Changes for page Tools description
Last modified by marissadiazpier on 2023/06/29 13:09
From version 4.1
edited by marissadiazpier
on 2023/06/29 13:09
on 2023/06/29 13:09
Change comment:
There is no comment for this version
To version 1.1
edited by marissadiazpier
on 2023/06/25 23:08
on 2023/06/25 23:08
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,3269 +1,7 @@ 1 - **HumanBrainProjectToolsDescription**1 +EBRAINS offers an extensive range of data and also provides compute resources (High-performance computing and Neuromorphic hardware). SLU can guide your journey on EBRAINS, show you how you find tools/data/related research projects appropriate for your research, and help you translate your work from the structured formalization process of science to technical requirements on EBRAINS. 2 2 3 - Onthisage youwillfindalistwithabriefdescription ofthe toolswe havefor theHBP toolsBook, if youhave asuggestionor detectanomissionpleasesendyourfeedbackto[[slu@ebrains.eu>>mailto:slu@ebrains.eu]].3 +EBRAINS support teams will help you connect to the community and give you tips for creating your simulations and models. If you are a neuroscientist, professor, or student, or are you interested in brain-related research, simulation, AI, robotics, and brain-inspired hardware check out what EBRAINS has for you. 4 4 5 -{{html}} 6 -<html> 5 +As a researcher, you might find yourself immersed in a continuous flow of information, data, environments, and platforms which offer different tools and aids to fulfill an investigation and publish your results. This new way to doing science helps us advance at a fast pace and reduces efforts on searching data and tests, also allows us to deploy state-of-the-art simulations that can improve the quality of our work, and increase the capacity of neuroscientists for multiscale neural activity modeling of the human brain network. 7 7 8 -<head> 9 -<meta http-equiv=Content-Type content="text/html; charset=windows-1252"> 10 -<meta name=Generator content="Microsoft Word 15 (filtered)"> 11 -<style> 12 -<!-- 13 - /* Font Definitions */ 14 - @font-face 15 - {font-family:"Cambria Math"; 16 - panose-1:2 4 5 3 5 4 6 3 2 4;} 17 -@font-face 18 - {font-family:"Calibri Light"; 19 - panose-1:2 15 3 2 2 2 4 3 2 4;} 20 -@font-face 21 - {font-family:Calibri; 22 - panose-1:2 15 5 2 2 2 4 3 2 4;} 23 - /* Style Definitions */ 24 - p.MsoNormal, li.MsoNormal, div.MsoNormal 25 - {margin-top:0cm; 26 - margin-right:0cm; 27 - margin-bottom:10.0pt; 28 - margin-left:0cm; 29 - line-height:120%; 30 - font-size:10.5pt; 31 - font-family:"Calibri",sans-serif;} 32 -h1 33 - {mso-style-link:"Heading 1 Char"; 34 - margin-top:18.0pt; 35 - margin-right:0cm; 36 - margin-bottom:2.0pt; 37 - margin-left:0cm; 38 - page-break-after:avoid; 39 - font-size:20.0pt; 40 - font-family:"Calibri Light",sans-serif; 41 - color:#538135; 42 - font-weight:normal;} 43 -h2 44 - {mso-style-link:"Heading 2 Char"; 45 - margin-top:4.0pt; 46 - margin-right:0cm; 47 - margin-bottom:0cm; 48 - margin-left:0cm; 49 - margin-bottom:.0001pt; 50 - page-break-after:avoid; 51 - font-size:14.0pt; 52 - font-family:"Calibri Light",sans-serif; 53 - color:#538135; 54 - font-weight:normal;} 55 -h3 56 - {mso-style-link:"Heading 3 Char"; 57 - margin-top:4.0pt; 58 - margin-right:0cm; 59 - margin-bottom:0cm; 60 - margin-left:0cm; 61 - margin-bottom:.0001pt; 62 - page-break-after:avoid; 63 - font-size:12.0pt; 64 - font-family:"Calibri Light",sans-serif; 65 - color:#538135; 66 - font-weight:normal;} 67 -h4 68 - {mso-style-link:"Heading 4 Char"; 69 - margin-top:4.0pt; 70 - margin-right:0cm; 71 - margin-bottom:0cm; 72 - margin-left:0cm; 73 - margin-bottom:.0001pt; 74 - line-height:120%; 75 - page-break-after:avoid; 76 - font-size:11.0pt; 77 - font-family:"Calibri Light",sans-serif; 78 - color:#70AD47; 79 - font-weight:normal;} 80 -h5 81 - {mso-style-link:"Heading 5 Char"; 82 - margin-top:2.0pt; 83 - margin-right:0cm; 84 - margin-bottom:0cm; 85 - margin-left:0cm; 86 - margin-bottom:.0001pt; 87 - line-height:120%; 88 - page-break-after:avoid; 89 - font-size:11.0pt; 90 - font-family:"Calibri Light",sans-serif; 91 - color:#70AD47; 92 - font-weight:normal; 93 - font-style:italic;} 94 -h6 95 - {mso-style-link:"Heading 6 Char"; 96 - margin-top:2.0pt; 97 - margin-right:0cm; 98 - margin-bottom:0cm; 99 - margin-left:0cm; 100 - margin-bottom:.0001pt; 101 - line-height:120%; 102 - page-break-after:avoid; 103 - font-size:10.5pt; 104 - font-family:"Calibri Light",sans-serif; 105 - color:#70AD47; 106 - font-weight:normal;} 107 -p.MsoHeading7, li.MsoHeading7, div.MsoHeading7 108 - {mso-style-link:"Heading 7 Char"; 109 - margin-top:2.0pt; 110 - margin-right:0cm; 111 - margin-bottom:0cm; 112 - margin-left:0cm; 113 - margin-bottom:.0001pt; 114 - line-height:120%; 115 - page-break-after:avoid; 116 - font-size:10.5pt; 117 - font-family:"Calibri Light",sans-serif; 118 - color:#70AD47; 119 - font-weight:bold;} 120 -p.MsoHeading8, li.MsoHeading8, div.MsoHeading8 121 - {mso-style-link:"Heading 8 Char"; 122 - margin-top:2.0pt; 123 - margin-right:0cm; 124 - margin-bottom:0cm; 125 - margin-left:0cm; 126 - margin-bottom:.0001pt; 127 - line-height:120%; 128 - page-break-after:avoid; 129 - font-size:10.0pt; 130 - font-family:"Calibri Light",sans-serif; 131 - color:#70AD47; 132 - font-weight:bold; 133 - font-style:italic;} 134 -p.MsoHeading9, li.MsoHeading9, div.MsoHeading9 135 - {mso-style-link:"Heading 9 Char"; 136 - margin-top:2.0pt; 137 - margin-right:0cm; 138 - margin-bottom:0cm; 139 - margin-left:0cm; 140 - margin-bottom:.0001pt; 141 - line-height:120%; 142 - page-break-after:avoid; 143 - font-size:10.0pt; 144 - font-family:"Calibri Light",sans-serif; 145 - color:#70AD47; 146 - font-style:italic;} 147 -p.MsoToc1, li.MsoToc1, div.MsoToc1 148 - {margin-top:0cm; 149 - margin-right:0cm; 150 - margin-bottom:5.0pt; 151 - margin-left:0cm; 152 - line-height:107%; 153 - font-size:11.0pt; 154 - font-family:"Calibri",sans-serif;} 155 -p.MsoToc2, li.MsoToc2, div.MsoToc2 156 - {margin-top:0cm; 157 - margin-right:0cm; 158 - margin-bottom:5.0pt; 159 - margin-left:10.5pt; 160 - line-height:120%; 161 - font-size:10.5pt; 162 - font-family:"Calibri",sans-serif;} 163 -p.MsoToc3, li.MsoToc3, div.MsoToc3 164 - {margin-top:0cm; 165 - margin-right:0cm; 166 - margin-bottom:5.0pt; 167 - margin-left:22.0pt; 168 - line-height:107%; 169 - font-size:11.0pt; 170 - font-family:"Calibri",sans-serif;} 171 -p.MsoToc4, li.MsoToc4, div.MsoToc4 172 - {margin-top:0cm; 173 - margin-right:0cm; 174 - margin-bottom:5.0pt; 175 - margin-left:33.0pt; 176 - line-height:107%; 177 - font-size:11.0pt; 178 - font-family:"Calibri",sans-serif;} 179 -p.MsoToc5, li.MsoToc5, div.MsoToc5 180 - {margin-top:0cm; 181 - margin-right:0cm; 182 - margin-bottom:5.0pt; 183 - margin-left:44.0pt; 184 - line-height:107%; 185 - font-size:11.0pt; 186 - font-family:"Calibri",sans-serif;} 187 -p.MsoToc6, li.MsoToc6, div.MsoToc6 188 - {margin-top:0cm; 189 - margin-right:0cm; 190 - margin-bottom:5.0pt; 191 - margin-left:55.0pt; 192 - line-height:107%; 193 - font-size:11.0pt; 194 - font-family:"Calibri",sans-serif;} 195 -p.MsoToc7, li.MsoToc7, div.MsoToc7 196 - {margin-top:0cm; 197 - margin-right:0cm; 198 - margin-bottom:5.0pt; 199 - margin-left:66.0pt; 200 - line-height:107%; 201 - font-size:11.0pt; 202 - font-family:"Calibri",sans-serif;} 203 -p.MsoToc8, li.MsoToc8, div.MsoToc8 204 - {margin-top:0cm; 205 - margin-right:0cm; 206 - margin-bottom:5.0pt; 207 - margin-left:77.0pt; 208 - line-height:107%; 209 - font-size:11.0pt; 210 - font-family:"Calibri",sans-serif;} 211 -p.MsoToc9, li.MsoToc9, div.MsoToc9 212 - {margin-top:0cm; 213 - margin-right:0cm; 214 - margin-bottom:5.0pt; 215 - margin-left:88.0pt; 216 - line-height:107%; 217 - font-size:11.0pt; 218 - font-family:"Calibri",sans-serif;} 219 -p.MsoCaption, li.MsoCaption, div.MsoCaption 220 - {margin-top:0cm; 221 - margin-right:0cm; 222 - margin-bottom:10.0pt; 223 - margin-left:0cm; 224 - font-size:10.5pt; 225 - font-family:"Calibri",sans-serif; 226 - font-variant:small-caps; 227 - color:#595959; 228 - font-weight:bold;} 229 -p.MsoTitle, li.MsoTitle, div.MsoTitle 230 - {mso-style-link:"Title Char"; 231 - margin:0cm; 232 - margin-bottom:.0001pt; 233 - font-size:48.0pt; 234 - font-family:"Calibri Light",sans-serif; 235 - color:#262626; 236 - letter-spacing:-.75pt;} 237 -p.MsoTitleCxSpFirst, li.MsoTitleCxSpFirst, div.MsoTitleCxSpFirst 238 - {mso-style-link:"Title Char"; 239 - margin:0cm; 240 - margin-bottom:.0001pt; 241 - font-size:48.0pt; 242 - font-family:"Calibri Light",sans-serif; 243 - color:#262626; 244 - letter-spacing:-.75pt;} 245 -p.MsoTitleCxSpMiddle, li.MsoTitleCxSpMiddle, div.MsoTitleCxSpMiddle 246 - {mso-style-link:"Title Char"; 247 - margin:0cm; 248 - margin-bottom:.0001pt; 249 - font-size:48.0pt; 250 - font-family:"Calibri Light",sans-serif; 251 - color:#262626; 252 - letter-spacing:-.75pt;} 253 -p.MsoTitleCxSpLast, li.MsoTitleCxSpLast, div.MsoTitleCxSpLast 254 - {mso-style-link:"Title Char"; 255 - margin:0cm; 256 - margin-bottom:.0001pt; 257 - font-size:48.0pt; 258 - font-family:"Calibri Light",sans-serif; 259 - color:#262626; 260 - letter-spacing:-.75pt;} 261 -p.MsoSubtitle, li.MsoSubtitle, div.MsoSubtitle 262 - {mso-style-link:"Subtitle Char"; 263 - margin-top:0cm; 264 - margin-right:0cm; 265 - margin-bottom:10.0pt; 266 - margin-left:0cm; 267 - font-size:15.0pt; 268 - font-family:"Calibri Light",sans-serif;} 269 -a:link, span.MsoHyperlink 270 - {color:#0563C1; 271 - text-decoration:underline;} 272 -a:visited, span.MsoHyperlinkFollowed 273 - {color:#954F72; 274 - text-decoration:underline;} 275 -em 276 - {color:#70AD47;} 277 -p.MsoNoSpacing, li.MsoNoSpacing, div.MsoNoSpacing 278 - {margin:0cm; 279 - margin-bottom:.0001pt; 280 - font-size:10.5pt; 281 - font-family:"Calibri",sans-serif;} 282 -p.MsoQuote, li.MsoQuote, div.MsoQuote 283 - {mso-style-link:"Quote Char"; 284 - margin-top:8.0pt; 285 - margin-right:36.0pt; 286 - margin-bottom:10.0pt; 287 - margin-left:36.0pt; 288 - text-align:center; 289 - line-height:120%; 290 - font-size:10.5pt; 291 - font-family:"Calibri",sans-serif; 292 - color:#262626; 293 - font-style:italic;} 294 -p.MsoIntenseQuote, li.MsoIntenseQuote, div.MsoIntenseQuote 295 - {mso-style-link:"Intense Quote Char"; 296 - margin-top:8.0pt; 297 - margin-right:36.0pt; 298 - margin-bottom:8.0pt; 299 - margin-left:36.0pt; 300 - text-align:center; 301 - line-height:110%; 302 - font-size:16.0pt; 303 - font-family:"Calibri Light",sans-serif; 304 - color:#70AD47; 305 - font-style:italic;} 306 -span.MsoSubtleEmphasis 307 - {font-style:italic;} 308 -span.MsoIntenseEmphasis 309 - {font-weight:bold; 310 - font-style:italic;} 311 -span.MsoSubtleReference 312 - {font-variant:small-caps; 313 - color:#595959;} 314 -span.MsoIntenseReference 315 - {font-variant:small-caps; 316 - color:#70AD47; 317 - font-weight:bold;} 318 -span.MsoBookTitle 319 - {font-variant:small-caps; 320 - text-transform:none; 321 - letter-spacing:.35pt; 322 - font-weight:bold;} 323 -p.MsoTocHeading, li.MsoTocHeading, div.MsoTocHeading 324 - {margin-top:18.0pt; 325 - margin-right:0cm; 326 - margin-bottom:2.0pt; 327 - margin-left:0cm; 328 - page-break-after:avoid; 329 - font-size:20.0pt; 330 - font-family:"Calibri Light",sans-serif; 331 - color:#538135;} 332 -span.Heading1Char 333 - {mso-style-name:"Heading 1 Char"; 334 - mso-style-link:"Heading 1"; 335 - font-family:"Calibri Light",sans-serif; 336 - color:#538135;} 337 -span.Heading2Char 338 - {mso-style-name:"Heading 2 Char"; 339 - mso-style-link:"Heading 2"; 340 - font-family:"Calibri Light",sans-serif; 341 - color:#538135;} 342 -span.Heading3Char 343 - {mso-style-name:"Heading 3 Char"; 344 - mso-style-link:"Heading 3"; 345 - font-family:"Calibri Light",sans-serif; 346 - color:#538135;} 347 -span.Heading4Char 348 - {mso-style-name:"Heading 4 Char"; 349 - mso-style-link:"Heading 4"; 350 - font-family:"Calibri Light",sans-serif; 351 - color:#70AD47;} 352 -span.Heading5Char 353 - {mso-style-name:"Heading 5 Char"; 354 - mso-style-link:"Heading 5"; 355 - font-family:"Calibri Light",sans-serif; 356 - color:#70AD47; 357 - font-style:italic;} 358 -span.Heading6Char 359 - {mso-style-name:"Heading 6 Char"; 360 - mso-style-link:"Heading 6"; 361 - font-family:"Calibri Light",sans-serif; 362 - color:#70AD47;} 363 -span.Heading7Char 364 - {mso-style-name:"Heading 7 Char"; 365 - mso-style-link:"Heading 7"; 366 - font-family:"Calibri Light",sans-serif; 367 - color:#70AD47; 368 - font-weight:bold;} 369 -span.Heading8Char 370 - {mso-style-name:"Heading 8 Char"; 371 - mso-style-link:"Heading 8"; 372 - font-family:"Calibri Light",sans-serif; 373 - color:#70AD47; 374 - font-weight:bold; 375 - font-style:italic;} 376 -span.Heading9Char 377 - {mso-style-name:"Heading 9 Char"; 378 - mso-style-link:"Heading 9"; 379 - font-family:"Calibri Light",sans-serif; 380 - color:#70AD47; 381 - font-style:italic;} 382 -span.TitleChar 383 - {mso-style-name:"Title Char"; 384 - mso-style-link:Title; 385 - font-family:"Calibri Light",sans-serif; 386 - color:#262626; 387 - letter-spacing:-.75pt;} 388 -span.SubtitleChar 389 - {mso-style-name:"Subtitle Char"; 390 - mso-style-link:Subtitle; 391 - font-family:"Calibri Light",sans-serif;} 392 -span.QuoteChar 393 - {mso-style-name:"Quote Char"; 394 - mso-style-link:Quote; 395 - color:#262626; 396 - font-style:italic;} 397 -span.IntenseQuoteChar 398 - {mso-style-name:"Intense Quote Char"; 399 - mso-style-link:"Intense Quote"; 400 - font-family:"Calibri Light",sans-serif; 401 - color:#70AD47; 402 - font-style:italic;} 403 -.MsoChpDefault 404 - {font-size:10.5pt; 405 - font-family:"Calibri",sans-serif;} 406 -.MsoPapDefault 407 - {margin-bottom:10.0pt; 408 - line-height:120%;} 409 -@page WordSection1 410 - {size:595.3pt 841.9pt; 411 - margin:72.0pt 72.0pt 72.0pt 72.0pt;} 412 -div.WordSection1 413 - {page:WordSection1;} 414 ---> 415 -</style> 416 - 417 -</head> 418 - 419 -<body lang=EN-US link="#0563C1" vlink="#954F72"> 420 - 421 -<div class=WordSection1> 422 - 423 -<p class=MsoTocHeading>HBP Tools list</p> 424 - 425 -<p class=MsoToc2><span lang=en-DE><span class=MsoHyperlink><a 426 -href="#_Toc138932248">AngoraPy<span style='color:windowtext;display:none; 427 -text-decoration:none'>. </span><span 428 -style='color:windowtext;display:none;text-decoration:none'>5</span></a></span></span></p> 429 - 430 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 431 -href="#_Toc138932249">AnonyMI<span style='color:windowtext;display:none; 432 -text-decoration:none'> </span><span 433 -style='color:windowtext;display:none;text-decoration:none'>5</span></a></span></span></p> 434 - 435 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 436 -href="#_Toc138932250">Arbor<span style='color:windowtext;display:none; 437 -text-decoration:none'> </span><span 438 -style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p> 439 - 440 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 441 -href="#_Toc138932251">Arbor GUI<span style='color:windowtext;display:none; 442 -text-decoration:none'> </span><span 443 -style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p> 444 - 445 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 446 -href="#_Toc138932252">Bayesian Virtual Epileptic Patient (BVEP)<span 447 -style='color:windowtext;display:none;text-decoration:none'> </span><span 448 -style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p> 449 - 450 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 451 -href="#_Toc138932253">BIDS Extension Proposal Computational Model 452 -Specifications<span style='color:windowtext;display:none;text-decoration:none'>. </span><span 453 -style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p> 454 - 455 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 456 -href="#_Toc138932254">BioBB<span style='color:windowtext;display:none; 457 -text-decoration:none'>. </span><span 458 -style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p> 459 - 460 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 461 -href="#_Toc138932255">BioExcel-CV19<span style='color:windowtext;display:none; 462 -text-decoration:none'>. </span><span 463 -style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p> 464 - 465 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 466 -href="#_Toc138932256">BioNAR<span style='color:windowtext;display:none; 467 -text-decoration:none'>. </span><span 468 -style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p> 469 - 470 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 471 -href="#_Toc138932257">BlueNaaS-single cell<span style='color:windowtext; 472 -display:none;text-decoration:none'> </span><span 473 -style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p> 474 - 475 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 476 -href="#_Toc138932258">BlueNaaS-subcellular<span style='color:windowtext; 477 -display:none;text-decoration:none'> </span><span 478 -style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p> 479 - 480 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 481 -href="#_Toc138932259">BluePyEfe<span style='color:windowtext;display:none; 482 -text-decoration:none'>. </span><span 483 -style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p> 484 - 485 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 486 -href="#_Toc138932260">BluePyMM<span style='color:windowtext;display:none; 487 -text-decoration:none'>... </span><span 488 -style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p> 489 - 490 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 491 -href="#_Toc138932261">BluePyOpt<span style='color:windowtext;display:none; 492 -text-decoration:none'> </span><span 493 -style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p> 494 - 495 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 496 -href="#_Toc138932262">Brain Cockpit<span style='color:windowtext;display:none; 497 -text-decoration:none'> </span><span 498 -style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p> 499 - 500 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 501 -href="#_Toc138932263">BrainScaleS<span style='color:windowtext;display:none; 502 -text-decoration:none'>. </span><span 503 -style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p> 504 - 505 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 506 -href="#_Toc138932264">Brayns<span style='color:windowtext;display:none; 507 -text-decoration:none'>. </span><span 508 -style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p> 509 - 510 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 511 -href="#_Toc138932265">Brion<span style='color:windowtext;display:none; 512 -text-decoration:none'>. </span><span 513 -style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p> 514 - 515 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 516 -href="#_Toc138932266">BSB<span style='color:windowtext;display:none;text-decoration: 517 -none'>. </span><span 518 -style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p> 519 - 520 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 521 -href="#_Toc138932267">BSP Service Account<span style='color:windowtext; 522 -display:none;text-decoration:none'> </span><span 523 -style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p> 524 - 525 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 526 -href="#_Toc138932268">bsp-usecase-wizard<span style='color:windowtext; 527 -display:none;text-decoration:none'>. </span><span 528 -style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p> 529 - 530 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 531 -href="#_Toc138932269">CGMD Platform<span style='color:windowtext;display:none; 532 -text-decoration:none'>.. </span><span 533 -style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p> 534 - 535 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 536 -href="#_Toc138932270">CNS-ligands<span style='color:windowtext;display:none; 537 -text-decoration:none'>. </span><span 538 -style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p> 539 - 540 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 541 -href="#_Toc138932271">Cobrawap<span style='color:windowtext;display:none; 542 -text-decoration:none'>. </span><span 543 -style='color:windowtext;display:none;text-decoration:none'>10</span></a></span></span></p> 544 - 545 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 546 -href="#_Toc138932272">Collaboratory Bucket service<span style='color:windowtext; 547 -display:none;text-decoration:none'>. </span><span 548 -style='color:windowtext;display:none;text-decoration:none'>10</span></a></span></span></p> 549 - 550 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 551 -href="#_Toc138932273">Collaboratory Drive<span style='color:windowtext; 552 -display:none;text-decoration:none'>. </span><span 553 -style='color:windowtext;display:none;text-decoration:none'>10</span></a></span></span></p> 554 - 555 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 556 -href="#_Toc138932274">Collaboratory IAM<span style='color:windowtext; 557 -display:none;text-decoration:none'>... </span><span 558 -style='color:windowtext;display:none;text-decoration:none'>10</span></a></span></span></p> 559 - 560 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 561 -href="#_Toc138932275">Collaboratory Lab<span style='color:windowtext; 562 -display:none;text-decoration:none'>. </span><span 563 -style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p> 564 - 565 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 566 -href="#_Toc138932276">Collaboratory Office<span style='color:windowtext; 567 -display:none;text-decoration:none'>. </span><span 568 -style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p> 569 - 570 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 571 -href="#_Toc138932277">Collaboratory Wiki<span style='color:windowtext; 572 -display:none;text-decoration:none'> </span><span 573 -style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p> 574 - 575 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 576 -href="#_Toc138932278">CoreNEURON<span style='color:windowtext;display:none; 577 -text-decoration:none'>.. </span><span 578 -style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p> 579 - 580 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 581 -href="#_Toc138932279">CxSystem2<span style='color:windowtext;display:none; 582 -text-decoration:none'>. </span><span 583 -style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p> 584 - 585 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 586 -href="#_Toc138932280">DeepSlice<span style='color:windowtext;display:none; 587 -text-decoration:none'>. </span><span 588 -style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p> 589 - 590 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 591 -href="#_Toc138932281">EBRAINS Ethics & Society Toolkit<span 592 -style='color:windowtext;display:none;text-decoration:none'> </span><span 593 -style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p> 594 - 595 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 596 -href="#_Toc138932282">EBRAINS Image Service<span style='color:windowtext; 597 -display:none;text-decoration:none'>. </span><span 598 -style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p> 599 - 600 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 601 -href="#_Toc138932283">EBRAINS Knowledge Graph<span style='color:windowtext; 602 -display:none;text-decoration:none'>. </span><span 603 -style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p> 604 - 605 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 606 -href="#_Toc138932284">EDI Toolkit<span style='color:windowtext;display:none; 607 -text-decoration:none'> </span><span 608 -style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p> 609 - 610 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 611 -href="#_Toc138932285">eFEL<span style='color:windowtext;display:none; 612 -text-decoration:none'>. </span><span 613 -style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p> 614 - 615 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 616 -href="#_Toc138932286">Electrophysiology Analysis Toolkit<span style='color: 617 -windowtext;display:none;text-decoration:none'> </span><span 618 -style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p> 619 - 620 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 621 -href="#_Toc138932287">FAConstructor<span style='color:windowtext;display:none; 622 -text-decoration:none'> </span><span 623 -style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p> 624 - 625 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 626 -href="#_Toc138932288">fairgraph<span style='color:windowtext;display:none; 627 -text-decoration:none'>. </span><span 628 -style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p> 629 - 630 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 631 -href="#_Toc138932289">Fast sampling with neuromorphic hardware<span 632 -style='color:windowtext;display:none;text-decoration:none'>. </span><span 633 -style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p> 634 - 635 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 636 -href="#_Toc138932290">fastPLI<span style='color:windowtext;display:none; 637 -text-decoration:none'> </span><span 638 -style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p> 639 - 640 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 641 -href="#_Toc138932291">Feed-forward LFP-MEG estimator from mean-field models<span 642 -style='color:windowtext;display:none;text-decoration:none'>. </span><span 643 -style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p> 644 - 645 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 646 -href="#_Toc138932292">FIL<span style='color:windowtext;display:none;text-decoration: 647 -none'>. </span><span 648 -style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p> 649 - 650 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 651 -href="#_Toc138932293">FMRALIGN<span style='color:windowtext;display:none; 652 -text-decoration:none'>.. </span><span 653 -style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p> 654 - 655 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 656 -href="#_Toc138932294">Foa3D<span style='color:windowtext;display:none; 657 -text-decoration:none'>.. </span><span 658 -style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p> 659 - 660 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 661 -href="#_Toc138932295">Frites<span style='color:windowtext;display:none; 662 -text-decoration:none'>. </span><span 663 -style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p> 664 - 665 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 666 -href="#_Toc138932296">gridspeccer<span style='color:windowtext;display:none; 667 -text-decoration:none'> </span><span 668 -style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p> 669 - 670 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 671 -href="#_Toc138932297">Hal-Cgp<span style='color:windowtext;display:none; 672 -text-decoration:none'>. </span><span 673 -style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p> 674 - 675 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 676 -href="#_Toc138932298">Health Data Cloud<span style='color:windowtext; 677 -display:none;text-decoration:none'>. </span><span 678 -style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p> 679 - 680 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 681 -href="#_Toc138932299">Hodgkin-Huxley Neuron Builder<span style='color:windowtext; 682 -display:none;text-decoration:none'> </span><span 683 -style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p> 684 - 685 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 686 -href="#_Toc138932300">HPC Job Proxy<span style='color:windowtext;display:none; 687 -text-decoration:none'>. </span><span 688 -style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p> 689 - 690 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 691 -href="#_Toc138932301">HPC Status Monitor<span style='color:windowtext; 692 -display:none;text-decoration:none'> </span><span 693 -style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p> 694 - 695 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 696 -href="#_Toc138932302">Human Intracerebral EEG Platform<span style='color:windowtext; 697 -display:none;text-decoration:none'>.. </span><span 698 -style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p> 699 - 700 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 701 -href="#_Toc138932303">Hybrid MM/CG Webserver<span style='color:windowtext; 702 -display:none;text-decoration:none'> </span><span 703 -style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p> 704 - 705 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 706 -href="#_Toc138932304">Insite<span style='color:windowtext;display:none; 707 -text-decoration:none'>. </span><span 708 -style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p> 709 - 710 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 711 -href="#_Toc138932305">Interactive Brain Atlas Viewer<span style='color:windowtext; 712 -display:none;text-decoration:none'> </span><span 713 -style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p> 714 - 715 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 716 -href="#_Toc138932306">JuGEx<span style='color:windowtext;display:none; 717 -text-decoration:none'>. </span><span 718 -style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p> 719 - 720 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 721 -href="#_Toc138932307">KnowledgeSpace<span style='color:windowtext;display:none; 722 -text-decoration:none'>. </span><span 723 -style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p> 724 - 725 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 726 -href="#_Toc138932308">L2L<span style='color:windowtext;display:none;text-decoration: 727 -none'>. </span><span 728 -style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p> 729 - 730 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 731 -href="#_Toc138932309">Leveltlab/SpectralSegmentation<span style='color:windowtext; 732 -display:none;text-decoration:none'>. </span><span 733 -style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p> 734 - 735 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 736 -href="#_Toc138932310">LFPy<span style='color:windowtext;display:none; 737 -text-decoration:none'>. </span><span 738 -style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p> 739 - 740 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 741 -href="#_Toc138932311">libsonata<span style='color:windowtext;display:none; 742 -text-decoration:none'>. </span><span 743 -style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p> 744 - 745 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 746 -href="#_Toc138932312">Live Papers<span style='color:windowtext;display:none; 747 -text-decoration:none'>. </span><span 748 -style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p> 749 - 750 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 751 -href="#_Toc138932313">Livre<span style='color:windowtext;display:none; 752 -text-decoration:none'>. </span><span 753 -style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p> 754 - 755 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 756 -href="#_Toc138932314">LocaliZoom<span style='color:windowtext;display:none; 757 -text-decoration:none'>.. </span><span 758 -style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p> 759 - 760 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 761 -href="#_Toc138932315">MD-IFP<span style='color:windowtext;display:none; 762 -text-decoration:none'>. </span><span 763 -style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p> 764 - 765 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 766 -href="#_Toc138932316">MEDUSA<span style='color:windowtext;display:none; 767 -text-decoration:none'>. </span><span 768 -style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p> 769 - 770 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 771 -href="#_Toc138932317">MeshView<span style='color:windowtext;display:none; 772 -text-decoration:none'>.. </span><span 773 -style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p> 774 - 775 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 776 -href="#_Toc138932318">MIP<span style='color:windowtext;display:none;text-decoration: 777 -none'>. </span><span 778 -style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p> 779 - 780 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 781 -href="#_Toc138932319">Model Validation Service<span style='color:windowtext; 782 -display:none;text-decoration:none'>. </span><span 783 -style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p> 784 - 785 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 786 -href="#_Toc138932320">Model Validation Test Suites<span style='color:windowtext; 787 -display:none;text-decoration:none'>. </span><span 788 -style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p> 789 - 790 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 791 -href="#_Toc138932321">MoDEL-CNS<span style='color:windowtext;display:none; 792 -text-decoration:none'>. </span><span 793 -style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p> 794 - 795 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 796 -href="#_Toc138932322">Modular Science<span style='color:windowtext;display: 797 -none;text-decoration:none'>. </span><span 798 -style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p> 799 - 800 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 801 -href="#_Toc138932323">Monsteer<span style='color:windowtext;display:none; 802 -text-decoration:none'> </span><span 803 -style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p> 804 - 805 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 806 -href="#_Toc138932324">MorphIO<span style='color:windowtext;display:none; 807 -text-decoration:none'>.. </span><span 808 -style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p> 809 - 810 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 811 -href="#_Toc138932325">Morphology alignment tool<span style='color:windowtext; 812 -display:none;text-decoration:none'> </span><span 813 -style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p> 814 - 815 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 816 -href="#_Toc138932326">MorphTool<span style='color:windowtext;display:none; 817 -text-decoration:none'> </span><span 818 -style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p> 819 - 820 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 821 -href="#_Toc138932327">Multi-Brain<span style='color:windowtext;display:none; 822 -text-decoration:none'>. </span><span 823 -style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p> 824 - 825 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 826 -href="#_Toc138932328">Multi-Image-OSD<span style='color:windowtext;display: 827 -none;text-decoration:none'>.. </span><span 828 -style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p> 829 - 830 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 831 -href="#_Toc138932329">MUSIC<span style='color:windowtext;display:none; 832 -text-decoration:none'>. </span><span 833 -style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p> 834 - 835 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 836 -href="#_Toc138932330">NEAT<span style='color:windowtext;display:none; 837 -text-decoration:none'>. </span><span 838 -style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p> 839 - 840 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 841 -href="#_Toc138932331">Neo<span style='color:windowtext;display:none;text-decoration: 842 -none'>. </span><span 843 -style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p> 844 - 845 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 846 -href="#_Toc138932332">Neo Viewer<span style='color:windowtext;display:none; 847 -text-decoration:none'> </span><span 848 -style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p> 849 - 850 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 851 -href="#_Toc138932333">NEST Desktop<span style='color:windowtext;display:none; 852 -text-decoration:none'>. </span><span 853 -style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p> 854 - 855 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 856 -href="#_Toc138932334">NEST Simulator<span style='color:windowtext;display:none; 857 -text-decoration:none'> </span><span 858 -style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p> 859 - 860 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 861 -href="#_Toc138932335">NESTML<span style='color:windowtext;display:none; 862 -text-decoration:none'>. </span><span 863 -style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p> 864 - 865 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 866 -href="#_Toc138932336">NetPyNE<span style='color:windowtext;display:none; 867 -text-decoration:none'>. </span><span 868 -style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p> 869 - 870 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 871 -href="#_Toc138932337">NEURO-CONNECT<span style='color:windowtext;display:none; 872 -text-decoration:none'>. </span><span 873 -style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p> 874 - 875 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 876 -href="#_Toc138932338">NeuroFeatureExtract<span style='color:windowtext; 877 -display:none;text-decoration:none'> </span><span 878 -style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p> 879 - 880 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 881 -href="#_Toc138932339">NeurogenPy<span style='color:windowtext;display:none; 882 -text-decoration:none'>. </span><span 883 -style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p> 884 - 885 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 886 -href="#_Toc138932340">NeuroM<span style='color:windowtext;display:none; 887 -text-decoration:none'>... </span><span 888 -style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p> 889 - 890 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 891 -href="#_Toc138932341">Neuromorphic Computing Job Queue<span style='color:windowtext; 892 -display:none;text-decoration:none'>. </span><span 893 -style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p> 894 - 895 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 896 -href="#_Toc138932342">Neuronize v2<span style='color:windowtext;display:none; 897 -text-decoration:none'>. </span><span 898 -style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p> 899 - 900 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 901 -href="#_Toc138932343">NeuroR<span style='color:windowtext;display:none; 902 -text-decoration:none'>. </span><span 903 -style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p> 904 - 905 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 906 -href="#_Toc138932344">Neurorobotics Platform<span style='color:windowtext; 907 -display:none;text-decoration:none'>.. </span><span 908 -style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p> 909 - 910 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 911 -href="#_Toc138932345">Neurorobotics Platform Robot Designer<span 912 -style='color:windowtext;display:none;text-decoration:none'> </span><span 913 -style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p> 914 - 915 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 916 -href="#_Toc138932346">NeuroScheme<span style='color:windowtext;display:none; 917 -text-decoration:none'>. </span><span 918 -style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p> 919 - 920 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 921 -href="#_Toc138932347">NeuroSuites<span style='color:windowtext;display:none; 922 -text-decoration:none'>. </span><span 923 -style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p> 924 - 925 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 926 -href="#_Toc138932348">NeuroTessMesh<span style='color:windowtext;display:none; 927 -text-decoration:none'>. </span><span 928 -style='color:windowtext;display:none;text-decoration:none'>25</span></a></span></span></p> 929 - 930 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 931 -href="#_Toc138932349">NMODL Framework<span style='color:windowtext;display: 932 -none;text-decoration:none'>. </span><span 933 -style='color:windowtext;display:none;text-decoration:none'>25</span></a></span></span></p> 934 - 935 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 936 -href="#_Toc138932350">NSuite<span style='color:windowtext;display:none; 937 -text-decoration:none'>. </span><span 938 -style='color:windowtext;display:none;text-decoration:none'>25</span></a></span></span></p> 939 - 940 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 941 -href="#_Toc138932351">ODE-toolbox<span style='color:windowtext;display:none; 942 -text-decoration:none'>. </span><span 943 -style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> 944 - 945 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 946 -href="#_Toc138932352">openMINDS<span style='color:windowtext;display:none; 947 -text-decoration:none'>. </span><span 948 -style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> 949 - 950 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 951 -href="#_Toc138932353">openMINDS metadata for TVB-ready data<span 952 -style='color:windowtext;display:none;text-decoration:none'>. </span><span 953 -style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> 954 - 955 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 956 -href="#_Toc138932354">PCI<span style='color:windowtext;display:none;text-decoration: 957 -none'> </span><span 958 -style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> 959 - 960 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 961 -href="#_Toc138932355">PIPSA<span style='color:windowtext;display:none; 962 -text-decoration:none'>. </span><span 963 -style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> 964 - 965 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 966 -href="#_Toc138932356">PoSCE<span style='color:windowtext;display:none; 967 -text-decoration:none'>. </span><span 968 -style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> 969 - 970 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 971 -href="#_Toc138932357">Provenance API<span style='color:windowtext;display:none; 