc138932372"><span lang=en-DE>siibra-explorer</span></a></h2> 2845 - 2846 -<p class=MsoNormal><span lang=en-DE>The interactive atlas viewer 2847 -siibra-explorer allows exploring the different EBRAINS atlases for the human, 2848 -monkey and rodent brains together with a comprehensive set of linked multimodal 2849 -data features. It provides a 3-planar view of a parcellated reference volume 2850 -combined with a rotatable overview of the 3D surface. Several templates can be 2851 -selected to navigate through the brain from MRI-scale to microscopic 2852 -resolution, allowing inspection of terabyte-size image data. Anatomically 2853 -anchored datasets reflecting aspects of cellular and molecular organisation, 2854 -fibres, function and connectivity can be discovered by selecting brain regions 2855 -from parcellations, or zooming and panning the reference brain. siibra-explorer 2856 -also allows annotation of brain locations as points and polygons and is 2857 -extensible via interactive plugins.</span></p> 2858 - 2859 -<h2></h2> 2860 - 2861 -<h2><a name="_Toc138932373"><span lang=en-DE>siibra-python</span></a></h2> 2862 - 2863 -<p class=MsoNormal><span lang=en-DE>siibra-python is a Python client to a brain 2864 -atlas framework that integrates brain parcellations and reference spaces at 2865 -different spatial scales and connects them with a broad range of multimodal 2866 -regional data features. It aims to facilitate programmatic and reproducible 2867 -incorporation of brain parcellations and brain region features from different 2868 -sources into neuroscience workflows. Also, siibra-python provides an easy 2869 -access to data features on the EBRAINS Knowledge Graph in a well-structured 2870 -manner. Users can preconfigure their own data to use within siibra-python.</span></p> 2871 - 2872 -<h2></h2> 2873 - 2874 -<h2><a name="_Toc138932374"><span lang=en-DE>Single Cell Model (Re)builder 2875 -Notebook</span></a></h2> 2876 - 2877 -<p class=MsoNormal><span lang=en-DE>The Single Cell Model (Re)builder Notebook 2878 -is a web application, implemented via a Jupyter Notebook on EBRAINS, which 2879 -allows users to configure the BluePyOpt to re-run an optimisation with their 2880 -own choices for the parameters range. The optimisation jobs are submitted 2881 -through Neuroscience Gateway.</span></p> 2882 - 2883 -<h2></h2> 2884 - 2885 -<h2><a name="_Toc138932375"><span lang=en-DE>Slurm Plugin for Co-allocation of 2886 -Compute and Data Resources</span></a></h2> 2887 - 2888 -<p class=MsoNormal><span lang=en-DE>This Simple linux utility for resource 2889 -management (Slurm) plugin enables the co-allocation of compute and data resources 2890 -on a shared multi-tiered storage cluster by estimating waiting times when the 2891 -high-performance storage (burst buffers) will become available to submitted 2892 -jobs. Based on the current job queue and the estimated waiting time, the plugin 2893 -decides whether scheduling the high-performance or lower-performance storage 2894 -system (parallel file system) benefits the job's turnaround time. The 2895 -estimation depends on additional information the user provides at submission 2896 -time.</span></p> 2897 - 2898 -<h2></h2> 2899 - 2900 -<h2><a name="_Toc138932376"><span lang=en-DE>Snudda</span></a></h2> 2901 - 2902 -<p class=MsoNormal><span lang=en-DE>Snudda ('touch' in Swedish) allows the user 2903 -to set up and generate microcircuits where the connectivity between neurons is 2904 -based on reconstructed neuron morphologies. The touch detection algorithm looks 2905 -for overlaps of axons and dendrites, and places putative synapses where they 2906 -touch. The putative synapses are pruned, removing a fraction to match 2907 -statistics from pairwise connectivity experiments. If needed, Snudda can also 2908 -use probability functions to create realistic microcircuits. The Snudda 2909 -software is written in Python and includes support for supercomputers. It uses 2910 -ipyparallel to parallelise network creation, and NEURON as the backend for 2911 -simulations. Install using pip or by directly downloading.