972 -text-decoration:none'> </span><span 973 -style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> 974 - 975 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 976 -href="#_Toc138932358">PyNN<span style='color:windowtext;display:none; 977 -text-decoration:none'>.. </span><span 978 -style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p> 979 - 980 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 981 -href="#_Toc138932359">Pyramidal Explorer<span style='color:windowtext; 982 -display:none;text-decoration:none'> </span><span 983 -style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p> 984 - 985 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 986 -href="#_Toc138932360">QCAlign software<span style='color:windowtext;display: 987 -none;text-decoration:none'>. </span><span 988 -style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p> 989 - 990 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 991 -href="#_Toc138932361">QuickNII<span style='color:windowtext;display:none; 992 -text-decoration:none'> </span><span 993 -style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p> 994 - 995 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 996 -href="#_Toc138932362">Quota Manager<span style='color:windowtext;display:none; 997 -text-decoration:none'> </span><span 998 -style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p> 999 - 1000 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1001 -href="#_Toc138932363">RateML<span style='color:windowtext;display:none; 1002 -text-decoration:none'>. </span><span 1003 -style='color:windowtext;display:none;text-decoration:none'>28</span></a></span></span></p> 1004 - 1005 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1006 -href="#_Toc138932364">Region-wise CBPP using the Julich BrainÊCytoarchitectonic 1007 -Atlas<span style='color:windowtext;display:none;text-decoration:none'>. </span><span 1008 -style='color:windowtext;display:none;text-decoration:none'>28</span></a></span></span></p> 1009 - 1010 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1011 -href="#_Toc138932365">RRI Capacity Development Resources<span style='color: 1012 -windowtext;display:none;text-decoration:none'>. </span><span 1013 -style='color:windowtext;display:none;text-decoration:none'>28</span></a></span></span></p> 1014 - 1015 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1016 -href="#_Toc138932366">rsHRF<span style='color:windowtext;display:none; 1017 -text-decoration:none'>. </span><span 1018 -style='color:windowtext;display:none;text-decoration:none'>28</span></a></span></span></p> 1019 - 1020 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1021 -href="#_Toc138932367">RTNeuron<span style='color:windowtext;display:none; 1022 -text-decoration:none'>. </span><span 1023 -style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p> 1024 - 1025 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1026 -href="#_Toc138932368">sbs: Spike-based Sampling<span style='color:windowtext; 1027 -display:none;text-decoration:none'>. </span><span 1028 -style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p> 1029 - 1030 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1031 -href="#_Toc138932369">SDA 7<span style='color:windowtext;display:none; 1032 -text-decoration:none'>. </span><span 1033 -style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p> 1034 - 1035 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1036 -href="#_Toc138932370">Shape & Appearance Modelling<span style='color:windowtext; 1037 -display:none;text-decoration:none'>. </span><span 1038 -style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p> 1039 - 1040 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1041 -href="#_Toc138932371">siibra-api<span style='color:windowtext;display:none; 1042 -text-decoration:none'> </span><span 1043 -style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p> 1044 - 1045 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1046 -href="#_Toc138932372">siibra-explorer<span style='color:windowtext;display: 1047 -none;text-decoration:none'> </span><span 1048 -style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p> 1049 - 1050 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1051 -href="#_Toc138932373">siibra-python<span style='color:windowtext;display:none; 1052 -text-decoration:none'>. </span><span 1053 -style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p> 1054 - 1055 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1056 -href="#_Toc138932374">Single Cell Model (Re)builder Notebook<span 1057 -style='color:windowtext;display:none;text-decoration:none'>. </span><span 1058 -style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p> 1059 - 1060 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1061 -href="#_Toc138932375">Slurm Plugin for Co-allocation of Compute and Data 1062 -Resources<span style='color:windowtext;display:none;text-decoration:none'>. </span><span 1063 -style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p> 1064 - 1065 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1066 -href="#_Toc138932376">Snudda<span style='color:windowtext;display:none; 1067 -text-decoration:none'>. </span><span 1068 -style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p> 1069 - 1070 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1071 -href="#_Toc138932377">SomaSegmenter<span style='color:windowtext;display:none; 1072 -text-decoration:none'> </span><span 1073 -style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p> 1074 - 1075 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1076 -href="#_Toc138932378">SpiNNaker<span style='color:windowtext;display:none; 1077 -text-decoration:none'> </span><span 1078 -style='color:windowtext;display:none;text-decoration:none'>31</span></a></span></span></p> 1079 - 1080 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1081 -href="#_Toc138932379">SSB toolkit<span style='color:windowtext;display:none; 1082 -text-decoration:none'> </span><span 1083 -style='color:windowtext;display:none;text-decoration:none'>31</span></a></span></span></p> 1084 - 1085 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1086 -href="#_Toc138932380">Subcellular model building and calibration tool set<span 1087 -style='color:windowtext;display:none;text-decoration:none'> </span><span 1088 -style='color:windowtext;display:none;text-decoration:none'>31</span></a></span></span></p> 1089 - 1090 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1091 -href="#_Toc138932381">Synaptic Events Fitting<span style='color:windowtext; 1092 -display:none;text-decoration:none'>. </span><span 1093 -style='color:windowtext;display:none;text-decoration:none'>31</span></a></span></span></p> 1094 - 1095 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1096 -href="#_Toc138932382">Synaptic Plasticity Explorer<span style='color:windowtext; 1097 -display:none;text-decoration:none'> </span><span 1098 -style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p> 1099 - 1100 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1101 -href="#_Toc138932383">Synaptic proteome database (SQLite)<span 1102 -style='color:windowtext;display:none;text-decoration:none'> </span><span 1103 -style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p> 1104 - 1105 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1106 -href="#_Toc138932384">Synaptome.db<span style='color:windowtext;display:none; 1107 -text-decoration:none'>. </span><span 1108 -style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p> 1109 - 1110 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1111 -href="#_Toc138932385">Tide<span style='color:windowtext;display:none; 1112 -text-decoration:none'>. </span><span 1113 -style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p> 1114 - 1115 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1116 -href="#_Toc138932386">TVB EBRAINS<span style='color:windowtext;display:none; 1117 -text-decoration:none'>. </span><span 1118 -style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p> 1119 - 1120 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1121 -href="#_Toc138932387">TVB Image Processing Pipeline<span style='color:windowtext; 1122 -display:none;text-decoration:none'>. </span><span 1123 -style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p> 1124 - 1125 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1126 -href="#_Toc138932388">TVB Inversion<span style='color:windowtext;display:none; 1127 -text-decoration:none'>. </span><span 1128 -style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p> 1129 - 1130 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1131 -href="#_Toc138932389">TVB Web App<span style='color:windowtext;display:none; 1132 -text-decoration:none'>. </span><span 1133 -style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p> 1134 - 1135 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1136 -href="#_Toc138932390">TVB Widgets<span style='color:windowtext;display:none; 1137 -text-decoration:none'>. </span><span 1138 -style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p> 1139 - 1140 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1141 -href="#_Toc138932391">TVB-Multiscale<span style='color:windowtext;display:none; 1142 -text-decoration:none'>. </span><span 1143 -style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p> 1144 - 1145 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1146 -href="#_Toc138932392">VIOLA<span style='color:windowtext;display:none; 1147 -text-decoration:none'>. </span><span 1148 -style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p> 1149 - 1150 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1151 -href="#_Toc138932393">Vishnu 1.0<span style='color:windowtext;display:none; 1152 -text-decoration:none'>. </span><span 1153 -style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p> 1154 - 1155 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1156 -href="#_Toc138932394">ViSimpl<span style='color:windowtext;display:none; 1157 -text-decoration:none'> </span><span 1158 -style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p> 1159 - 1160 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1161 -href="#_Toc138932395">VisuAlign<span style='color:windowtext;display:none; 1162 -text-decoration:none'>. </span><span 1163 -style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p> 1164 - 1165 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1166 -href="#_Toc138932396">VMetaFlow<span style='color:windowtext;display:none; 1167 -text-decoration:none'>.. </span><span 1168 -style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p> 1169 - 1170 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1171 -href="#_Toc138932397">Voluba<span style='color:windowtext;display:none; 1172 -text-decoration:none'>. </span><span 1173 -style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p> 1174 - 1175 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1176 -href="#_Toc138932398">WebAlign<span style='color:windowtext;display:none; 1177 -text-decoration:none'>. </span><span 1178 -style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p> 1179 - 1180 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1181 -href="#_Toc138932399">Webilastik<span style='color:windowtext;display:none; 1182 -text-decoration:none'>. </span><span 1183 -style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p> 1184 - 1185 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1186 -href="#_Toc138932400">WebWarp<span style='color:windowtext;display:none; 1187 -text-decoration:none'>. </span><span 1188 -style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p> 1189 - 1190 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1191 -href="#_Toc138932401">ZetaStitcher<span style='color:windowtext;display:none; 1192 -text-decoration:none'> </span><span 1193 -style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p> 1194 - 1195 -<p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a 1196 -href="#_Toc138932402">TauRAMD<span style='color:windowtext;display:none; 1197 -text-decoration:none'>.. </span><span 1198 -style='color:windowtext;display:none;text-decoration:none'>36</span></a></span></span></p> 1199 - 1200 -<p class=MsoNormal><span lang=en-DE> </span></p> 1201 - 1202 -<h2><a name="_Toc138932248"><span lang=en-DE>AngoraPy</span></a></h2> 1203 - 1204 -<p class=MsoNormal><span lang=en-DE>AngoraPy is an open-source Python library 1205 -that helps neuroscientists build and train goal-driven models of the sensorimotor 1206 -system. The toolbox comprises state-of-the-art machine learning techniques 1207 -under the hood of an easy-to-use API. With the help of deep reinforcement 1208 -learning, the connectivity required for solving complex, ecologically valid 1209 -tasks, can be learned autonomously, obviating the need for hand-engineered or 1210 -hypothesis-driven connectivity patterns. With AngoraPy, neuroscientists can 1211 -train custom deep neural networks on custom sensorimotor tasks.</span></p> 1212 - 1213 -<h2></h2> 1214 - 1215 -<h2><a name="_Toc138932249"><span lang=en-DE>AnonyMI</span></a></h2> 1216 - 1217 -<p class=MsoNormal><span lang=en-DE>AnonyMI is an MRI de-identification tool 1218 -that uses 3D surface modelling in order to de-identify MRIs while retaining as 1219 -much geometrical information as possible. It can be run automatically or 1220 -manually, which allows precise tailoring for specific needs. AnonyMI is 1221 -distributed as a plug-in of 3D Slicer, a widely used, open-source, stable and 1222 -reliable image-processing software. It leverages the power of this platform for 1223 -reading and saving images, which makes it applicable on almost any MRI file 1224 -type, including all the most commonly used formats (e.g., DICOM, Nifti, Analyze 1225 -etc.).</span></p> 1226 - 1227 -<h2></h2> 1228 - 1229 -<h2><a name="_Toc138932250"><span lang=en-DE>Arbor</span></a></h2> 1230 - 1231 -<p class=MsoNormal><span lang=en-DE>Arbor is a simulation software library for 1232 -neuron models with complex morphologies Ñ from single cells to large 1233 -distributed networks. Developed entirely inside HBP, it enables running 1234 -large-scale simulations on any HPC, including those available through EBRAINS. 1235 -Arbor provides performance portability for native execution on all HPC 1236 -architectures. Optimized vectorized code is generated for Intel, AMD and ARM 1237 -CPUs, NVIDIA and AMD GPUs, and support will be added for new architectures as 1238 -they become available. Model portability is easier due to an interface for 1239 -model description independent of how Arbor represents models internally. 1240 -Interoperability with other simulation engines is enabled via API for spike 1241 -exchange and the output of voltages, currents and model state.</span></p> 1242 - 1243 -<h2></h2> 1244 - 1245 -<h2><a name="_Toc138932251"><span lang=en-DE>Arbor GUI</span></a></h2> 1246 - 1247 -<p class=MsoNormal><span lang=en-DE>Arbor GUI strives to be self-contained, 1248 -fast and easy to use. Design morphologically detailed cells for simulation in 1249 -Arbor. Load morphologies from SWC .swc, NeuroML .nml, NeuroLucida .asc. Define 1250 -and highlight Arbor regions and locsets. Paint ion dynamics and bio-physical 1251 -properties onto morphologies. Place spike detectors and probes. Export cable 1252 -cells to Arbor's internal format (ACC) for direct simulation. Import cable 1253 -cells in ACC format. This project is under active development and welcomes 1254 -early feedback.</span></p> 1255 - 1256 -<h2></h2> 1257 - 1258 -<h2><a name="_Toc138932252"><span lang=en-DE>Bayesian Virtual Epileptic Patient 1259 -(BVEP)</span></a></h2> 1260 - 1261 -<p class=MsoNormal><span lang=en-DE>BVEP relies on the fusion of structural 1262 -data of individuals, a generative model of epileptiform discharges, and the 1263 -state-of-the-art probabilistic machine learning algorithms. It uses self-tuning 1264 -Monte Carlo sampling algorithm, and the deep neural density estimators for 1265 -reliable and efficient model-based inference at source and sensor levels data. 1266 -The Bayesian framework provides an appropriate patient-specific strategy for 1267 -estimating the extent of epileptogenic and propagation zones of the brain 1268 -regions to improve outcome after epilepsy surgery.</span></p> 1269 - 1270 -<h2></h2> 1271 - 1272 -<h2><a name="_Toc138932253"><span lang=en-DE>BIDS Extension Proposal 1273 -Computational Model Specifications</span></a></h2> 1274 - 1275 -<p class=MsoNormal><span lang=en-DE>A data structure schema for neural network 1276 -computational models that aims to be generically applicable to all kinds of 1277 -neural network simulation software, mathematical models, computational models, 1278 -and data models, but with a focus on dynamic circuit models of brain activity. </span></p> 1279 - 1280 -<h2></h2> 1281 - 1282 -<h2><a name="_Toc138932254"><span lang=en-DE>BioBB</span></a></h2> 1283 - 1284 -<p class=MsoNormal><span lang=en-DE>The BioExcel Building Blocks (BioBB) 1285 -software library is a collection of Python wrappers on top of popular 1286 -biomolecular simulation tools. The library offers a layer of interoperability 1287 -between the wrapped tools, which make them compatible and prepared to be 1288 -directly interconnected to build complex biomolecular workflows. Building and 1289 -sharing complex biomolecular simulation workflows just requires joining and 1290 -connecting BioExcelBuilding Blocks together. Biomolecular simulation workflows 1291 -built using the BioBB library are integrated in the Collaboratory Jupyter lab 1292 -infrastructure, allowing the exploration of dynamics and flexibility of 1293 -proteins related to the Central Nervous Systems.</span></p> 1294 - 1295 -<h2></h2> 1296 - 1297 -<h2><a name="_Toc138932255"><span lang=en-DE>BioExcel-CV19</span></a></h2> 1298 - 1299 -<p class=MsoNormal><span lang=en-DE>BioExcel-CV19 is a platform designed to 1300 -provide web access to atomistic-MD trajectories for macromolecules involved in 1301 -the COVID-19 disease. The project is part of the open access initiatives 1302 -promoted by the world-wide scientific community to share information about 1303 -COVID-19 research. BioExcel-CV19 web server interface presents the resulting 1304 -trajectories, with a set of quality control analyses and system information. 1305 -All data produced by the project is available to download from an associated 1306 -programmatic access API.</span></p> 1307 - 1308 -<h2></h2> 1309 - 1310 -<h2><a name="_Toc138932256"><span lang=en-DE>BioNAR</span></a></h2> 1311 - 1312 -<p class=MsoNormal><span lang=en-DE>BioNAR combines a selection of 1313 -existing R protocols for network analysis with newly designed original 1314 -methodological features to support step-by-step analysis of 1315 -biological/biomedical networks. BioNAR supports a pipeline approach where many 1316 -networks and iterative analyses can be performed. BioNAR helps to achieve a 1317 -number of network analysis goals that are difficult to achieve anywhere else, 1318 -e.g., choose the optimal clustering algorithm from a range of options based on 1319 -independent annotation enrichment</span><span lang=en-DE style='font-family: 1320 -"Times New Roman",serif'> </span><span lang=en-DE>predict a proteins influence 1321 -within and across multiple sub-complexes in the network and estimate the 1322 -co-occurrence or linkage between meta-data at the network level.</span></p> 1323 - 1324 -<h2></h2> 1325 - 1326 -<h2><a name="_Toc138932257"><span lang=en-DE>BlueNaaS-single cell</span></a></h2> 1327 - 1328 -<p class=MsoNormal><span lang=en-DE>BlueNaaS-SingleCell is an open-source web 1329 -application. It enables users to quickly visualize single cell model 1330 -morphologies in 3D or as a dendrogram. Using a simple web user interface, single 1331 -cell simulations can be easily configured and launched, producing voltage 1332 -traces from selected compartments.</span></p> 1333 - 1334 -<h2></h2> 1335 - 1336 -<h2><a name="_Toc138932258"><span lang=en-DE>BlueNaaS-subcellular</span></a></h2> 1337 - 1338 -<p class=MsoNormal><span lang=en-DE>BlueNaaS-Subcellular is a web-based 1339 -environment for creation and simulation of reaction-diffusion models. It allows 1340 -the user to import, combine and simulate existing models derived from other 1341 -parts of the pipeline. It is integrated with a number of solvers for 1342 -reaction-diffusion systems of equations and can represent rule-based systems 1343 -using BioNetGen. Additionally, it supports simulation of spatially distributed 1344 -systems using STEPS (stochastic engine for pathway simulation), providing 1345 -spatial stochastic and deterministic solvers for simulation of reactions and 1346 -diffusion on tetrahedral meshes. It includes some visualisation tools such as a 1347 -geometry viewer, a contact map and a reactivity network graph.</span></p> 1348 - 1349 -<h2></h2> 1350 - 1351 -<h2><a name="_Toc138932259"><span lang=en-DE>BluePyEfe</span></a></h2> 1352 - 1353 -<p class=MsoNormal><span lang=en-DE>BluePyEfe eases the process of reading 1354 -experimental recordings and extracting batches of electrical features from 1355 -these recordings. It combines trace reading functions and features extraction 1356 -functions from the eFel library. BluePyEfe outputs protocols and features files 1357 -in the format used by BluePyOpt for neuron electrical model building.