</span></p> 2912 - 2913 -<h2></h2> 2914 - 2915 -<h2><a name="_Toc138932377"><span lang=en-DE>SomaSegmenter</span></a></h2> 2916 - 2917 -<p class=MsoNormal><span lang=en-DE>SomaSegmenter allows neuronal soma 2918 -segmentation in fluorescence microscopy imaging datasets with the use of a 2919 -parametrised version of the U-Net segmentation model, including additional 2920 -features such as residual links and tile-based frame reconstruction.</span></p> 2921 - 2922 -<h2></h2> 2923 - 2924 -<h2><a name="_Toc138932378"><span lang=en-DE>SpiNNaker</span></a></h2> 2925 - 2926 -<p class=MsoNormal><span lang=en-DE>SpiNNaker is a neuromorphic computer with 2927 -over a million low power, small memory ARM cores arranged in chips, connected 2928 -together with a unique brain-like mesh network, and designed to simulate 2929 -networks of spiking point neurons. Software is provided to compile networks 2930 -described with PyNN into running simulations, and to extract and convert 2931 -results into the neo data format, as well as providing support for live 2932 -interaction with running simulations. This allows integration with external 2933 -devices such as real or virtual robotics as well as live simulation 2934 -visualisation. Scripts can be written and executed using Jupyter for 2935 -interactive access.</span></p> 2936 - 2937 -<h2></h2> 2938 - 2939 -<h2><a name="_Toc138932379"><span lang=en-DE>SSB toolkit</span></a></h2> 2940 - 2941 -<p class=MsoNormal><span lang=en-DE>The SSB toolkit is an open-source Python 2942 -library to simulate mathematical models of the signal transduction pathways of 2943 -G-protein coupled receptors (GPCRs). By merging structural macromolecular data 2944 -with systems biology simulations, the framework allows simulation of the signal 2945 -transduction kinetics induced by ligand-GPCR interactions, as well as the consequent 2946 -change of concentration of signalling molecular species, as a function of time 2947 -and ligand concentration. Therefore, this tool allows the possibility to 2948 -investigate the subcellular effects of ligand binding upon receptor activation, 2949 -deepening the understanding of the relationship between the molecular level of 2950 -ligand-target interactions and higher-level cellular and physiological or 2951 -pathological response mechanisms.</span></p> 2952 - 2953 -<h2></h2> 2954 - 2955 -<h2><a name="_Toc138932380"><span lang=en-DE>Subcellular model building and 2956 -calibration tool set</span></a></h2> 2957 - 2958 -<p class=MsoNormal><span lang=en-DE>The toolset includes interoperable modules 2959 -for: model building, calibration (parameter estimation) and model analysis. All 2960 -information needed to perform these tasks (models, experimental calibration 2961 -data and prior assumptions on parameter distributions) are stored in a 2962 -structured, human- and machine-readable file format based on SBtab. The toolset 2963 -enables simulations of the same model in simulators with different 2964 -characteristics, e.g., STEPS, NEURON, MATLAB's Simbiology and R via automatic 2965 -code generation. The parameter estimation can include uncertainty 2966 -quantification and is done by optimisation or Bayesian approaches. Model 2967 -analysis includes global sensitivity analysis and functionality for analysing 2968 -thermodynamic constraints and conserved moieties.</span></p> 2969 - 2970 -<h2></h2> 2971 - 2972 -<h2><a name="_Toc138932381"><span lang=en-DE>Synaptic Events Fitting</span></a></h2> 2973 - 2974 -<p class=MsoNormal><span lang=en-DE>The Synaptic Events Fitting is a web 2975 -application, implemented in a Jupyter Notebook on EBRAINS that allows users to 2976 -fit synaptic events using data and models from the EBRAINS Knowledge Graph 2977 -(KG). Select, download and visualise experimental data from the KG and then choose 2978 -the data to be fitted. A mod file is then selected (local or default) together 2979 -with the corresponding configuration file (including protocol and the name of 2980 -the parameters to be fitted, their initial values and allowed variation range, 2981 -exclusion rules and an optional set of dependencies). The fitting procedure can 2982 -run on Neuroscience Gateway. Fetch the fitting results from the storage of the 2983 -HPC system to the storage of the Collab or to analyse the optimised parameters.