</span></p> 1358 - 1359 -<h2></h2> 1360 - 1361 -<h2><a name="_Toc138932260"><span lang=en-DE>BluePyMM</span></a></h2> 1362 - 1363 -<p class=MsoNormal><span lang=en-DE>When building a network simulation, 1364 -biophysically detailed electrical models (e-models) need to be tested for every 1365 -morphology that is possibly used in the circuit. With current resources, 1366 -e-models are not re-optimised for every morphology in the network. In a process 1367 -called Cell Model Management (MM), we test if an existing e-model matches a 1368 -particular morphology 'well enough'. It takes as input a morphology release, a 1369 -circuit recipe and a set of e-models, then finds all possible (morphology, 1370 -e-model)-combinations (me-combos) based on e-type, m-type, and layer as 1371 -described by the circuit recipe, then calculates the scores for every 1372 -combination. Finally, it writes out the resulting accepted me-combos to a 1373 -database and produces a report with information on the number of matches.</span></p> 1374 - 1375 -<h2></h2> 1376 - 1377 -<h2><a name="_Toc138932261"><span lang=en-DE>BluePyOpt</span></a></h2> 1378 - 1379 -<p class=MsoNormal><span lang=en-DE>BluePyOpt simplifies the task of creating 1380 -and sharing these optimisations, and the associated techniques and knowledge. 1381 -This is achieved by abstracting the optimisation and evaluation tasks into 1382 -various reusable and flexible discrete elements according to established best 1383 -practices. Further, BluePyOpt provides methods for setting up both small- and 1384 -large-scale optimisations on a variety of platforms, ranging from laptops to 1385 -Linux clusters and cloud-based computer infrastructures.</span></p> 1386 - 1387 -<h2></h2> 1388 - 1389 -<h2><a name="_Toc138932262"><span lang=en-DE>Brain Cockpit</span></a></h2> 1390 - 1391 -<p class=MsoNormal><span lang=en-DE>Brain Cockpit is a web app comprising a 1392 -Typescript front-end and a Python back-end. It is meant to help explore large 1393 -surface fMRI datasets projected on surface meshes and alignments computed 1394 -between brains, such as those computed with Fused Unbalanced Gromov-Wasserstein 1395 -(fugw) for Python.</span></p> 1396 - 1397 -<h2></h2> 1398 - 1399 -<h2><a name="_Toc138932263"><span lang=en-DE>BrainScaleS</span></a></h2> 1400 - 1401 -<p class=MsoNormal><span lang=en-DE>Emulate spiking neural networks in 1402 -continuous time on the BrainScaleS analog neuromorphic computing system. Models 1403 -and experiments can be described in Python using the PyNN modelling language, 1404 -or in hxtorch, a PyTorch-based machine-learning-friendly API. The platform can 1405 -be used interactively via the EBRAINS JupyterLab service or EBRAINS HPC</span><span 1406 -lang=en-DE style='font-family:"Times New Roman",serif'> </span><span 1407 -lang=en-DE>in addition, the NMPI web service provides batch-style access. The 1408 -modelling APIs employ common data formats for input and output data, e.g., 1409 -neo.</span></p> 1410 - 1411 -<h2></h2> 1412 - 1413 -<h2><a name="_Toc138932264"><span lang=en-DE>Brayns</span></a></h2> 1414 - 1415 -<p class=MsoNormal><span lang=en-DE>Brayns is a large-scale scientific 1416 -visualization platform based on Intel OSPRAY to perform CPU Ray-tracing and 1417 -uses an extension-plugin architecture. The core provides basic functionalities 1418 -that can be reused and/or extended on plugins, which are independent and can be 1419 -loaded or disabled at start-up. This simplifies the process of adding support 1420 -for new scientific visualization use cases, without compromising the 1421 -reliability of the rest of the software. Brayns counts with braynsService, a 1422 -rendering backend which can be accessed over the internet and streams images to 1423 -connected clients. Already-made plugins include CircuitExplorer, DTI, 1424 -AtlasExplorer, CylindricCamera and MoleculeExplorer.</span></p> 1425 - 1426 -<p class=MsoNormal></p> 1427 - 1428 -<h2><a name="_Toc138932265"><span lang=en-DE>Brion</span></a></h2> 1429 - 1430 -<p class=MsoNormal><span lang=en-DE>Brion is a C++ project for read and write 1431 -access to Blue Brain data structures, including BlueConfig/CircuitConfig, 1432 -Circuit, CompartmentReport, Mesh, Morphology, Synapse and Target files. It also 1433 -offers an interface in Python.</span></p> 1434 - 1435 -<h2></h2> 1436 - 1437 -<h2><a name="_Toc138932266"><span lang=en-DE>BSB</span></a></h2> 1438 - 1439 -<p class=MsoNormal><span lang=en-DE>The BSB reconstructs realistic neural 1440 -circuits by placing and connecting fibres and neurons with detailed 1441 -morphologies or only simplified geometrical features. Configure your model the 1442 -way you need. Interfaces with several simulators (CoreNEURON, Arbor, NEST) 1443 -allow simulation of the reconstructed network and investigation of the 1444 -structure-function-dynamics relationships at different levels of resolution. 1445 -The 'scaffold' design allows an easy model reconfiguration reflecting variants 1446 -across brain regions, animal species and physio-pathological conditions without 1447 -dismounting the basic network structure. The BSB provides effortless parallel 1448 -computing both for the reconstruction and simulation phase.</span></p> 1449 - 1450 -<h2></h2> 1451 - 1452 -<h2><a name="_Toc138932267"><span lang=en-DE>BSP Service Account</span></a></h2> 1453 - 1454 -<p class=MsoNormal><span lang=en-DE>The BSP Service Account is a rest API 1455 -service that allows developers to submit user's jobs on HPC systems and 1456 -retrieve results using the EBRAINS authentication, even if users don't have a 1457 -personal account on the available HPC facilities.</span></p> 1458 - 1459 -<h2></h2> 1460 - 1461 -<h2><a name="_Toc138932268"><span lang=en-DE>bsp-usecase-wizard</span></a></h2> 1462 - 1463 -<p class=MsoNormal><span lang=en-DE>The CLS interactive workflows and use cases 1464 -application guides the users through the resolution of realistic scientific 1465 -problems. They are implemented as either front-end or full stack web 1466 -applications or Python-based Jupyter Notebooks that allow the user to 1467 -interactively build, reconstruct or simulate data-driven brain models and 1468 -perform data analysis visualisation. Web applications are freely accessible and 1469 -only require authentication to EBRAINS when specific actions are required 1470 -(e.g., submitting a simulation job to an HBP HPC system). Jupyter Notebooks are 1471 -cloned to the lab.ebrains.eu platform and require authentication via an EBRAINS 1472 -account.</span></p> 1473 - 1474 -<h2></h2> 1475 - 1476 -<h2><a name="_Toc138932269"><span lang=en-DE>CGMD Platform</span></a></h2> 1477 - 1478 -<p class=MsoNormal><span lang=en-DE>Recent advances in CGMD simulations have 1479 -allowed longer and larger molecular dynamics simulations of biological 1480 -macromolecules and their interactions. The CGMD platform is dedicated to the 1481 -preparation, running, and analysis of CGMD simulations, and built on a 1482 -completely revisited version of the Martini coarsE gRained MembrAne proteIn 1483 -Dynamics (MERMAID) web server. In its current version, the platform expands the 1484 -existing implementation of the Martini force field for membrane proteins to 1485 -also allow the simulation of soluble proteins using the Martini and SIRAH force 1486 -fields. Moreover, it offers an automated protocol for carrying out the 1487 -backmapping of the coarse-grained description of the system into an atomistic 1488 -one.</span></p> 1489 - 1490 -<h2></h2> 1491 - 1492 -<h2><a name="_Toc138932270"><span lang=en-DE>CNS-ligands</span></a></h2> 1493 - 1494 -<p class=MsoNormal><span lang=en-DE>The project is part of the Parameter 1495 -generation and mechanistic studies of neuronal cascades using multi-scale 1496 -molecular simulations of the HBP. CNS conformers are generated using a powerful 1497 -multilevel strategy that combines a low-level (LL) method for sampling the 1498 -conformational minima and high-level (HL) ab initio calculations for estimating 1499 -their relative stability. CNS database presents the results in a graphical user 1500 -interface, displaying small molecule properties, analyses and generated 3D 1501 -conformers. All data produced by the project is available to download.</span></p> 1502 - 1503 -<h2></h2> 1504 - 1505 -<h2><a name="_Toc138932271"><span lang=en-DE>Cobrawap</span></a></h2> 1506 - 1507 -<p class=MsoNormal><span lang=en-DE>Cobrawap is an adaptable and reusable 1508 -software tool to study wave-like activity propagation in the cortex. It allows for 1509 -the integration of heterogeneous data from different measurement techniques and 1510 -simulations through alignment to common wave descriptions. Cobrawap provides an 1511 -extendable collection of processing and analysis methods that can be combined 1512 -and adapted to specific input data and research applications. It enables broad 1513 -and rigorous comparisons of wave characteristics across multiple datasets, 1514 -model calibration and validation applications, and its modular building blocks 1515 -may serve to construct related analysis pipelines.</span></p> 1516 - 1517 -<h2></h2> 1518 - 1519 -<h2><a name="_Toc138932272"><span lang=en-DE>Collaboratory Bucket service</span></a></h2> 1520 - 1521 -<p class=MsoNormal><span lang=en-DE>The Bucket service provides object storage 1522 -to EBRAINS users without them having to request an account on Fenix (the 1523 -EBRAINS infrastructure provider) and storage resources there. This is the 1524 -recommended storage for datasets that are shared by data providers, on the 1525 -condition that these do not contain sensitive personal data. For sharing 1526 -datasets with personal data, users should refer to the Health Data Cloud. The 1527 -Bucket service is better suited for larger files that are usually not edited, 1528 -such as datasets and videos. For Docker images, users should refer to the 1529 -EBRAINS Docker registry. For smaller files and files which are more likely to 1530 -be edited, users should consider the Collaboratory Drive service.</span></p> 1531 - 1532 -<h2></h2> 1533 - 1534 -<h2><a name="_Toc138932273"><span lang=en-DE>Collaboratory Drive</span></a></h2> 1535 - 1536 -<p class=MsoNormal><span lang=en-DE>The Drive service offers users cloud 1537 -storage space for their files in each collab (workspace). The Drive storage is 1538 -mounted in the Collaboratory Lab to provide persistent storage (as opposed to 1539 -the Lab containers which are deleted after a few hours of inactivity). All 1540 -files are under version control. The Drive is intended for smaller files 1541 -(currently limited to 1 GB) that change more often. Users must not save files 1542 -containing personal information in the Drive (i.e. data of living human subjects). 1543 -The Drive is also integrated with the Collaboratory Office service to offer 1544 -easy collaborative editing of Office files online.</span></p> 1545 - 1546 -<h2></h2> 1547 - 1548 -<h2><a name="_Toc138932274"><span lang=en-DE>Collaboratory IAM</span></a></h2> 1549 - 1550 -<p class=MsoNormal><span lang=en-DE>The EBRAINS Collaboratory IAM allows the 1551 -developers of different EBRAINS services to benefit from a single sign-on 1552 -solution. End users will benefit from a seamless experience, whereby they can 1553 -access a specific service and have direct access from it to resources in other 1554 -EBRAINS services without re-authentication. For the developer, it is a good way 1555 -for separating concerns and offloading much of the identification and 1556 -authentication to a central service. The EBRAINS IAM is recognised as an 1557 -identity provider at Fenix supercomputing sites. The IAM service also provides 1558 -three ways of managing groups of users: Units, Groups and Teams.</span></p> 1559 - 1560 -<h2></h2> 1561 - 1562 -<h2><a name="_Toc138932275"><span lang=en-DE>Collaboratory Lab</span></a></h2> 1563 - 1564 -<p class=MsoNormal><span lang=en-DE>The Collaboratory Lab provides EBRAINS 1565 -users with a user-friendly programming environment for reproducible science. 1566 -EBRAINS tools are pre-installed for the user. The latest release is selected by 1567 -default, but users can choose to run an older release to reuse an older 1568 -notebook, or try out the very latest features in the weekly experimental 1569 -deployment. Official releases are produced by EBRAINS every few months. End 1570 -users do not need to build and install the tools, and, more importantly, they 1571 -do not need to resolve dependency conflicts among tools as this has been 1572 -handled for them.</span></p> 1573 - 1574 -<h2></h2> 1575 - 1576 -<h2><a name="_Toc138932276"><span lang=en-DE>Collaboratory Office</span></a></h2> 1577 - 1578 -<p class=MsoNormal><span lang=en-DE>With the Office service, EBRAINS users can 1579 -collaboratively edit Office documents (Word, PowerPoint or Excel) with most of 1580 -the key features of the MS Office tools. It uses the open standard formats 1581 -.docx, .pptx and .xlsx so that files can alternately be edited in the 1582 -Collaboratory Office service and in other compatible tools including the MS 1583 -Office suite.</span></p> 1584 - 1585 -<h2></h2> 1586 - 1587 -<h2><a name="_Toc138932277"><span lang=en-DE>Collaboratory Wiki</span></a></h2> 1588 - 1589 -<p class=MsoNormal><span lang=en-DE>The Wiki service offers the user-friendly 1590 -wiki functionality for publishing web content. It acts as central user 1591 -interface and API to access the other Collaboratory services. EBRAINS 1592 -developers can integrate their services as app which can be instantiated by 1593 -users in their collabs. The Wiki is a good place to create tutorials and 1594 -documentation and it is also the place to publish your work on the internet if 1595 -you choose to do so.</span></p> 1596 - 1597 -<h2></h2> 1598 - 1599 -<h2><a name="_Toc138932278"><span lang=en-DE>CoreNEURON</span></a></h2> 1600 - 1601 -<p class=MsoNormal><span lang=en-DE>In order to adapt NEURON to evolving 1602 -computer architectures, the compute engine of the NEURON simulator was 1603 -extracted and optimised as a library called CoreNEURON. CoreNEURON is a compute 1604 -engine library for the NEURON simulator optimised for both memory usage and 1605 -computational speed on modern CPU/GPU architectures. Some of its key goals are 1606 -to: 1) Efficiently simulate large network models, 2) Support execution on 1607 -accelerators such as GPU, 3) Support optimisations such as vectorisation and 1608 -cache-efficient memory layout.</span></p> 1609 - 1610 -<h2></h2> 1611 - 1612 -<h2><a name="_Toc138932279"><span lang=en-DE>CxSystem2</span></a></h2> 1613 - 1614 -<p class=MsoNormal><span lang=en-DE>CxSystem is a cerebral cortex simulation 1615 -framework, which operates on personal computers. The CxSystem enables easy 1616 -testing and build-up of diverse models at single-cell resolution and it is 1617 -implemented on the top of the Python-based Brain2 simulator. The CxSystem 1618 -interface comprises two csv files - one for anatomy and technical details, the 1619 -other for physiological parameters.</span></p> 1620 - 1621 -<h2></h2> 1622 - 1623 -<h2><a name="_Toc138932280"><span lang=en-DE>DeepSlice</span></a></h2> 1624 - 1625 -<p class=MsoNormal><span lang=en-DE>DeepSlice is a deep neural network that 1626 -aligns histological sections of mouse brain to the Allen Mouse Brain Common 1627 -Coordinate Framework, adjusting for anterior-posterior position, angle, 1628 -rotation and scale. At present, DeepSlice only works with tissue cut in the 1629 -coronal plane, although future versions will be compatible with sagittal and 1630 -horizontal sections.</span></p> 1631 - 1632 -<h2></h2> 1633 - 1634 -<h2><a name="_Toc138932281"><span lang=en-DE>EBRAINS Ethics & Society 1635 -Toolkit</span></a></h2> 1636 - 1637 -<p class=MsoNormal><span lang=en-DE>The aim of the toolkit is to offer 1638 -researchers who carry out cross-disciplinary brain research a possibility to 1639 -engage with ethical and societal issues within brain health and brain disease. 1640 -The user is presented with short introductory texts, scenario-based dilemmas, 1641 -animations and quizzes, all tailored to specific areas of ethics and society in 1642 -a setting of brain research. All exercises are reflection-oriented, with an 1643 -interactive approach to inspire users to incorporate these reflections into 1644 -their own research practices. Moreover, it is possible to gain further 1645 -knowledge by utilising the links for relevant publications, teaching modules 1646 -and the EBRAINS Community Space.</span></p> 1647 - 1648 -<h2></h2> 1649 - 1650 -<h2><a name="_Toc138932282"><span lang=en-DE>EBRAINS Image Service</span></a></h2> 1651 - 1652 -<p class=MsoNormal><span lang=en-DE>The Image Service takes large 2D (and 3D) 1653 -images and preprocesses them to generate small 2D tiles (or 3D chunks). 1654 -Applications consuming image data (viewers or other) can then access regions of 1655 -interest by downloading a few tiles rather than the entire large image. Tiles 1656 -are also generated at coarser resolutions to support zooming out of large 1657 -images. The service supports multiple input image formats. The serving of tiles 1658 -to apps is provided by the Collaboratory Bucket (based on OpenStack Swift 1659 -object storage), which provides significantly higher network bandwidth than 1660 -could be provided by any VM.</span></p> 1661 - 1662 -<h2></h2> 1663 - 1664 -<h2><a name="_Toc138932283"><span lang=en-DE>EBRAINS Knowledge Graph</span></a></h2> 1665 - 1666 -<p class=MsoNormal><span lang=en-DE>The EBRAINS Knowledge Graph (KG) is the 1667 -metadata management system of the EBRAINS Data and Knowledge services. It 1668 -provides fundamental services and tools to make neuroscientific data, models 1669 -and related software FAIR. The KG Editor and API (incl. Python SDKs) allow to 1670 -annotate scientific resources in a semantically correct way. The KG Search 1671 -exposes the research information via an intuitive user interface and makes the 1672 -information publicly available to any user. For advanced users, the KG Query 1673 -Builder and KG Core API provide the necessary means to execute detailed queries 1674 -on the graph database whilst enforcing fine-grained permission control.</span></p> 1675 - 1676 -<h2></h2> 1677 - 1678 -<h2><a name="_Toc138932284"><span lang=en-DE>EDI Toolkit</span></a></h2> 1679 - 1680 -<p class=MsoNormal><span lang=en-DE>The EDI Toolkit supports projects in 1681 -integrating EDI in their research content and as guiding principles for team 1682 -collaboration. It is designed for everyday usage by offering: Basic information 1683 -Guiding questions, templates and tools to design responsible research Quick 1684 -checklists, guidance for suitable structures and standard procedures Measures 1685 -to support EDI-based leadership, fair teams and events</span></p> 1686 - 1687 -<h2></h2> 1688 - 1689 -<h2><a name="_Toc138932285"><span lang=en-DE>eFEL</span></a></h2> 1690 - 1691 -<p class=MsoNormal><span lang=en-DE>eFEL allows neuroscientists to 1692 -automatically extract features from time series data recorded from neurons 1693 -(both in vitro and in silico). Examples include action potential width and 1694 -amplitude in voltage traces recorded during whole-cell patch clamp experiments. 1695 -Users can provide a set of traces and select which features to calculate. The 1696 -library will then extract the requested features and return the values.</span></p> 1697 - 1698 -<h2></h2> 1699 - 1700 -<h2><a name="_Toc138932286"><span lang=en-DE>Electrophysiology Analysis Toolkit</span></a></h2> 1701 - 1702 -<p class=MsoNormal><span lang=en-DE>The Electrophysiology Analysis Toolkit 1703 -(Elephant) is a Python library that provides a modular framework for the 1704 -analysis of experimental and simulated neuronal activity data, such as spike 1705 -trains, local field potentials, and intracellular data. Elephant builds on the 1706 -Neo data model to facilitate usability, enable interoperability, and support 1707 -data from dozens of file formats and network simulation tools. Its analysis 1708 -functions are continuously validated against reference implementations and 1709 -reports in the literature. Visualisations of analysis results are made 1710 -available via the Viziphant companion library. Elephant aims to act as a 1711 -platform for sharing analysis methods across the field.</span></p> 1712 - 1713 -<h2></h2> 1714 - 1715 -<h2><a name="_Toc138932287"><span lang=en-DE>FAConstructor</span></a></h2> 1716 - 1717 -<p class=MsoNormal><span lang=en-DE>FAConstructor allows a simple and effective 1718 -creation of fibre models based on mathematical functions or the manual input of 1719 -data points. Models are visualised during creation and can be interacted with 1720 -by translating them in 3D space.