</span></p> 2984 - 2985 -<h2></h2> 2986 - 2987 -<h2><a name="_Toc138932382"><span lang=en-DE>Synaptic Plasticity Explorer</span></a></h2> 2988 - 2989 -<p class=MsoNormal><span lang=en-DE>The Synaptic Plasticity Explorer is a web 2990 -application, implemented via a Jupyter Notebook on EBRAINS, which allows to 2991 -configure and test, through an intuitive GUI, different synaptic plasticity 2992 -models and protocols on single cell optimised models, available in the EBRAINS 2993 -Model Catalog. It consists of two tabs: 'Config', where the user can specify 2994 -the plasticity model to use and the synaptic parameters, and 'Sim', where the 2995 -recording location, weight's evolution and number of simulations to run are 2996 -defined. The results are plotted at the end of the simulation and the traces 2997 -are available for download.</span></p> 2998 - 2999 -<h2></h2> 3000 - 3001 -<h2><a name="_Toc138932383"><span lang=en-DE>Synaptic proteome database 3002 -(SQLite)</span></a></h2> 3003 - 3004 -<p class=MsoNormal><span lang=en-DE>Integration of 57 published synaptic 3005 -proteomic datasets reveals a stunningly complex picture involving over 7000 3006 -proteins. Molecular complexes were reconstructed using evidence-based 3007 -protein-protein interaction data available from public databases. The 3008 -constructed molecular interaction network model is embedded into an SQLite 3009 -implementation, allowing queries that generate custom network models based on 3010 -meta-data including species, synaptic compartment, brain region, and method of 3011 -extraction.</span></p> 3012 - 3013 -<h2></h2> 3014 - 3015 -<h2><a name="_Toc138932384"><span lang=en-DE>Synaptome.db</span></a></h2> 3016 - 3017 -<p class=MsoNormal><span lang=en-DE>The Synaptome.db bioconductor package 3018 -contains a local copy of the Synaptic proteome database. On top of this it 3019 -provides a set of utility R functions to query and analyse its content. It 3020 -allows for extraction of information for specific genes and building the 3021 -protein-protein interaction graph for gene sets, synaptic compartments and 3022 -brain regions.</span></p> 3023 - 3024 -<h2></h2> 3025 - 3026 -<h2><a name="_Toc138932385"><span lang=en-DE>Tide</span></a></h2> 3027 - 3028 -<p class=MsoNormal><span lang=en-DE>BlueBrain's Tide provides multi-window, 3029 -multi-user touch interaction on large surfaces Ð think of a giant collaborative 3030 -wall-mounted tablet. Tide is a distributed application that can run on multiple 3031 -machines to power display walls or projection systems of any size. Its user interface 3032 -is designed to offer an intuitive experience on touch walls. It works just as 3033 -well on non-touch-capable installations by using its web interface from any web 3034 -browser.</span></p> 3035 - 3036 -<h2></h2> 3037 - 3038 -<h2><a name="_Toc138932386"><span lang=en-DE>TVB EBRAINS</span></a></h2> 3039 - 3040 -<p class=MsoNormal><span lang=en-DE>TVB EBRAINS is the principal full brain 3041 -network simulation engine in EBRAINS and covers every aspect of realising 3042 -personalised whole-brain simulations on the EBRAINS platform. It consists of 3043 -the simulation tools and adaptors connecting the data, atlas and computing 3044 -services to the rest of the TVB ecosystem and Cloud services available in 3045 -EBRAINS. As such it allows the user to find and fetch relevant datasets through 3046 -the EBRAINS Knowledge Graph and Atlas services, construct the personalised TVB 3047 -models and use the HPC systems to perform parameter exploration, optimisation and 3048 -inference studies. The user can orchestrate the workflow from the Jupyterlab 3049 -interactive computing environment of the EBRAINS Collaboratory or use the 3050 -dedicated web application of TVB.</span></p> 3051 - 3052 -<h2></h2> 3053 - 3054 -<h2><a name="_Toc138932387"><span lang=en-DE>TVB Image Processing Pipeline</span></a></h2> 3055 - 3056 -<p class=MsoNormal><span lang=en-DE>TVB Image Processing Pipeline takes multimodal 3057 -MRI data sets (anatomical, functional and diffusion-weighted MRI) as input and 3058 -generates structural connectomes, region-average fMRI time series, functional 3059 -connectomes, brain surfaces, electrode positions, lead field matrices and atlas 3060 -parcellations as output. The pipeline performs preprocessing and 3061 -distortion-correction on MRI data as well as white matter fibre bundle 3062 -tractography on diffusion data. Outputs are formatted according to two data 3063 -standards: a TVB-ready data set that can be directly used to simulate brain 3064 -network models and the same output in BIDS format.</span></p> 3065 - 3066 -<h2></h2> 3067 - 3068 -<h2><a name="_Toc138932388"><span lang=en-DE>TVB Inversion</span></a></h2> 3069 - 3070 -<p class=MsoNormal><span lang=en-DE>The TVB Inversion package implements the 3071 -machinery required to perform parameter exploration and inference over 3072 -parameters of The Virtual Brain simulator. It implements Simulation Based 3073 -Inference (SBI) which is a Bayesian inference method for complex models, where 3074 -calculation of the likelihood function is either analytically or 3075 -computationally intractable. As such, it allows the user to formulate with 3076 -great expressive power both the model and the inference scenario in terms of 3077 -observed data features and model parameters. Part of the integration with TVB 3078 -entails the option to perform numerous simulations in parallel, which can be 3079 -used for parameter space exploration.</span></p> 3080 - 3081 -<h2></h2> 3082 - 3083 -<h2><a name="_Toc138932389"><span lang=en-DE>TVB Web App</span></a></h2> 3084 - 3085 -<p class=MsoNormal><span lang=en-DE>TVB Web App provides The Virtual Brain 3086 -Simulator as an EBRAINS Cloud Service with an HPC back-end. Scientists can run 3087 -intense personalised brain simulations without having to deploy software. Users 3088 -can access the service with their EBRAINS credentials (single sign on). TVB Web 3089 -App uses private/public key cryptography, sandboxing, and access control to 3090 -protect personalised health information contained in digital human brain twins 3091 -while being processed on HPC. Users can upload their connectomes or use 3092 -TVB-ready image-derived data discoverable via the EBRAINS Knowledge Graph. 3093 -Users can also use containerised processing workflows available on EBRAINS to 3094 -render image raw data into simulation-ready formats.</span></p> 3095 - 3096 -<h2></h2> 3097 - 3098 -<h2><a name="_Toc138932390"><span lang=en-DE>TVB Widgets</span></a></h2> 3099 - 3100 -<p class=MsoNormal><span lang=en-DE>In order to support the usability of 3101 -EBRAINS workflows, TVB-widgets has been developed as a set of modular graphic 3102 -components and software solutions, easy to use in the Collaboratory within the 3103 -JupyterLab. These GUI components are based on and under open source licence, 3104 -supporting open neuroscience and support features like: Setup of models and 3105 -region-specific or cohort simulations. Selection of Data sources and their 3106 -links to models. Querying data from siibra and the EBRAINS Knowledge Graph. 3107 -Deployment and monitoring jobs on HPC resources. Analysis and visualisation. 3108 -Visual workflow builder for configuring and launching TVB simulations.</span></p> 3109 - 3110 -<h2></h2> 3111 - 3112 -<h2><a name="_Toc138932391"><span lang=en-DE>TVB-Multiscale</span></a></h2> 3113 - 3114 -<p class=MsoNormal><span lang=en-DE>TVB-Multiscale is a Python toolbox aimed at 3115 -facilitating the configuration of multiscale brain models and their 3116 -co-simulation with TVB and spiking network simulators (currently NEST, 3117 -NetPyNE (NEURON) and ANNarchy). A multiscale brain model consists of a full 3118 -brain model formulated at the coarse scale of networks of tens up to thousands 3119 -of brain regions, and an additional model of networks of spiking neurons 3120 -describing selected brain regions at a finer scale. The toolbox has a 3121 -user-friendly interface for configuring different kinds of models for 3122 -transforming and exchanging data between the two scales during co-simulation.