</span></p> 1721 - 1722 -<h2></h2> 1723 - 1724 -<h2><a name="_Toc138932288"><span lang=en-DE>fairgraph</span></a></h2> 1725 - 1726 -<p class=MsoNormal><span lang=en-DE>fairgraph is a Python library for working 1727 -with metadata in the EBRAINS Knowledge Graph (KG), with a particular focus on 1728 -data reuse, although it is also useful in registering and curating metadata. 1729 -The library represents metadata nodes (also known as openMINDS instances) from 1730 -the KG as Python objects. fairgraph supports querying the KG, following links 1731 -in the graph, downloading data and metadata, and creating new nodes in the KG. 1732 -It builds on openMINDS and on the KG Core Python library.</span></p> 1733 - 1734 -<h2></h2> 1735 - 1736 -<h2><a name="_Toc138932289"><span lang=en-DE>Fast sampling with neuromorphic 1737 -hardware</span></a></h2> 1738 - 1739 -<p class=MsoNormal><span lang=en-DE>Compared to conventional neural networks, 1740 -physical model devices offer a fast, efficient, and inherently parallel 1741 -substrate capable of related forms of Markov chain Monte Carlo sampling. This 1742 -software suite enables the use of a neuromorphic chip to replicate the 1743 -properties of quantum systems through spike-based sampling.</span></p> 1744 - 1745 -<h2></h2> 1746 - 1747 -<h2><a name="_Toc138932290"><span lang=en-DE>fastPLI</span></a></h2> 1748 - 1749 -<p class=MsoNormal><span lang=en-DE>fastPLI is an open-source toolbox based on 1750 -Python and C++ for modelling myelinated axons, i.e., nerve fibres, and 1751 -simulating the results of measurement of fibre orientations with a polarisation 1752 -microscope using 3D-PLI. The fastPLI package includes the following modules: 1753 -nerve fibre modelling, simulation, and analysis. All computationally intensive 1754 -calculations are optimised either with Numba on the Python side or with 1755 -multithreading C++ algorithms, which can be accessed via pybind11 inside the 1756 -Python package. Additionally, the simulation module supports the Message 1757 -Passing Interface (MPI) to facilitate the simulation of very large volumes on 1758 -multiple computer nodes.</span></p> 1759 - 1760 -<h2></h2> 1761 - 1762 -<h2><a name="_Toc138932291"><span lang=en-DE>Feed-forward LFP-MEG estimator 1763 -from mean-field models</span></a></h2> 1764 - 1765 -<p class=MsoNormal><span lang=en-DE>This tool was developed to calculate the 1766 -local field potentials (LFP) and magnetoencephalogram (MEG) signals generated 1767 -by a population of neurons described by a mean-field model. The calculation of 1768 -LFP is done via a kernel method based on unitary LFP's (the LFP generated by a 1769 -single axon) which was recently introduced for spiking-networks simulations and 1770 -that we adapt here for mean-field models. The calculation of the magnetic field 1771 -is based on current-dipole and volume-conductor models, where the secondary 1772 -currents (due to the conducting extracellular medium) are estimated using the 1773 -LFP calculated via the kernel method and where the effects of 1774 -medium-inhomogeneities are incorporated.</span></p> 1775 - 1776 -<h2></h2> 1777 - 1778 -<h2><a name="_Toc138932292"><span lang=en-DE>FIL</span></a></h2> 1779 - 1780 -<p class=MsoNormal><span lang=en-DE>This is a scheme for training and applying 1781 -the FIL framework. Some functionality from SPM12 is required for handling 1782 -images. After training, labelling a new image is relatively fast because 1783 -optimising the latent variables can be formulated within a scheme similar to a recurrent 1784 -Residual Network (ResNet).</span></p> 1785 - 1786 -<h2></h2> 1787 - 1788 -<h2><a name="_Toc138932293"><span lang=en-DE>FMRALIGN</span></a></h2> 1789 - 1790 -<p class=MsoNormal><span lang=en-DE>This library is meant to be a light-weight 1791 -Python library that handles functional alignment tasks (also known as 1792 -hyperalignment). It is compatible with and inspired by Nilearn. Alternative 1793 -implementations of these ideas can be found in the pymvpa or brainiak packages.</span></p> 1794 - 1795 -<h2></h2> 1796 - 1797 -<h2><a name="_Toc138932294"><span lang=en-DE>Foa3D</span></a></h2> 1798 - 1799 -<p class=MsoNormal><span lang=en-DE>Foa3D is a tool for multiscale nerve fibre 1800 -enhancement and orientation analysis in high-resolution volume images acquired 1801 -by two-photon scanning or light-sheet fluorescence microscopy, exploiting the 1802 -brain tissue autofluorescence or exogenous myelin stains. Its image processing 1803 -pipeline is built around a 3D Frangi filter that enables the enhancement of 1804 -fibre structures of varying diameters, and the generation of accurate 3D 1805 -orientation maps in both grey and white matter. Foa3D features the computation 1806 -of multiscale orientation distribution functions that facilitate the comparison 1807 -with orientations assessed via 3D-PLI or 3D PS-OCT, and the validation of 1808 -mesoscale dMRI-based connectivity information.</span></p> 1809 - 1810 -<h2></h2> 1811 - 1812 -<h2><a name="_Toc138932295"><span lang=en-DE>Frites</span></a></h2> 1813 - 1814 -<p class=MsoNormal><span lang=en-DE>Frites allows the characterisation of 1815 -task-related cognitive brain networks. Neural correlates of cognitive functions 1816 -can be extracted both at the single brain area (or channel) and network level. 1817 -The toolbox includes time-resolved directed (e.g., Granger causality) and 1818 -undirected (e.g., Mutual Information) functional connectivity metrics. In 1819 -addition, it includes cluster-based and permutation-based statistical methods 1820 -for single-subject and group-level inference.</span></p> 1821 - 1822 -<h2></h2> 1823 - 1824 -<h2><a name="_Toc138932296"><span lang=en-DE>gridspeccer</span></a></h2> 1825 - 1826 -<p class=MsoNormal><span lang=en-DE>Plotting tool to make plotting with many 1827 -subfigures easier, especially for publications. After installation, gridspeccer 1828 -can be used from the command line to create plots.</span></p> 1829 - 1830 -<h2></h2> 1831 - 1832 -<h2><a name="_Toc138932297"><span lang=en-DE>Hal-Cgp</span></a></h2> 1833 - 1834 -<p class=MsoNormal><span lang=en-DE>Hal-Cgp is an extensible pure Python 1835 -library implementing Cgp to represent, mutate and evaluate populations of 1836 -individuals encoding symbolic expressions targeting applications with 1837 -computationally expensive fitness evaluations. It supports the translation from 1838 -a CGP genotype, a two-dimensional Cartesian graph, into the corresponding 1839 -phenotype, a computational graph implementing a particular mathematical expression. 1840 -These computational graphs can be exported as pure Python functions, in a 1841 -NumPy-compatible format, SymPy expressions or PyTorch modules. The library 1842 -implements a mu + lambda evolution strategy to evolve a population of 1843 -individuals to optimise an objective function.</span></p> 1844 - 1845 -<h2></h2> 1846 - 1847 -<h2><a name="_Toc138932298"><span lang=en-DE>Health Data Cloud</span></a></h2> 1848 - 1849 -<p class=MsoNormal><span lang=en-DE>The Health Data Cloud (HDC) provides 1850 -EBRAINS services for sensitive data as a federated research data ecosystem that 1851 -enables scientists across Europe and beyond to collect, process and share 1852 -sensitive data in compliance with EU General Data Protection Regulations 1853 -(GDPR). The HDC is a federation of interoperable nodes. Nodes share a common 1854 -system architecture based on CharitŽ Virtual Research Environment (VRE), 1855 -enabling research consortia to manage and process data, and making data 1856 -discoverable and sharable via the EBRAINS Knowledge Graph.</span></p> 1857 - 1858 -<p class=MsoNormal></p> 1859 - 1860 -<p class=MsoNormal><a name="_Toc138932299"><span class=Heading2Char><span 1861 -lang=en-DE style='font-size:14.0pt;line-height:120%'>Hodgkin-Huxley Neuron 1862 -Builder</span></span></a></p> 1863 - 1864 -<p class=MsoNormal><span lang=en-DE>The Hodgkin-Huxley Neuron Builder is a 1865 -web-application that allows users to interactively go through an entire NEURON 1866 -model building pipeline of individual biophysically detailed cells. 2. Model 1867 -parameter optimisation via HPC systems. 3. In silico experiments using the 1868 -optimised model cell. </span></p> 1869 - 1870 -<h2></h2> 1871 - 1872 -<h2><a name="_Toc138932300"><span lang=en-DE>HPC Job Proxy</span></a></h2> 1873 - 1874 -<p class=MsoNormal><span lang=en-DE>The HPC Job Proxy provides a simplified way 1875 -for EBRAINS service providers to launch jobs on Fenix supercomputers on behalf 1876 -of EBRAINS end users. The proxy offers a wrapper over the Unicore service which 1877 -adds logging, access to stdout/stderr/status, verification of user quota, and 1878 -updating of user quota at the end of the job.</span></p> 1879 - 1880 -<h2></h2> 1881 - 1882 -<h2><a name="_Toc138932301"><span lang=en-DE>HPC Status Monitor</span></a></h2> 1883 - 1884 -<p class=MsoNormal><span lang=en-DE>The HPC Status Monitor allows a real-time 1885 -check of the availability status of the HPC Systems accessible from HBP tools 1886 -and services and provides an instant snapshot of the resource quotas available 1887 -to individual users on each system.</span></p> 1888 - 1889 -<h2></h2> 1890 - 1891 -<h2><a name="_Toc138932302"><span lang=en-DE>Human Intracerebral EEG Platform</span></a></h2> 1892 - 1893 -<p class=MsoNormal><span lang=en-DE>The HIP is an open-source platform designed 1894 -for collecting, managing, analysing and sharing multi-scale iEEG data at an 1895 -international level. Its mission is to assist clinicians and researchers in 1896 -improving research capabilities by simplifying iEEG data analysis and 1897 -interpretation. The HIP integrates different software, modules and services 1898 -necessary for investigating spatio-temporal dynamics of neural processes in a 1899 -secure and optimised fashion. The interface is browser-based and allows 1900 -selecting sets of tools according to specific research needs.</span></p> 1901 - 1902 -<h2></h2> 1903 - 1904 -<h2><a name="_Toc138932303"><span lang=en-DE>Hybrid MM/CG Webserver</span></a></h2> 1905 - 1906 -<p class=MsoNormal><span lang=en-DE>MM/CG simulations help predict ligand poses 1907 -in hGPCRs for pharmacological applications. This approach allows for the 1908 -description of the ligand, the binding cavity and the surrounding water 1909 -molecules at atomistic resolution, while coarse-graining the rest of the 1910 -receptor. The webserver automatises and speeds up the simulation set-up of 1911 -hGPCR/ligand complexes. It also allows for equilibration of the systems, either 1912 -fully automatically or interactively. The results are visualised online, 1913 -helping the user identify possible issues and modify the set-up parameters. 1914 -This framework allows for the automatic preparation and running of hybrid 1915 -molecular dynamics simulations of molecules and their cognate receptors.</span></p> 1916 - 1917 -<h2></h2> 1918 - 1919 -<h2><a name="_Toc138932304"><span lang=en-DE>Insite</span></a></h2> 1920 - 1921 -<p class=MsoNormal><span lang=en-DE>Insite enables users to access data via the 1922 -in transit paradigm for NEST, TVB and Arbor simulations. Compared to the 1923 -traditional approach of offline processing, in transit paradigms allow 1924 -accessing of data while the simulation runs. This is especially useful for 1925 -simulations that produce large amounts of data and are running for a long time. 1926 -In transit allows the user to access only parts of the data and prevents the 1927 -need for storing all data. It also allows the user early insights into the data 1928 -even before the simulation finishes. Insite provides an easy-to-use and 1929 -easy-to-integrate architecture to enable in transit features in other tools.</span></p> 1930 - 1931 -<h2></h2> 1932 - 1933 -<h2><a name="_Toc138932305"><span lang=en-DE>Interactive Brain Atlas Viewer</span></a></h2> 1934 - 1935 -<p class=MsoNormal><span lang=en-DE>The Interactive Brain Atlas Viewer provides 1936 -various kinds of interactive visualisations for multi-modal brain and head 1937 -image data: different parcellations, degrees of transparency and overlays. The 1938 -Viewer provides the following functions and supports data from the following 1939 -sources: EEG, white matter tracts, MRI and PET 3D volumes, 2D slices, 1940 -intracranial electrodes, brain activity, multiscale brain network models, 1941 -supplementary information for brain regions and functional brain networks in 1942 -multiple languages. It comes as a web app, mobile app and desktop app.</span></p> 1943 - 1944 -<h2></h2> 1945 - 1946 -<h2><a name="_Toc138932306"><span lang=en-DE>JuGEx</span></a></h2> 1947 - 1948 -<p class=MsoNormal><span lang=en-DE>Decoding the chain from genes to cognition 1949 -requires detailed insights into how areas with specific gene activities and 1950 -microanatomical architectures contribute to brain function and dysfunction. The 1951 -Allen Human Brain Atlas contains regional gene expression data, while the 1952 -Julich Brain Atlas, which can be accessed via siibra, offers 3D 1953 -cytoarchitectonic maps reflecting the interindividual variability. JuGEx offers 1954 -an integrated framework that combines the analytical benefits of both 1955 -repositories towards a multilevel brain atlas of adult humans. JuGEx is a new 1956 -method for integrating tissue transcriptome and cytoarchitectonic segregation.</span></p> 1957 - 1958 -<h2></h2> 1959 - 1960 -<h2><a name="_Toc138932307"><span lang=en-DE>KnowledgeSpace</span></a></h2> 1961 - 1962 -<p class=MsoNormal><span lang=en-DE>KnowledgeSpace (KS) is a globally-used, 1963 -data-driven encyclopaedia and search engine for the neuroscience community. As 1964 -an encyclopaedia, KS provides curated definitions of brain research concepts 1965 -found in different neuroscience community ontologies, Wikipedia and 1966 -dictionaries. The dataset discovery in KS makes research datasets across many 1967 -large-scale brain initiatives universally accessible and useful. It also 1968 -promotes FAIR data principles that will help data publishers to follow best 1969 -practices for data storage and publication. As more and more data publishers 1970 -follow data standards like OpenMINDS or DATS, the quality of data discovery 1971 -through KS will improve. The related publications are also curated from PubMed 1972 -and linked to the concepts in KS to provide an improved search capability.</span></p> 1973 - 1974 -<h2></h2> 1975 - 1976 -<h2><a name="_Toc138932308"><span lang=en-DE>L2L</span></a></h2> 1977 - 1978 -<p class=MsoNormal><span lang=en-DE>L2L is an easy-to-use and flexible 1979 -framework to perform parameter and hyper-parameter space exploration of 1980 -mathematical models on HPC infrastructure. L2L is an implementation of the 1981 -learning-to-learn concept written in Python. This open-source software allows 1982 -several instances of an optimisation target to be executed with different 1983 -parameters in an massively parallel fashion on HPC. L2L provides a set of 1984 -built-in optimiser algorithms, which make adaptive and efficient exploration of 1985 -parameter spaces possible. Different from other optimisation toolboxes, L2L 1986 -provides maximum flexibility for the way the optimisation target can be 1987 -executed.</span></p> 1988 - 1989 -<h2></h2> 1990 - 1991 -<h2><a name="_Toc138932309"><span lang=en-DE>Leveltlab/SpectralSegmentation</span></a></h2> 1992 - 1993 -<p class=MsoNormal><span lang=en-DE>SpecSeg is a toolbox that segments neurons 1994 -and neurites in chronic calcium imaging datasets based on low-frequency 1995 -cross-spectral power. The pipeline includes a graphical user interface to edit 1996 -the automatically extracted ROIs, to add new ones or delete ROIs by further 1997 -constraining their properties.</span></p> 1998 - 1999 -<h2></h2> 2000 - 2001 -<h2><a name="_Toc138932310"><span lang=en-DE>LFPy</span></a></h2> 2002 - 2003 -<p class=MsoNormal><span lang=en-DE>LFPy is an open-source Python module linking 2004 -simulated neural activity with measurable brain signals. This is done by 2005 -enabling calculation of brain signals from neural activity simulated with 2006 -multi-compartment neuron models (single cells or networks). LFPy can be used to 2007 -simulate brain signals like extracellular action potentials, local field 2008 -potentials (LFP), and in vitro MEA recordings, as well as ECoG, EEG, and MEG 2009 -signals. LFPy is well-integrated with the NEURON simulator and can, through 2010 -LFPykit, also be used with other simulators like Arbor. Through the recently 2011 -developed extensions hybridLFPy and LFPykernels, LFPy can also be used to 2012 -calculate brain signals directly from point-neuron network models or 2013 -population-based models.</span></p> 2014 - 2015 -<h2></h2> 2016 - 2017 -<h2><a name="_Toc138932311"><span lang=en-DE>libsonata</span></a></h2> 2018 - 2019 -<p class=MsoNormal><span lang=en-DE>libsonata allows circuit and simulation 2020 -config loading, node set materialisation, and access to node and edge 2021 -populations in an efficient manner. It is generally a read-only library, but 2022 -support for writing edge indices has been added.</span></p> 2023 - 2024 -<h2></h2> 2025 - 2026 -<h2><a name="_Toc138932312"><span lang=en-DE>Live Papers</span></a></h2> 2027 - 2028 -<p class=MsoNormal><span lang=en-DE>EBRAINS Live Papers are structured and 2029 -interactive documents that complement published scientific articles. Live 2030 -Papers feature integrated tools and services that allow users to download, 2031 -visualise or simulate data, models and results presented in the corresponding 2032 -publications: Build interactive documents to showcase your data and the 2033 -simulation or data analysis code used in your research. Easily link to 2034 -resources in community databases such as EBRAINS, NeuroMorpho.org, ModelDB, and 2035 -Allen Brain Atlas. Embedded, interactive visualisation of electrophysiology 2036 -data and neuronal reconstructions. Launch EBRAINS simulation tools to explore 2037 -single neuron models in your browser. Share live papers pre-publication with 2038 -anonymous reviewers during peer review of your manuscript. Explore already 2039 -published live papers, or develop your own live paper with our authoring tool.</span></p> 2040 - 2041 -<h2></h2> 2042 - 2043 -<h2><a name="_Toc138932313"><span lang=en-DE>Livre</span></a></h2> 2044 - 2045 -<p class=MsoNormal><span lang=en-DE>Livre is an out-of-core, multi-node, 2046 -multi-GPU, OpenGL volume rendering engine to visualise large volumetric 2047 -datasets. It provides the following major features to facilitate rendering of 2048 -large volumetric datasets: Visualisation of pre-processed UVF format volume 2049 -datasets. Real-time voxelisation of different data sources (surface meshes, BBP 2050 -morphologies, local field potentials, etc.) through the use of plugins. 2051 -Multi-node, multi-GPU rendering (only sort-first rendering).</span></p> 2052 - 2053 -<h2></h2> 2054 - 2055 -<h2><a name="_Toc138932314"><span lang=en-DE>LocaliZoom</span></a></h2> 2056 - 2057 -<p class=MsoNormal><span lang=en-DE>Pan-and-zoom type viewer displaying image 2058 -series with overlaid atlas delineations. LocaliZoom is a pan-and-zoom type 2059 -viewer displaying high-resolution image series coupled with overlaid atlas 2060 -delineations. It has three operating modes: Display series with atlas overlay. 2061 -Both linear and nonlinear alignments are supported (created with QuickNII or 2062 -VisuAlign). Create or edit nonlinear alignments. Create markup which can be 2063 -exported as MeshView point clouds or to Excel for further numerical analysis.</span></p> 2064 - 2065 -<h2></h2> 2066 - 2067 -<h2><a name="_Toc138932315"><span lang=en-DE>MD-IFP</span></a></h2> 2068 - 2069 -<p class=MsoNormal><span lang=en-DE>MD-IFP is a python workflow for the 2070 -generation and analysis of protein-ligand interaction fingerprints from 2071 -molecular dynamics trajectories. If used for the analysis of Random 2072 -Acceleration Molecular Dynamics (RAMD) trajectories, it can help to investigate 2073 -dissociation mechanisms by characterising transition states as well as the 2074 -determinants and hot-spots for dissociation. As such, the combined use of 2075 -RAMD and MD-IFP may assist the early stages of drug discovery campaigns for the 2076 -design of new molecules or ligand optimisation.</span></p> 2077 - 2078 -<h2></h2> 2079 - 2080 -<h2><a name="_Toc138932316"><span lang=en-DE>MEDUSA</span></a></h2> 2081 - 2082 -<p class=MsoNormal><span lang=en-DE>Using a spherical meshing technique that 2083 -decomposes each microstructural item into a set of overlapping spheres, the 2084 -phantom construction is made very fast while reliably avoiding the collisions 2085 -between items in the scene. This novel method is applied to the construction of 2086 -human brain white matter microstructural components, namely axonal fibers, 2087 -oligodendrocytes and astrocytes. The algorithm reaches high values of packing 2088 -density and angular dispersion for the axonal fibers, even in the case of 2089 -multiple white matter fiber populations and enables the construction of complex 2090 -biomimicking geometries including myelinated axons, beaded axons and glial 2091 -cells.