</span></p> 3123 - 3124 -<h2></h2> 3125 - 3126 -<h2><a name="_Toc138932392"><span lang=en-DE>VIOLA</span></a></h2> 3127 - 3128 -<p class=MsoNormal><span lang=en-DE>VIOLA is an interactive, web-based tool to 3129 -visualise activity data in multiple 2D layers such as the simulation output of 3130 -neuronal networks with 2D geometry. As a reference implementation for a 3131 -developed set of interactive visualisation concepts, the tool combines and 3132 -adapts modern interactive visualisation paradigms, such as coordinated multiple 3133 -views, for massively parallel neurophysiological data. The software allows for 3134 -an explorative and qualitative assessment of the spatiotemporal features of 3135 -neuronal activity, which can be performed prior to a detailed quantitative data 3136 -analysis of specific aspects of the data.</span></p> 3137 - 3138 -<h2></h2> 3139 - 3140 -<h2><a name="_Toc138932393"><span lang=en-DE>Vishnu 1.0</span></a></h2> 3141 - 3142 -<p class=MsoNormal><span lang=en-DE>DC Explorer, Pyramidal Explorer and Clint 3143 -Explorer are the core of an application suite designed to help scientists to 3144 -explore their data. Vishnu 1.0 is a communication framework that allows them to 3145 -interchange information and cooperate in real time. It provides a unique access 3146 -point to the three applications and manages a database with the users' 3147 -datasets. Vishnu was originally designed to integrate data for 3148 -Espina.Whole-brain-scale tools.</span></p> 3149 - 3150 -<h2></h2> 3151 - 3152 -<h2><a name="_Toc138932394"><span lang=en-DE>ViSimpl</span></a></h2> 3153 - 3154 -<p class=MsoNormal><span lang=en-DE>ViSimpl integrates a set of visualisation 3155 -and interaction components that provide a semantic view of brain data with the 3156 -aim of improving its analysis procedures. ViSimpl provides 3D particle-based 3157 -rendering that visualises simulation data with their associated spatial and 3158 -temporal information, enhancing the knowledge extraction process. It also 3159 -provides abstract representations of the time-varying magnitudes, supporting 3160 -different data aggregation and disaggregation operations and giving focus and 3161 -context clues. In addition, ViSimpl provides synchronised playback control of 3162 -the simulation being analysed.</span></p> 3163 - 3164 -<h2></h2> 3165 - 3166 -<h2><a name="_Toc138932395"><span lang=en-DE>VisuAlign</span></a></h2> 3167 - 3168 -<p class=MsoNormal><span lang=en-DE>VisuAlign is a tool for user-guided 3169 -nonlinear registration after QuickNII of 2D experimental image data, typically 3170 -high resolution microscopic images, to 3D atlas reference space, facilitating 3171 -data integration through standardised coordinate systems. Key features: 3172 -Generate user-defined cut planes through the atlas templates, matching the 3173 -orientation of the cut plane of the 2D experimental image data, as a first step 3174 -towards anchoring of images to the relevant atlas template. Propagate spatial 3175 -transformations across series of sections following anchoring of selected 3176 -images.</span></p> 3177 - 3178 -<h2></h2> 3179 - 3180 -<h2><a name="_Toc138932396"><span lang=en-DE>VMetaFlow</span></a></h2> 3181 - 3182 -<p class=MsoNormal><span lang=en-DE>VMetaFlow is an abstraction layer placed 3183 -over existing visual grammars and visualisation declarative languages, 3184 -providing them with interoperability mechanisms. The main contribution of this 3185 -research is to provide a user-friendly system to design visualisation and data 3186 -processing operations that can be interconnected to form data analysis 3187 -workflows. Visualisations and data processes can be saved as cards. Cards and 3188 -workflows can be saved, distributed and reused between users.