</span></p> 2092 - 2093 -<h2></h2> 2094 - 2095 -<h2><a name="_Toc138932317"><span lang=en-DE>MeshView</span></a></h2> 2096 - 2097 -<p class=MsoNormal><span lang=en-DE>MeshView is a web application for real-time 2098 -3D display of surface mesh data representing structural parcellations from 2099 -volumetric atlases, such as the Waxholm Space atlas of the Sprague Dawley rat 2100 -brain. Key features: orbiting view with toggleable opaque/transparent/hidden 2101 -parcellation meshes, rendering user-defined cut surface as if meshes were solid 2102 -objects, rendering point-clouds (simple type-in, or loaded from JSON). The 2103 -coordinate system is compatible with QuickNII.</span></p> 2104 - 2105 -<h2></h2> 2106 - 2107 -<h2><a name="_Toc138932318"><span lang=en-DE>MIP</span></a></h2> 2108 - 2109 -<p class=MsoNormal><span lang=en-DE>MIP is an open-source platform enabling 2110 -federated data analysis in a secure environment for centres involved in 2111 -collaborative initiatives. It allows users to initiate or join disease-oriented 2112 -federations with the aim of analysing large-scale distributed clinical 2113 -datasets. For each federation, users can create specific data models based on 2114 -well-accepted common data elements, approved by all participating centres. MIP 2115 -experts assist in creating the data models and facilitate coordination and 2116 -communication among centres. They provide advice and support for data curation, 2117 -harmonisation, and anonymisation, as well as data governance, especially with 2118 -regards to Data Sharing Agreements and general ethical considerations.</span></p> 2119 - 2120 -<h2></h2> 2121 - 2122 -<h2><a name="_Toc138932319"><span lang=en-DE>Model Validation Service</span></a></h2> 2123 - 2124 -<p class=MsoNormal><span lang=en-DE>The HBP/EBRAINS Model Validation Service is 2125 -a set of tools for performing and tracking validation of models with respect to 2126 -experimental data. It consists of a web API, a GUI client (the Model Catalog 2127 -app) and a Python client. The service enables users to store, query, view and 2128 -download: (i) model descriptions/scripts, (ii) validation test definitions and 2129 -(iii) validation results. In a typical workflow, users will find models and 2130 -validation tests by searching the Model Catalog (or upload their own), run the 2131 -tests using the Python client in a Jupyter notebook, with simulations running 2132 -locally or on HPC, and then upload the results.</span></p> 2133 - 2134 -<h2></h2> 2135 - 2136 -<h2><a name="_Toc138932320"><span lang=en-DE>Model Validation Test Suites</span></a></h2> 2137 - 2138 -<p class=MsoNormal><span lang=en-DE>As part of the HBP/EBRAINS model validation 2139 -framework, we provide a Python Software Development Kit (SDK) for model 2140 -validation, which provides: (i) validation test definitions and (ii) interface 2141 -definitions intended to decouple model validation from the details of model 2142 -implementation. This more formal approach to model validation aims to make it 2143 -quicker and easier to compare models, to provide validation test suites for 2144 -models and to develop new validations of existing models. The SDK consists of a 2145 -collection of Python packages all using the sciunit framework: HippoUnit, 2146 -MorphoUnit, NetworkUnit, BasalUnit, CerebUnit, eFELUnit, HippoNetworkUnit.</span></p> 2147 - 2148 -<h2></h2> 2149 - 2150 -<h2><a name="_Toc138932321"><span lang=en-DE>MoDEL-CNS</span></a></h2> 2151 - 2152 -<p class=MsoNormal><span lang=en-DE>MoDEL-CNS is a database and server platform 2153 -designed to provide web access to atomistic MD trajectories for relevant signal 2154 -transduction proteins. The project is part of the service for providing 2155 -molecular simulation-based predictions for systems neurobiology of the HBP. 2156 -MoDEL-CNS expands the MD Extended Library database of atomistic MD trajectories 2157 -with proteins involved in CNS processes, including membrane proteins. MoDEL-CNS 2158 -web server interface presents the resulting trajectories, analyses and protein 2159 -properties. All data produced are available to download.</span></p> 2160 - 2161 -<h2></h2> 2162 - 2163 -<h2><a name="_Toc138932322"><span lang=en-DE>Modular Science</span></a></h2> 2164 - 2165 -<p class=MsoNormal><span lang=en-DE>Modular Science is a middleware that 2166 -provides robust deployment of complex multi-application workflows. It contains 2167 -protocols and interfaces for multi-scale co-simulation workloads on 2168 -high-performance computers and local hardware. It allows for synchronisation 2169 -and coordination of individual components and contains dedicated and 2170 -parallelised modules for data transformations between scales. Modular Science 2171 -offers insight into both the system level and the individual subsystems to 2172 -steer the execution, to monitor resource usage, and system health & status 2173 -with small overheads on performance. Modular Science comes with a number of 2174 -neuroscience co-simulation use cases including NEST-TVB, NEST-Arbor, LFPy and neurorobotics.</span></p> 2175 - 2176 -<h2></h2> 2177 - 2178 -<h2><a name="_Toc138932323"><span lang=en-DE>Monsteer</span></a></h2> 2179 - 2180 -<p class=MsoNormal><span lang=en-DE>Monsteer is a library for interactive 2181 -supercomputing in the neuroscience domain. It facilitates the coupling of 2182 -running simulations (currently NEST) with interactive visualization and 2183 -analysis applications. Monsteer supports streaming of simulation data to 2184 -clients (currently limited to spikes) as well as control of the simulator from 2185 -the clients (also known as computational steering). Monsteer's main components 2186 -are a C++ library, a MUSIC-based application and Python helpers.</span></p> 2187 - 2188 -<h2></h2> 2189 - 2190 -<h2><a name="_Toc138932324"><span lang=en-DE>MorphIO</span></a></h2> 2191 - 2192 -<p class=MsoNormal><span lang=en-DE>MorphIO is a library for reading and 2193 -writing neuron morphology files. It supports the following formats: SWC, ASC 2194 -(also known as neurolucida), H5. There are two APIs: mutable, for creating or 2195 -editing morphologies, and immutable, for read-only operations. Both are 2196 -represented in C++ and Python. Extended formats include glia, mitochondria and 2197 -endoplasmic reticulum.</span></p> 2198 - 2199 -<h2></h2> 2200 - 2201 -<h2><a name="_Toc138932325"><span lang=en-DE>Morphology alignment tool</span></a></h2> 2202 - 2203 -<p class=MsoNormal><span lang=en-DE>Starting with serial sections of a brain in 2204 -which a complete single morphology has been labelled, the pieces of neurite 2205 -(axons/dendrites) in each section are traced with Neurolucida or similar 2206 -microscope-attached software. The slices are then aligned, first using an 2207 -automated algorithm that tries to find matching pieces in adjacent sections 2208 -(Python script), and second using a GUI-driven tool (web-based, JavaScript). 2209 -Finally, the pieces are stitched into a complete neuron (Python script). The 2210 -neuron and tissue volume are then registered to one of the EBRAINS-supported 2211 -reference templates (Python script). The web-based tool can also be used to align 2212 -slices without a neuron being present.</span></p> 2213 - 2214 -<h2></h2> 2215 - 2216 -<h2><a name="_Toc138932326"><span lang=en-DE>MorphTool</span></a></h2> 2217 - 2218 -<p class=MsoNormal><span lang=en-DE>MorphTool is a python toolkit designed for 2219 -editing morphological skeletons of cell reconstructions. It has been developed 2220 -to provide helper programmes that perform simple tasks such as morphology 2221 -diffing, file conversion, soma area calculation, skeleton simplification, 2222 -process resampling, morphology repair and spatial transformations. It allows 2223 -neuroscientists to curate and manipulate morphological reconstruction and 2224 -correct morphological artifacts due to the manual reconstruction process.</span></p> 2225 - 2226 -<h2></h2> 2227 - 2228 -<h2><a name="_Toc138932327"><span lang=en-DE>Multi-Brain</span></a></h2> 2229 - 2230 -<p class=MsoNormal><span lang=en-DE>The Multi-Brain (MB) model has the 2231 -general aim of integrating a number of disparate image analysis components 2232 -within a single unified generative modelling framework. Its objective is to 2233 -achieve diffeomorphic alignment of a wide variety of medical image modalities 2234 -into a common anatomical space. This involves the ability to construct a 2235 -"tissue probability template" from a population of scans 2236 -through group-wise alignment. The MB model has been shown to provide accurate 2237 -modelling of the intensity distributions of different imaging modalities.</span></p> 2238 - 2239 -<h2></h2> 2240 - 2241 -<h2><a name="_Toc138932328"><span lang=en-DE>Multi-Image-OSD</span></a></h2> 2242 - 2243 -<p class=MsoNormal><span lang=en-DE>It has browser-based classic pan and zoom 2244 -capabilities. A collection of images can be displayed as a filmstrip (Filmstrip 2245 -Mode) or as a table (Collection Mode) with adjustable number of rows and 2246 -columns. The tool supports keyboard or/and mouse navigation options, as well as 2247 -touch devices. Utilising the open standard Deep Zoom Image (DZI) format, it is 2248 -able to efficiently visualise very large brain images in the gigapixel range, 2249 -allowing to zoom from common, display-sized overview resolutions down to the 2250 -microscopic resolution without downloading the underlying, very large image 2251 -dataset.</span></p> 2252 - 2253 -<h2></h2> 2254 - 2255 -<h2><a name="_Toc138932329"><span lang=en-DE>MUSIC</span></a></h2> 2256 - 2257 -<p class=MsoNormal><span lang=en-DE>MUSIC is a communication framework in the 2258 -domain of computational neuroscience and neuromorphic computing which enables 2259 -co-simulations, where components of a model are simulated by different 2260 -simulators or hardware. It consists of an API and C++ library which can be 2261 -linked into existing software with minor modifications. MUSIC enables the 2262 -communication of neuronal spike events, continuous values and text messages 2263 -while hiding the complexity of data distribution over ranks, as well as 2264 -scheduling of communication in the face of loops. MUSIC is light-weight with a 2265 -simple API.</span></p> 2266 - 2267 -<h2></h2> 2268 - 2269 -<h2><a name="_Toc138932330"><span lang=en-DE>NEAT</span></a></h2> 2270 - 2271 -<p class=MsoNormal><span lang=en-DE>NEAT allows for the convenient definition 2272 -of morphological neuron models. These models can be simulated through an 2273 -interface with the NEURON simulator or analysed with two classical methods: (i) 2274 -the separation-of-variables method to obtain impedance kernels as a 2275 -superposition of exponentials and (ii) Koch's method to compute impedances with 2276 -linearised ion channels analytically in the frequency domain. NEAT also 2277 -implements the neural evaluation tree framework and an associated C++ simulator 2278 -to analyse sub-unit independence. Finally, NEAT implements a new method to 2279 -simplify morphological neuron models into models with few compartments, which 2280 -can also be simulated with NEURON.</span></p> 2281 - 2282 -<h2></h2> 2283 - 2284 -<h2><a name="_Toc138932331"><span lang=en-DE>Neo</span></a></h2> 2285 - 2286 -<p class=MsoNormal><span lang=en-DE>Neo implements a hierarchical data model 2287 -well adapted to intracellular and extracellular electrophysiology and EEG data. 2288 -It improves interoperability between Python tools for analysing, visualising 2289 -and generating electrophysiology data by providing a common, shared object 2290 -model. It reads a wide range of neurophysiology file formats, including Spike2, 2291 -NeuroExplorer, AlphaOmega, Axon, Blackrock, Plexon, Tdt and Igor Pro and writes 2292 -to open formats such as NWB and NIX. Neo objects behave just like normal NumPy 2293 -arrays, but with additional metadata, checks for dimensional consistency and 2294 -automatic unit conversion. Neo has been endorsed as a community standard by the 2295 -International Neuroinformatics Coordinating Facility (INCF).</span></p> 2296 - 2297 -<h2></h2> 2298 - 2299 -<h2><a name="_Toc138932332"><span lang=en-DE>Neo Viewer</span></a></h2> 2300 - 2301 -<p class=MsoNormal><span lang=en-DE>Neo Viewer consists of a REST-API and a 2302 -Javascript component that can be embedded in any web page. Electrophysiology 2303 -traces can be zoomed, scrolled and saved as images. Individual points can be 2304 -measured off the graphs. Neo Viewer can visualise data from most of the 2305 -widely-used file formats in neurophysiology, including community standards such 2306 -as NWB.</span></p> 2307 - 2308 -<h2></h2> 2309 - 2310 -<h2><a name="_Toc138932333"><span lang=en-DE>NEST Desktop</span></a></h2> 2311 - 2312 -<p class=MsoNormal><span lang=en-DE>NEST Desktop comprises of GUI components 2313 -for creating and configuring network models, running simulations, and 2314 -visualising and analysing simulation results. NEST Desktop allows students to 2315 -explore important concepts in computational neuroscience without the need to 2316 -first learn a simulator control language. This is done by offering a 2317 -server-side NEST simulator, which can also be installed as a package together 2318 -with a web server providing NEST Desktop as visual front-end. Besides local 2319 -installations, distributed setups can be installed, and direct use through 2320 -EBRAINS is possible. NEST Desktop has also been used as a modelling front-end 2321 -of the Neurorobotics Platform.</span></p> 2322 - 2323 -<h2></h2> 2324 - 2325 -<h2><a name="_Toc138932334"><span lang=en-DE>NEST Simulator</span></a></h2> 2326 - 2327 -<p class=MsoNormal><span lang=en-DE>NEST is used in computational neuroscience 2328 -to model and study behaviour of large networks of neurons. The models describe 2329 -single neuron and synapse behaviour and their connections. Different mechanisms 2330 -of plasticity can be used to investigate artificial learning and help to shed 2331 -light on the fundamental principles of how the brain works. NEST offers 2332 -convenient and efficient commands to define and connect large networks, ranging 2333 -from algorithmically determined connections to data-driven connectivity. Create 2334 -connections between neurons using numerous synapse models from STDP to gap 2335 -junctions.</span></p> 2336 - 2337 -<h2></h2> 2338 - 2339 -<h2><a name="_Toc138932335"><span lang=en-DE>NESTML</span></a></h2> 2340 - 2341 -<p class=MsoNormal><span lang=en-DE>NESTML is a domain-specific language for 2342 -neuron and synapse models. These dynamical models can be used in simulations of 2343 -brain activity on several platforms, in particular NEST Simulator. NESTML 2344 -combines an easy to understand, yet powerful syntax with good simulation 2345 -performance by means of code generation (C++ for NEST Simulator), but flexibly 2346 -supports other simulation engines including neuromorphic hardware.</span></p> 2347 - 2348 -<h2></h2> 2349 - 2350 -<h2><a name="_Toc138932336"><span lang=en-DE>NetPyNE</span></a></h2> 2351 - 2352 -<p class=MsoNormal><span lang=en-DE>NetPyNE provides programmatic and graphical 2353 -interfaces to develop data-driven multiscale brain neural circuit models using 2354 -Python and NEURON. Users can define models using a standardised 2355 -JSON-compatible, rule-based, declarative format. Based on these specifications, 2356 -NetPyNE will generate the network in CoreNEURON, enabling users to run 2357 -parallel simulations, optimise and explore network parameters through automated 2358 -batch runs, and use built-in functions for visualisation and analysis (e.g., 2359 -generate connectivity matrices, voltage traces, spike raster plots, local field 2360 -potentials and information theoretic measures). NetPyNE also facilitates model 2361 -sharing by exporting and importing standardised formats: NeuroML and SONATA.</span></p> 2362 - 2363 -<h2></h2> 2364 - 2365 -<h2><a name="_Toc138932337"><span lang=en-DE>NEURO-CONNECT</span></a></h2> 2366 - 2367 -<p class=MsoNormal><span lang=en-DE>The NEURO-CONNECT platform provides 2368 -functions to integrate multimodal brain imaging information in a unifying 2369 -feature space. Thus, Surface Based Morphometry (SBM), Functional Magnetic 2370 -Resonance Imaging (fMRI) and Diffusion Tensor Imaging (DTI) can be combined and 2371 -visualised at the whole-brain scale. Moreover, multiple brain atlases are 2372 -aligned to match research outcomes to neuroanatomical entities. The datasets 2373 -are appended with openMINDS metadata and thus enable integrative data analysis 2374 -and machine learning.</span></p> 2375 - 2376 -<h2></h2> 2377 - 2378 -<h2><a name="_Toc138932338"><span lang=en-DE>NeuroFeatureExtract</span></a></h2> 2379 - 2380 -<p class=MsoNormal><span lang=en-DE>The NeuroFeatureExtract is a web 2381 -application that allows the users to extract an ensemble of 2382 -electrophysiological properties from voltage traces recorded upon electrical 2383 -stimulation of neuronal cells. The main outcome of the application is the 2384 -generation of two files Ð features.json and protocol.json Ð that can be used 2385 -for later analysis and model parameter optimisations via the Hodgkin-Huxley 2386 -Neuron Builder application.</span></p> 2387 - 2388 -<h2></h2> 2389 - 2390 -<h2><a name="_Toc138932339"><span lang=en-DE>NeurogenPy</span></a></h2> 2391 - 2392 -<p class=MsoNormal><span lang=en-DE>NeurogenPy is a Python package for working 2393 -with Bayesian networks. It is focused on the analysis of gene expression data 2394 -and learning of gene regulatory networks, modelled as Bayesian networks. For 2395 -that reason, at the moment, only the Gaussian and fully discrete cases are 2396 -supported. The package provides different structure learning algorithms, 2397 -parameters estimation and input/output formats. For some of them, already 2398 -existing implementations have been used, with bnlearn, pgmpy, networkx and 2399 -igraph being the most relevant used packages. This project has been conceived 2400 -to be included as a plugin in the EBRAINS interactive atlas viewer, but it may 2401 -be used for other purposes.</span></p> 2402 - 2403 -<h2></h2> 2404 - 2405 -<h2><a name="_Toc138932340"><span lang=en-DE>NeuroM</span></a></h2> 2406 - 2407 -<p class=MsoNormal><span lang=en-DE>NeuroM is a Python toolkit for the analysis 2408 -and processing of neuron morphologies. It allows the extraction of various 2409 -information about morphologies, e.g., the segment lengths of a morphology via 2410 -the segment_lengths feature. More than 50 features that can be extracted.</span></p> 2411 - 2412 -<h2></h2> 2413 - 2414 -<h2><a name="_Toc138932341"><span lang=en-DE>Neuromorphic Computing Job Queue</span></a></h2> 2415 - 2416 -<p class=MsoNormal><span lang=en-DE>The Neuromorphic Computing Job Queue allows 2417 -users to run simulations/emulations on the SpiNNaker and BrainScaleS systems by 2418 -submitting a PyNN script and associated job configuration information to a 2419 -central queue. The system consists of a web API, a GUI client (the Job Manager 2420 -app) and a Python client. Users can submit scripts stored locally on their own 2421 -machine, in a Git repository, in the KG, or in EBRAINS Collaboratory storage 2422 -(Drive/Bucket). Users can track the progress of their job, and view and/or 2423 -download the results, log files, and provenance information.</span></p> 2424 - 2425 -<h2></h2> 2426 - 2427 -<h2><a name="_Toc138932342"><span lang=en-DE>Neuronize v2</span></a></h2> 2428 - 2429 -<p class=MsoNormal><span lang=en-DE>Neuronize v2 has been developed to generate 2430 -a connected neural 3D mesh. If the input is a neuron tracing, it generates a 3D 2431 -mesh from it, including the shape of the soma. If the input is data extracted 2432 -with Imaris Filament Tracer (a set of unconnected meshes of a neuron), 2433 -Neuronize v2 generates a single connected 3D mesh of the whole neuron (also 2434 -generating the soma) and provides its neural tracing, which can then be 2435 -imported into tools such as Neurolucida, facilitating the interoperability of 2436 -two of the most widely used proprietary tools.</span></p> 2437 - 2438 -<h2></h2> 2439 - 2440 -<h2><a name="_Toc138932343"><span lang=en-DE>NeuroR</span></a></h2> 2441 - 2442 -<p class=MsoNormal><span lang=en-DE>NeuroR is a collection of tools to repair 2443 -morphologies. This includes cut plane detection, sanitisation (removing 2444 -unifurcations, invalid soma counts, short segments) and 'unravelling': the 2445 -action of 'stretching' the cell that has been shrunk due to the dehydratation 2446 -caused by the slicing.