</span></p> 3189 - 3190 -<h2></h2> 3191 - 3192 -<h2><a name="_Toc138932397"><span lang=en-DE>Voluba</span></a></h2> 3193 - 3194 -<p class=MsoNormal><span lang=en-DE>A common problem in high-resolution brain 3195 -atlasing is spatial anchoring of volumes of interest from imaging experiments 3196 -into the detailed anatomical context of an ultrahigh-resolution reference model 3197 -like BigBrain. The interactive volumetric alignment tool voluba is implemented 3198 -as a web service and allows anchoring of volumetric image data to reference 3199 -volumes at microscopical spatial resolutions. It enables interactive 3200 -manipulation of image position, scale, and orientation, flipping of coordinate 3201 -axes, and entering of anatomical point landmarks in 3D. The resulting 3202 -transformation parameters can, amongst others, be downloaded or used to view 3203 -the anchored image volume in the interactive atlas viewer siibra-explorer.</span></p> 3204 - 3205 -<h2></h2> 3206 - 3207 -<h2><a name="_Toc138932398"><span lang=en-DE>WebAlign</span></a></h2> 3208 - 3209 -<p class=MsoNormal><span lang=en-DE>WebAlign is the web version of QuickNII. 3210 -Presently, it is available as a community app in the Collaboratory. Features 3211 -include: Spatial registration of sectional image data. Generation of customised 3212 -atlas maps for your sectional image data.</span></p> 3213 - 3214 -<h2></h2> 3215 - 3216 -<h2><a name="_Toc138932399"><span lang=en-DE>Webilastik</span></a></h2> 3217 - 3218 -<p class=MsoNormal><span lang=en-DE>webilastik brings the popular machine 3219 -learning-based image analysis tool ilastik from the desktop into the browser. 3220 -Users can perform semantic segmentation tasks on their data in the cloud. 3221 -webilastik runs computations on federated EBRAINS HPC resources and uses 3222 -EBRAINS infrastructure for data access and storage. webilastik makes machine 3223 -learning-based image analysis workflows accessible to users without deep 3224 -knowledge of image analysis and machine learning. webilastik is part of the 3225 -QUINT workflow for extraction, quantification and analysis of features from 3226 -rodent histological images.</span></p> 3227 - 3228 -<h2></h2> 3229 - 3230 -<h2><a name="_Toc138932400"><span lang=en-DE>WebWarp</span></a></h2> 3231 - 3232 -<p class=MsoNormal><span lang=en-DE>WebWarp is the web version of VisuAlign. 3233 -Presently, it is available as a community app in the Collaboratory. Features 3234 -include: Nonlinear refinements of atlas registration by WebAlign of sectional 3235 -image data. Generation of customised atlas maps for your sectional image data.</span></p> 3236 - 3237 -<h2></h2> 3238 - 3239 -<h2><a name="_Toc138932401"><span lang=en-DE>ZetaStitcher</span></a></h2> 3240 - 3241 -<p class=MsoNormal><span lang=en-DE>ZetaStitcher is a Python package designed 3242 -to stitch large volumetric images, such as those produced by Light-Sheet 3243 -Fluorescence Microscopes. It is able to quickly compute the optimal alignment 3244 -of large mosaics of tiles thanks to its ability to perform a sampling along the 3245 -tile depth, i.e., pairwise alignment is computed only at certain depths along 3246 -the thickness of the tile. This greatly reduces the amount of data that needs 3247 -to be read and transferred, thus, making the process much faster. ZetaStitcher 3248 -comes with an API that can be used to programmatically access the aligned 3249 -volume in a virtual fashion as if it were a big NumPy array, without having to 3250 -produce the fused 3D image of the whole sample.Cellular- and subcellular-scale 3251 -tools.</span></p> 3252 - 3253 -<h2></h2> 3254 - 3255 -<h2><a name="_Toc138932402"><span lang=en-DE>TauRAMD</span></a></h2> 3256 - 3257 -<p class=MsoNormal><span lang=en-DE>The TauRAMD technique makes use of RAMD 3258 -simulations to compute relative residence times (or dissociation rates) of 3259 -protein-ligand complexes. In the RAMD method, the egress of a molecule from a 3260 -target receptor is accelerated by the application of an adaptive randomly 3261 -oriented force on the ligand. This enables ligand egress events to be observed 3262 -in short, nanosecond timescale simulations without imposing any bias regarding 3263 -the ligand egress route taken. If coupled to the MD-IFP tool, the TauRAMD 3264 -method can be used to investigate dissociation mechanisms and characterize 3265 -transition states.</span></p> 3266 - 3267 -</div> 3268 - 3269 -</body> 3270 - 3271 -</html> 3272 - 3273 -{{/html}}