</span></p> 2447 - 2448 -<h2></h2> 2449 - 2450 -<h2><a name="_Toc138932344"><span lang=en-DE>Neurorobotics Platform</span></a></h2> 2451 - 2452 -<p class=MsoNormal><span lang=en-DE>The Neurorobotics Platform (NRP) is an 2453 -integrative simulation framework that enables in silico experimentation and 2454 -embodiment of brain models inside virtual agents interacting with realistic 2455 -simulated environments. Entirely Open Source, it offers a browser-based 2456 -graphical user interface for online access. It can be installed locally (Docker 2457 -or source install). It can be interfaced with multiple spike-based neuromorphic 2458 -chips (SpiNNaker, Intel Loihi). You can download and install the NRP locally 2459 -for maximum experimental convenience or access it online in order to leverage 2460 -the HBP High Performance Computing infrastructure for large-scale experiments.</span></p> 2461 - 2462 -<h2></h2> 2463 - 2464 -<h2><a name="_Toc138932345"><span lang=en-DE>Neurorobotics Platform Robot 2465 -Designer</span></a></h2> 2466 - 2467 -<p class=MsoNormal><span lang=en-DE>The Robot Designer is a plugin for the 3D 2468 -modeling suite Blender that enables researchers to design morphologies for 2469 -simulation experiments in, particularly but not restricted to, the 2470 -Neurorobotics Platform. This plugin helps researchers design and parameterize 2471 -models with a Graphical User Interface, simplifying and speeding up the design 2472 -process.cess. It includes design capabilities for musculoskeletal bodies as 2473 -well as robotic systems, fostering not only the understanding of biological 2474 -motions and enabling better robot designs, but also enabling true Neurorobotic 2475 -experiments that consist of biomimetic models such as tendon-driven robots or a 2476 -transition between biology and technology.</span></p> 2477 - 2478 -<h2></h2> 2479 - 2480 -<h2><a name="_Toc138932346"><span lang=en-DE>NeuroScheme</span></a></h2> 2481 - 2482 -<p class=MsoNormal><span lang=en-DE>NeuroScheme uses schematic 2483 -representations, such as icons and glyphs, to encode attributes of neural 2484 -structures (neurons, columns, layers, populations, etc.), alleviating problems 2485 -with displaying, navigating and analysing large datasets. It manages 2486 -hierarchically organised neural structures</span><span lang=en-DE 2487 -style='font-family:"Times New Roman",serif'> </span><span lang=en-DE>users can 2488 -navigate through the levels of the hierarchy and hone in on and explore the 2489 -data at their desired level of detail. NeuroScheme has currently two built-in 2490 -"domains", which specify entities, attributes and 2491 -relationships used for specific use cases: the 'cortex' domain, designed for 2492 -navigating and analysing cerebral cortex structures</span><span lang=en-DE 2493 -style='font-family:"Times New Roman",serif'> </span><span lang=en-DE>and the 2494 -'congen' domain, used to define the properties of cells and connections, create 2495 -circuits of neurons and build populations.</span></p> 2496 - 2497 -<h2></h2> 2498 - 2499 -<h2><a name="_Toc138932347"><span lang=en-DE>NeuroSuites</span></a></h2> 2500 - 2501 -<p class=MsoNormal><span lang=en-DE>NeuroSuites is a web-based platform 2502 -designed to handle large-scale, high-dimensional data in the field of 2503 -neuroscience. It offers neuroscience-oriented applications and tools for data 2504 -analysis, machine learning and visualisation, while also providing 2505 -general-purpose tools for data scientists in other research fields. NeuroSuites 2506 -requires no software installation and runs on the backend of a server, making 2507 -it accessible from various devices. The platform's main strengths include its 2508 -defined architecture, ability to handle complex neuroscience data and the 2509 -variety of available tools.</span></p> 2510 - 2511 -<h2></h2> 2512 - 2513 -<h2><a name="_Toc138932348"><span lang=en-DE>NeuroTessMesh</span></a></h2> 2514 - 2515 -<p class=MsoNormal><span lang=en-DE>NeuroTessMesh takes morphological tracings 2516 -of cells acquired by neuroscientists and generates 3D models that approximate 2517 -the neuronal membrane. The resolution of the models can be adapted at the time 2518 -of visualisation. You can colour-code different parts of a morphology, 2519 -differentiating relevant morphological variables or even neuronal activity. 2520 -NeuroTessMesh copes with many of the problems associated with the visualisation 2521 -of neural circuits consisting of large numbers of cells. It facilitates the 2522 -recovery and visualisation of the 3D geometry of cells included in databases, 2523 -such as NeuroMorpho, and allows to approximate missing information such as the 2524 -soma's morphology.</span></p> 2525 - 2526 -<h2></h2> 2527 - 2528 -<h2><a name="_Toc138932349"><span lang=en-DE>NMODL Framework</span></a></h2> 2529 - 2530 -<p class=MsoNormal><span lang=en-DE>NMODL Framework is designed with 2531 -modern compiler and code generation techniques. It provides modular tools for 2532 -parsing, analysing and transforming NMODL it provides an easy to use, high 2533 -level Python API</span><span lang=en-DE style='font-family:"Times New Roman",serif'> 2534 -</span><span lang=en-DE> it generates optimised code for modern compute architectures 2535 -including CPUs and GPUs</span><span lang=en-DE style='font-family:"Times New Roman",serif'> 2536 -</span><span lang=en-DE> it provides flexibility to implement new simulator 2537 -backends and it supports full NMODL specification.</span></p> 2538 - 2539 -<h2></h2> 2540 - 2541 -<h2><a name="_Toc138932350"><span lang=en-DE>NSuite</span></a></h2> 2542 - 2543 -<p class=MsoNormal><span lang=en-DE>NSuite is a framework for maintaining and 2544 -running benchmarks and validation tests for multi-compartment neural network 2545 -simulations on HPC systems. NSuite automates the process of building simulation 2546 -engines, and running benchmarks and validation tests. NSuite is specifically 2547 -designed to allow easy deployment on HPC systems in testing workflows, such as 2548 -benchmark-driven development or continuous integration. The development of 2549 -NSuite has been driven by the need (1) for a definitive resource for comparing 2550 -performance and correctness of simulation engines on HPC systems, (2) to verify 2551 -the performance and correctness of individual simulation engines as they change 2552 -over time and (3) to test that changes to an HPC system do not cause 2553 -performance or correctness regressions in simulation engines. The framework 2554 -currently supports the simulation engines Arbor, NEURON, and CoreNeuron, while 2555 -allowing other simulation engines to be added.</span></p> 2556 - 2557 -<p class=MsoNormal></p> 2558 - 2559 -<p class=MsoNormal><span lang=en-DE>Nutil</span></p> 2560 - 2561 -<p class=MsoNormal><span lang=en-DE>Nutil is a pre- and post-processing toolbox 2562 -that enables analysis of large collections of histological images of rodent 2563 -brain sections. The software is open source and has both a graphical user 2564 -interface for specifying the input and output parameters and a command-line 2565 -execution option for batch processing. Nutil includes a transformation tool for 2566 -automated scaling, rotation, mirroring and renaming of image files, a file 2567 -format converter, a simple resize tool and a post-processing method for 2568 -quantifying and localising labelled features based on a reference atlas of the 2569 -brain (mouse or rat). The quantification method requires input from customised 2570 -brain atlas maps generated with the QuickNII software, and segmentations 2571 -generated with ilastik or another image analysis tool. The output from Nutil 2572 -include csv reports, 3D point cloud coordinate files and atlas map images 2573 -superimposed with colour-coded objects.</span></p> 2574 - 2575 -<h2></h2> 2576 - 2577 -<h2><a name="_Toc138932351"><span lang=en-DE>ODE-toolbox</span></a></h2> 2578 - 2579 -<p class=MsoNormal><span lang=en-DE>ODE-toolbox is a Python package that 2580 -assists in solver benchmarking, and recommends solvers on the basis of a set of 2581 -user-configurable heuristics. For all dynamical equations that admit an 2582 -analytic solution, ODE-toolbox generates propagator matrices that allow the 2583 -solution to be calculated at machine precision. For all others, first-order 2584 -update expressions are returned based on the Jacobian matrix. In addition to 2585 -continuous dynamics, discrete events can be used to model instantaneous changes 2586 -in system state, such as a neuronal action potential. These can be generated by 2587 -the system under test as well as applied as external stimuli, making 2588 -ODE-toolbox particularly well-suited for applications in computational 2589 -neuroscience.</span></p> 2590 - 2591 -<h2></h2> 2592 - 2593 -<h2><a name="_Toc138932352"><span lang=en-DE>openMINDS</span></a></h2> 2594 - 2595 -<p class=MsoNormal><span lang=en-DE>openMINDS is composed of: (i) integrated 2596 -metadata models adoptable by any graph database system (GDBS), (ii) a set of 2597 -libraries of serviceable metadata instances with external resource references 2598 -for local and global knowledge integration, and (iii) supportive tooling for 2599 -handling the metadata models and instances. Moreover, the framework provides 2600 -machine-readable mappings to other standardisation efforts (e.g., schema.org). 2601 -With this, openMINDS is a unique and powerful metadata framework for flexible 2602 -knowledge integration within and beyond any GDBS.</span></p> 2603 - 2604 -<h2></h2> 2605 - 2606 -<h2><a name="_Toc138932353"><span lang=en-DE>openMINDS metadata for TVB-ready 2607 -data</span></a></h2> 2608 - 2609 -<p class=MsoNormal><span lang=en-DE>Jupyter Python notebook with code and 2610 -commentaries for creating openMINDS metadata version 1.0 in JSON-LD format for 2611 -ingestion of TVB-ready data in EBRAINS Knowledge Graph.</span></p> 2612 - 2613 -<h2></h2> 2614 - 2615 -<h2><a name="_Toc138932354"><span lang=en-DE>PCI</span></a></h2> 2616 - 2617 -<p class=MsoNormal><span lang=en-DE>The notebook allows the computation of the 2618 -PCI Lempel-Ziv and PCI state transitions. In order to run the examples, a wake 2619 -and sleep data set needs to be provided in the Python-MNE format.</span></p> 2620 - 2621 -<h2></h2> 2622 - 2623 -<h2><a name="_Toc138932355"><span lang=en-DE>PIPSA</span></a></h2> 2624 - 2625 -<p class=MsoNormal><span lang=en-DE>PIPSA enables the comparison of the 2626 -electrostatic interaction properties of proteins. It permits the classification 2627 -of proteins according to their interaction properties. PIPSA may assist in 2628 -function assignment, the estimation of binding properties and enzyme kinetic 2629 -parameters.</span></p> 2630 - 2631 -<h2></h2> 2632 - 2633 -<h2><a name="_Toc138932356"><span lang=en-DE>PoSCE</span></a></h2> 2634 - 2635 -<p class=MsoNormal><span lang=en-DE>PoSCE is a functional connectivity 2636 -estimator of fMRI time-series. It relies on the Riemannian geometry of 2637 -covariances and integrates prior knowledge of covariance distribution over a 2638 -population.</span></p> 2639 - 2640 -<h2></h2> 2641 - 2642 -<h2><a name="_Toc138932357"><span lang=en-DE>Provenance API</span></a></h2> 2643 - 2644 -<p class=MsoNormal><span lang=en-DE>The EBRAINS Provenance API is a web service 2645 -to facilitate working with computational provenance metadata. Metadata are 2646 -stored in the EBRAINS Knowledge Graph (KG) using openMINDS schemas. The 2647 -Provenance API provides a somewhat simplified interface compared to accessing 2648 -the KG directly and performs checks of metadata consistency. The service covers 2649 -workflows involving simulation, data analysis, visualisation, optimisation, 2650 -data movement and model validation.</span></p> 2651 - 2652 -<h2></h2> 2653 - 2654 -<h2><a name="_Toc138932358"><span lang=en-DE>PyNN</span></a></h2> 2655 - 2656 -<p class=MsoNormal><span lang=en-DE>A model description written with the PyNN 2657 -API and the Python programming language runs on any simulator that PyNN 2658 -supports (currently NEURON, NEST and Brian 2) as well as on the BrainScaleS 2659 -and SpiNNaker neuromorphic hardware systems. PyNN provides a library of 2660 -standard neuron, synapse and synaptic plasticity models, verified to work the 2661 -same on different simulators. PyNN also provides commonly used connectivity 2662 -algorithms (e.g. all-to-all, random, distance-dependent, small-world) but makes 2663 -it easy to provide your own connectivity in a simulator-independent way. PyNN 2664 -transparently supports distributed simulations using MPI.</span></p> 2665 - 2666 -<h2></h2> 2667 - 2668 -<h2><a name="_Toc138932359"><span lang=en-DE>Pyramidal Explorer</span></a></h2> 2669 - 2670 -<p class=MsoNormal><span lang=en-DE>PyramidalExplorer is a tool to 2671 -interactively explore and reveal the detailed organisation of the microanatomy 2672 -of pyramidal neurons with functionally related models. Possible regional 2673 -differences in the pyramidal cell architecture can be interactively discovered 2674 -by combining quantitative morphological information about the structure of the 2675 -cell with implemented functional models. The key contribution of this tool is the 2676 -morpho-functional oriented design, allowing the user to navigate within the 3D 2677 -dataset, filter and perform content-based retrieval operations to find the 2678 -spines that are alike and dissimilar within the neuron, according to particular 2679 -morphological or functional variables.</span></p> 2680 - 2681 -<h2></h2> 2682 - 2683 -<h2><a name="_Toc138932360"><span lang=en-DE>QCAlign software</span></a></h2> 2684 - 2685 -<p class=MsoNormal><span lang=en-DE>The QUINT workflow enables spatial analysis 2686 -of labelling in series of brain sections from mouse and rat based on 2687 -registration to a reference brain atlas. The QCAlign software supports the use 2688 -of QUINT for high-throughput studies by providing information about: 1. The 2689 -quality of the section images used as input to the QUINT workflow. 2. The 2690 -quality of the atlas registration performed in the QUINT workflow. 3. QCAlign 2691 -also makes it easier for the user to explore the atlas hierarchy and decide on 2692 -a customised hierarchy level to use for the investigation</span></p> 2693 - 2694 -<h2></h2> 2695 - 2696 -<h2><a name="_Toc138932361"><span lang=en-DE>QuickNII</span></a></h2> 2697 - 2698 -<p class=MsoNormal><span lang=en-DE>QuickNII is a tool for user-guided affine 2699 -registration (anchoring) of 2D experimental image data, typically high 2700 -resolution microscopic images, to 3D atlas reference space, facilitating data 2701 -integration through standardised coordinate systems. Key features: Generate 2702 -user-defined cut planes through the atlas templates, matching the orientation 2703 -of the cut plane of the 2D experimental image data, as a first step towards 2704 -anchoring of images to the relevant atlas template. Propagate spatial 2705 -transformations across series of sections following anchoring of selected 2706 -images.</span></p> 2707 - 2708 -<h2></h2> 2709 - 2710 -<h2><a name="_Toc138932362"><span lang=en-DE>Quota Manager</span></a></h2> 2711 - 2712 -<p class=MsoNormal><span lang=en-DE>The Quota Manager enables each EBRAINS 2713 -service to manage user quotas for resources EBRAINS users consume in their 2714 -respective services. The goal is to encourage the responsible use of resources. 2715 -It is recommended that all users (except possibly guest accounts) are provided 2716 -with a default quota, and that specific users have the option of receiving 2717 -larger quotas based on their affiliation, role or motivated requests.</span></p> 2718 - 2719 -<h2></h2> 2720 - 2721 -<h2><a name="_Toc138932363"><span lang=en-DE>RateML</span></a></h2> 2722 - 2723 -<p class=MsoNormal><span lang=en-DE>RateML enables users to generate 2724 -whole-brain network models from a succinct declarative description, in which 2725 -the mathematics of the model are described without specifying how their 2726 -simulation should be implemented. RateML builds on NeuroML's Low Entropy Model 2727 -Specification (LEMS), an XML-based language for specifying models of dynamical systems, 2728 -allowing descriptions of neural mass and discretized neural field models, as 2729 -implemented by the TVB simulator. The end user describes their model's 2730 -mathematics once and generates and runs code for different languages, targeting 2731 -both CPUs for fast single simulations and GPUs for parallel ensemble 2732 -simulations.</span></p> 2733 - 2734 -<h2></h2> 2735 - 2736 -<h2><a name="_Toc138932364"><span lang=en-DE>Region-wise CBPP using the Julich 2737 -BrainÊCytoarchitectonic Atlas</span></a></h2> 2738 - 2739 -<p class=MsoNormal><span lang=en-DE>Many studies have been investigating the 2740 -relationships between interindividual variability in brain regions' 2741 -connectivity and behavioural phenotypes, by utilising connectivity-based 2742 -prediction models. Recently, we demonstrated that an approach based on the 2743 -combination of whole-brain and region-wise CBPP can provide important insight 2744 -into the predictive model, and hence in brain-behaviour relationships, by 2745 -offering interpretable patterns. Here, we applied this approach using the 2746 -Julich Brain Cytoarchitectonic Atlas with the resting-state functional 2747 -connectivity and psychometric variables from the Human Connectome Project 2748 -dataset, illustrating each brain region's predictive power for a range of 2749 -psychometric variables. As a result, a psychometric prediction profile was 2750 -established for each brain region, which can be validated against brain mapping 2751 -literature.</span></p> 2752 - 2753 -<h2></h2> 2754 - 2755 -<h2><a name="_Toc138932365"><span lang=en-DE>RRI Capacity Development Resources</span></a></h2> 2756 - 2757 -<p class=MsoNormal><span lang=en-DE>A series of training resources developed to 2758 -enable anticipation, critical reflection and public engagement/deliberation of 2759 -societal consequences of brain research and innovation activities. These 2760 -resources were designed primarily for HBP researchers and EBRAINS leadership 2761 -and management, involving EBRAINS data and infrastructure providers. However, 2762 -they are also useful for engaging the wider public with RRI. The resources are 2763 -based on the legacy of over 10 years of research and activities of the ethics 2764 -and society-team in the HBP. They cover important RRI-related topics on 2765 -neuroethics, data governance, dual-use, public engagement and foresight, 2766 -diversity, search integrity etc.</span></p> 2767 - 2768 -<h2></h2> 2769 - 2770 -<h2><a name="_Toc138932366"><span lang=en-DE>rsHRF</span></a></h2> 2771 - 2772 -<p class=MsoNormal><span lang=en-DE>This toolbox is aimed to retrieve the 2773 -onsets of pseudo-events triggering an hemodynamic response from resting state 2774 -fMRI BOLD signals. It is based on point process theory and fits a model to 2775 -retrieve the optimal lag between the events and the HRF onset, as well as the 2776 -HRF shape, using different shape parameters or combinations of basis functions. 2777 -Once the HRF has been retrieved for each voxel/vertex, it can be deconvolved 2778 -from the time series (for example, to improve lag-based connectivity 2779 -estimates), or one can map the shape parameters everywhere in the brain 2780 -(including white matter) and use it as a pathophysiological indicator.</span></p> 2781 - 2782 -<h2></h2> 2783 - 2784 -<h2><a name="_Toc138932367"><span lang=en-DE>RTNeuron</span></a></h2> 2785 - 2786 -<p class=MsoNormal><span lang=en-DE>The main utility of RTNeuron is twofold: 2787 -(i) the interactive visual inspection of structural and functional features of 2788 -the cortical column model and (ii) the generation of high-quality movies and 2789 -images for presentations and publications.RTNeuron provides a C++ library with 2790 -an OpenGL-based rendering backend, a Python wrapping and a Python application 2791 -called rtneuron. RTNeuron is only supported in GNU/Linux systems. However, it 2792 -should also be possible to build it on Windows systems. For OS/X it may be 2793 -quite challenging and require changes in OpenGL-related code to get it working.</span></p> 2794 - 2795 -<h2></h2> 2796 - 2797 -<h2><a name="_Toc138932368"><span lang=en-DE>sbs: Spike-based Sampling</span></a></h2> 2798 - 2799 -<p class=MsoNormal><span lang=en-DE>Spike-based sampling, sbs, is a software 2800 -suite that takes care of calibrating spiking neurons for given target 2801 -distributions and allows the evaluation of these distributions as they are 2802 -produced by stochastic spiking networks.</span></p> 2803 - 2804 -<h2></h2> 2805 - 2806 -<h2><a name="_Toc138932369"><span lang=en-DE>SDA 7</span></a></h2> 2807 - 2808 -<p class=MsoNormal><span lang=en-DE>SDA 7 can be used to carry out Brownian 2809 -dynamics simulations of the diffusional association in a continuum aqueous 2810 -solvent of two solute molecules, e.g., proteins, or of a solute molecule to an 2811 -inorganic surface. SDA 7 can also be used to simulate the diffusion of multiple 2812 -proteins, in dilute or concentrated solutions, e.g., to study the effects of 2813 -macromolecular crowding.</span></p> 2814 - 2815 -<h2></h2> 2816 - 2817 -<h2><a name="_Toc138932370"><span lang=en-DE>Shape & Appearance Modelling</span></a></h2> 2818 - 2819 -<p class=MsoNormal><span lang=en-DE>A framework for automatically learning 2820 -shape and appearance models for medical (and certain other) images. The 2821 -algorithm was developed with the aim of eventually enabling distributed 2822 -privacy-preserving analysis of brain image data, such that shared information 2823 -(shape and appearance basis functions) may be passed across sites, whereas 2824 -latent variables that encode individual images remain secure within each site. 2825 -These latent variables are proposed as features for privacy-preserving data 2826 -mining applications.</span></p> 2827 - 2828 -<h2></h2> 2829 - 2830 -<h2><a name="_Toc138932371"><span lang=en-DE>siibra-api</span></a></h2> 2831 - 2832 -<p class=MsoNormal><span lang=en-DE>siibra-api provides an HTTP wrapper around 2833 -siibra-python, allowing developers to access atlas (meta)data over HTTP 2834 -protocol. Deployed on the EBRAINS infrastructure, developers can access the 2835 -centralised (meta)data on atlases, as provided by siibra-python, regardless of 2836 -the programming language.</span></p> 2837 - 2838 -<h2></h2> 2839 - 2840 -<h2><a name="_Toc138932372"><span lang=en-DE>siibra-explorer</span></a></h2> 2841 - 2842 -<p class=MsoNormal><span lang=en-DE>The interactive atlas viewer 2843 -siibra-explorer allows exploring the different EBRAINS atlases for the human, 2844 -monkey and rodent brains together with a comprehensive set of linked multimodal 2845 -data features. It provides a 3-planar view of a parcellated reference volume 2846 -combined with a rotatable overview of the 3D surface. Several templates can be 2847 -selected to navigate through the brain from MRI-scale to microscopic 2848 -resolution, allowing inspection of terabyte-size image data. Anatomically 2849 -anchored datasets reflecting aspects of cellular and molecular organisation, 2850 -fibres, function and connectivity can be discovered by selecting brain regions 2851 -from parcellations, or zooming and panning the reference brain. siibra-explorer 2852 -also allows annotation of brain locations as points and polygons and is 2853 -extensible via interactive plugins.</span></p> 2854 - 2855 -<h2></h2> 2856 - 2857 -<h2><a name="_Toc138932373"><span lang=en-DE>siibra-python</span></a></h2> 2858 - 2859 -<p class=MsoNormal><span lang=en-DE>siibra-python is a Python client to a brain 2860 -atlas framework that integrates brain parcellations and reference spaces at 2861 -different spatial scales and connects them with a broad range of multimodal 2862 -regional data features. It aims to facilitate programmatic and reproducible 2863 -incorporation of brain parcellations and brain region features from different 2864 -sources into neuroscience workflows. Also, siibra-python provides an easy 2865 -access to data features on the EBRAINS Knowledge Graph in a well-structured 2866 -manner. Users can preconfigure their own data to use within siibra-python.</span></p> 2867 - 2868 -<h2></h2> 2869 - 2870 -<h2><a name="_Toc138932374"><span lang=en-DE>Single Cell Model (Re)builder 2871 -Notebook</span></a></h2> 2872 - 2873 -<p class=MsoNormal><span lang=en-DE>The Single Cell Model (Re)builder Notebook 2874 -is a web application, implemented via a Jupyter Notebook on EBRAINS, which 2875 -allows users to configure the BluePyOpt to re-run an optimisation with their 2876 -own choices for the parameters range. The optimisation jobs are submitted 2877 -through Neuroscience Gateway.</span></p> 2878 - 2879 -<h2></h2> 2880 - 2881 -<h2><a name="_Toc138932375"><span lang=en-DE>Slurm Plugin for Co-allocation of 2882 -Compute and Data Resources</span></a></h2> 2883 - 2884 -<p class=MsoNormal><span lang=en-DE>This Simple linux utility for resource 2885 -management (Slurm) plugin enables the co-allocation of compute and data resources 2886 -on a shared multi-tiered storage cluster by estimating waiting times when the 2887 -high-performance storage (burst buffers) will become available to submitted 2888 -jobs. Based on the current job queue and the estimated waiting time, the plugin 2889 -decides whether scheduling the high-performance or lower-performance storage 2890 -system (parallel file system) benefits the job's turnaround time. The 2891 -estimation depends on additional information the user provides at submission 2892 -time.</span></p> 2893 - 2894 -<h2></h2> 2895 - 2896 -<h2><a name="_Toc138932376"><span lang=en-DE>Snudda</span></a></h2> 2897 - 2898 -<p class=MsoNormal><span lang=en-DE>Snudda ('touch' in Swedish) allows the user 2899 -to set up and generate microcircuits where the connectivity between neurons is 2900 -based on reconstructed neuron morphologies. The touch detection algorithm looks 2901 -for overlaps of axons and dendrites, and places putative synapses where they 2902 -touch. The putative synapses are pruned, removing a fraction to match 2903 -statistics from pairwise connectivity experiments. If needed, Snudda can also 2904 -use probability functions to create realistic microcircuits. The Snudda 2905 -software is written in Python and includes support for supercomputers. It uses 2906 -ipyparallel to parallelise network creation, and NEURON as the backend for 2907 -simulations. Install using pip or by directly downloading.</span></p> 2908 - 2909 -<h2></h2> 2910 - 2911 -<h2><a name="_Toc138932377"><span lang=en-DE>SomaSegmenter</span></a></h2> 2912 - 2913 -<p class=MsoNormal><span lang=en-DE>SomaSegmenter allows neuronal soma 2914 -segmentation in fluorescence microscopy imaging datasets with the use of a 2915 -parametrised version of the U-Net segmentation model, including additional 2916 -features such as residual links and tile-based frame reconstruction.</span></p> 2917 - 2918 -<h2></h2> 2919 - 2920 -<h2><a name="_Toc138932378"><span lang=en-DE>SpiNNaker</span></a></h2> 2921 - 2922 -<p class=MsoNormal><span lang=en-DE>SpiNNaker is a neuromorphic computer with 2923 -over a million low power, small memory ARM cores arranged in chips, connected 2924 -together with a unique brain-like mesh network, and designed to simulate 2925 -networks of spiking point neurons. Software is provided to compile networks 2926 -described with PyNN into running simulations, and to extract and convert 2927 -results into the neo data format, as well as providing support for live 2928 -interaction with running simulations. This allows integration with external 2929 -devices such as real or virtual robotics as well as live simulation 2930 -visualisation. Scripts can be written and executed using Jupyter for 2931 -interactive access.</span></p> 2932 - 2933 -<h2></h2> 2934 - 2935 -<h2><a name="_Toc138932379"><span lang=en-DE>SSB toolkit</span></a></h2> 2936 - 2937 -<p class=MsoNormal><span lang=en-DE>The SSB toolkit is an open-source Python 2938 -library to simulate mathematical models of the signal transduction pathways of 2939 -G-protein coupled receptors (GPCRs). By merging structural macromolecular data 2940 -with systems biology simulations, the framework allows simulation of the signal 2941 -transduction kinetics induced by ligand-GPCR interactions, as well as the consequent 2942 -change of concentration of signalling molecular species, as a function of time 2943 -and ligand concentration. Therefore, this tool allows the possibility to 2944 -investigate the subcellular effects of ligand binding upon receptor activation, 2945 -deepening the understanding of the relationship between the molecular level of 2946 -ligand-target interactions and higher-level cellular and physiological or 2947 -pathological response mechanisms.</span></p> 2948 - 2949 -<h2></h2> 2950 - 2951 -<h2><a name="_Toc138932380"><span lang=en-DE>Subcellular model building and 2952 -calibration tool set</span></a></h2> 2953 - 2954 -<p class=MsoNormal><span lang=en-DE>The toolset includes interoperable modules 2955 -for: model building, calibration (parameter estimation) and model analysis. All 2956 -information needed to perform these tasks (models, experimental calibration 2957 -data and prior assumptions on parameter distributions) are stored in a 2958 -structured, human- and machine-readable file format based on SBtab. The toolset 2959 -enables simulations of the same model in simulators with different 2960 -characteristics, e.g., STEPS, NEURON, MATLAB's Simbiology and R via automatic 2961 -code generation. The parameter estimation can include uncertainty 2962 -quantification and is done by optimisation or Bayesian approaches. Model 2963 -analysis includes global sensitivity analysis and functionality for analysing 2964 -thermodynamic constraints and conserved moieties.</span></p> 2965 - 2966 -<h2></h2> 2967 - 2968 -<h2><a name="_Toc138932381"><span lang=en-DE>Synaptic Events Fitting</span></a></h2> 2969 - 2970 -<p class=MsoNormal><span lang=en-DE>The Synaptic Events Fitting is a web 2971 -application, implemented in a Jupyter Notebook on EBRAINS that allows users to 2972 -fit synaptic events using data and models from the EBRAINS Knowledge Graph 2973 -(KG). Select, download and visualise experimental data from the KG and then choose 2974 -the data to be fitted. A mod file is then selected (local or default) together 2975 -with the corresponding configuration file (including protocol and the name of 2976 -the parameters to be fitted, their initial values and allowed variation range, 2977 -exclusion rules and an optional set of dependencies). The fitting procedure can 2978 -run on Neuroscience Gateway. Fetch the fitting results from the storage of the 2979 -HPC system to the storage of the Collab or to analyse the optimised parameters.</span></p> 2980 - 2981 -<h2></h2> 2982 - 2983 -<h2><a name="_Toc138932382"><span lang=en-DE>Synaptic Plasticity Explorer</span></a></h2> 2984 - 2985 -<p class=MsoNormal><span lang=en-DE>The Synaptic Plasticity Explorer is a web 2986 -application, implemented via a Jupyter Notebook on EBRAINS, which allows to 2987 -configure and test, through an intuitive GUI, different synaptic plasticity 2988 -models and protocols on single cell optimised models, available in the EBRAINS 2989 -Model Catalog. It consists of two tabs: 'Config', where the user can specify 2990 -the plasticity model to use and the synaptic parameters, and 'Sim', where the 2991 -recording location, weight's evolution and number of simulations to run are 2992 -defined. The results are plotted at the end of the simulation and the traces 2993 -are available for download.</span></p> 2994 - 2995 -<h2></h2> 2996 - 2997 -<h2><a name="_Toc138932383"><span lang=en-DE>Synaptic proteome database 2998 -(SQLite)</span></a></h2> 2999 - 3000 -<p class=MsoNormal><span lang=en-DE>Integration of 57 published synaptic 3001 -proteomic datasets reveals a stunningly complex picture involving over 7000 3002 -proteins. Molecular complexes were reconstructed using evidence-based 3003 -protein-protein interaction data available from public databases. The 3004 -constructed molecular interaction network model is embedded into an SQLite 3005 -implementation, allowing queries that generate custom network models based on 3006 -meta-data including species, synaptic compartment, brain region, and method of 3007 -extraction.</span></p> 3008 - 3009 -<h2></h2> 3010 - 3011 -<h2><a name="_Toc138932384"><span lang=en-DE>Synaptome.db</span></a></h2> 3012 - 3013 -<p class=MsoNormal><span lang=en-DE>The Synaptome.db bioconductor package 3014 -contains a local copy of the Synaptic proteome database. On top of this it 3015 -provides a set of utility R functions to query and analyse its content. It 3016 -allows for extraction of information for specific genes and building the 3017 -protein-protein interaction graph for gene sets, synaptic compartments and 3018 -brain regions.</span></p> 3019 - 3020 -<h2></h2> 3021 - 3022 -<h2><a name="_Toc138932385"><span lang=en-DE>Tide</span></a></h2> 3023 - 3024 -<p class=MsoNormal><span lang=en-DE>BlueBrain's Tide provides multi-window, 3025 -multi-user touch interaction on large surfaces Ð think of a giant collaborative 3026 -wall-mounted tablet. Tide is a distributed application that can run on multiple 3027 -machines to power display walls or projection systems of any size. Its user interface 3028 -is designed to offer an intuitive experience on touch walls. It works just as 3029 -well on non-touch-capable installations by using its web interface from any web 3030 -browser.</span></p> 3031 - 3032 -<h2></h2> 3033 - 3034 -<h2><a name="_Toc138932386"><span lang=en-DE>TVB EBRAINS</span></a></h2> 3035 - 3036 -<p class=MsoNormal><span lang=en-DE>TVB EBRAINS is the principal full brain 3037 -network simulation engine in EBRAINS and covers every aspect of realising 3038 -personalised whole-brain simulations on the EBRAINS platform. It consists of 3039 -the simulation tools and adaptors connecting the data, atlas and computing 3040 -services to the rest of the TVB ecosystem and Cloud services available in 3041 -EBRAINS. As such it allows the user to find and fetch relevant datasets through 3042 -the EBRAINS Knowledge Graph and Atlas services, construct the personalised TVB 3043 -models and use the HPC systems to perform parameter exploration, optimisation and 3044 -inference studies. The user can orchestrate the workflow from the Jupyterlab 3045 -interactive computing environment of the EBRAINS Collaboratory or use the 3046 -dedicated web application of TVB.</span></p> 3047 - 3048 -<h2></h2> 3049 - 3050 -<h2><a name="_Toc138932387"><span lang=en-DE>TVB Image Processing Pipeline</span></a></h2> 3051 - 3052 -<p class=MsoNormal><span lang=en-DE>TVB Image Processing Pipeline takes multimodal 3053 -MRI data sets (anatomical, functional and diffusion-weighted MRI) as input and 3054 -generates structural connectomes, region-average fMRI time series, functional 3055 -connectomes, brain surfaces, electrode positions, lead field matrices and atlas 3056 -parcellations as output. The pipeline performs preprocessing and 3057 -distortion-correction on MRI data as well as white matter fibre bundle 3058 -tractography on diffusion data. Outputs are formatted according to two data 3059 -standards: a TVB-ready data set that can be directly used to simulate brain 3060 -network models and the same output in BIDS format.</span></p> 3061 - 3062 -<h2></h2> 3063 - 3064 -<h2><a name="_Toc138932388"><span lang=en-DE>TVB Inversion</span></a></h2> 3065 - 3066 -<p class=MsoNormal><span lang=en-DE>The TVB Inversion package implements the 3067 -machinery required to perform parameter exploration and inference over 3068 -parameters of The Virtual Brain simulator. It implements Simulation Based 3069 -Inference (SBI) which is a Bayesian inference method for complex models, where 3070 -calculation of the likelihood function is either analytically or 3071 -computationally intractable. As such, it allows the user to formulate with 3072 -great expressive power both the model and the inference scenario in terms of 3073 -observed data features and model parameters. Part of the integration with TVB 3074 -entails the option to perform numerous simulations in parallel, which can be 3075 -used for parameter space exploration.</span></p> 3076 - 3077 -<h2></h2> 3078 - 3079 -<h2><a name="_Toc138932389"><span lang=en-DE>TVB Web App</span></a></h2> 3080 - 3081 -<p class=MsoNormal><span lang=en-DE>TVB Web App provides The Virtual Brain 3082 -Simulator as an EBRAINS Cloud Service with an HPC back-end. Scientists can run 3083 -intense personalised brain simulations without having to deploy software. Users 3084 -can access the service with their EBRAINS credentials (single sign on). TVB Web 3085 -App uses private/public key cryptography, sandboxing, and access control to 3086 -protect personalised health information contained in digital human brain twins 3087 -while being processed on HPC. Users can upload their connectomes or use 3088 -TVB-ready image-derived data discoverable via the EBRAINS Knowledge Graph. 3089 -Users can also use containerised processing workflows available on EBRAINS to 3090 -render image raw data into simulation-ready formats.</span></p> 3091 - 3092 -<h2></h2> 3093 - 3094 -<h2><a name="_Toc138932390"><span lang=en-DE>TVB Widgets</span></a></h2> 3095 - 3096 -<p class=MsoNormal><span lang=en-DE>In order to support the usability of 3097 -EBRAINS workflows, TVB-widgets has been developed as a set of modular graphic 3098 -components and software solutions, easy to use in the Collaboratory within the 3099 -JupyterLab. These GUI components are based on and under open source licence, 3100 -supporting open neuroscience and support features like: Setup of models and 3101 -region-specific or cohort simulations. Selection of Data sources and their 3102 -links to models. Querying data from siibra and the EBRAINS Knowledge Graph. 3103 -Deployment and monitoring jobs on HPC resources. Analysis and visualisation. 3104 -Visual workflow builder for configuring and launching TVB simulations.</span></p> 3105 - 3106 -<h2></h2> 3107 - 3108 -<h2><a name="_Toc138932391"><span lang=en-DE>TVB-Multiscale</span></a></h2> 3109 - 3110 -<p class=MsoNormal><span lang=en-DE>TVB-Multiscale is a Python toolbox aimed at 3111 -facilitating the configuration of multiscale brain models and their 3112 -co-simulation with TVB and spiking network simulators (currently NEST, 3113 -NetPyNE (NEURON) and ANNarchy). A multiscale brain model consists of a full 3114 -brain model formulated at the coarse scale of networks of tens up to thousands 3115 -of brain regions, and an additional model of networks of spiking neurons 3116 -describing selected brain regions at a finer scale. The toolbox has a 3117 -user-friendly interface for configuring different kinds of models for 3118 -transforming and exchanging data between the two scales during co-simulation.</span></p> 3119 - 3120 -<h2></h2> 3121 - 3122 -<h2><a name="_Toc138932392"><span lang=en-DE>VIOLA</span></a></h2> 3123 - 3124 -<p class=MsoNormal><span lang=en-DE>VIOLA is an interactive, web-based tool to 3125 -visualise activity data in multiple 2D layers such as the simulation output of 3126 -neuronal networks with 2D geometry. As a reference implementation for a 3127 -developed set of interactive visualisation concepts, the tool combines and 3128 -adapts modern interactive visualisation paradigms, such as coordinated multiple 3129 -views, for massively parallel neurophysiological data. The software allows for 3130 -an explorative and qualitative assessment of the spatiotemporal features of 3131 -neuronal activity, which can be performed prior to a detailed quantitative data 3132 -analysis of specific aspects of the data.</span></p> 3133 - 3134 -<h2></h2> 3135 - 3136 -<h2><a name="_Toc138932393"><span lang=en-DE>Vishnu 1.0</span></a></h2> 3137 - 3138 -<p class=MsoNormal><span lang=en-DE>DC Explorer, Pyramidal Explorer and Clint 3139 -Explorer are the core of an application suite designed to help scientists to 3140 -explore their data. Vishnu 1.0 is a communication framework that allows them to 3141 -interchange information and cooperate in real time. It provides a unique access 3142 -point to the three applications and manages a database with the users' 3143 -datasets. Vishnu was originally designed to integrate data for 3144 -Espina.Whole-brain-scale tools.</span></p> 3145 - 3146 -<h2></h2> 3147 - 3148 -<h2><a name="_Toc138932394"><span lang=en-DE>ViSimpl</span></a></h2> 3149 - 3150 -<p class=MsoNormal><span lang=en-DE>ViSimpl integrates a set of visualisation 3151 -and interaction components that provide a semantic view of brain data with the 3152 -aim of improving its analysis procedures. ViSimpl provides 3D particle-based 3153 -rendering that visualises simulation data with their associated spatial and 3154 -temporal information, enhancing the knowledge extraction process. It also 3155 -provides abstract representations of the time-varying magnitudes, supporting 3156 -different data aggregation and disaggregation operations and giving focus and 3157 -context clues. In addition, ViSimpl provides synchronised playback control of 3158 -the simulation being analysed.</span></p> 3159 - 3160 -<h2></h2> 3161 - 3162 -<h2><a name="_Toc138932395"><span lang=en-DE>VisuAlign</span></a></h2> 3163 - 3164 -<p class=MsoNormal><span lang=en-DE>VisuAlign is a tool for user-guided 3165 -nonlinear registration after QuickNII of 2D experimental image data, typically 3166 -high resolution microscopic images, to 3D atlas reference space, facilitating 3167 -data integration through standardised coordinate systems. Key features: 3168 -Generate user-defined cut planes through the atlas templates, matching the 3169 -orientation of the cut plane of the 2D experimental image data, as a first step 3170 -towards anchoring of images to the relevant atlas template. Propagate spatial 3171 -transformations across series of sections following anchoring of selected 3172 -images.</span></p> 3173 - 3174 -<h2></h2> 3175 - 3176 -<h2><a name="_Toc138932396"><span lang=en-DE>VMetaFlow</span></a></h2> 3177 - 3178 -<p class=MsoNormal><span lang=en-DE>VMetaFlow is an abstraction layer placed 3179 -over existing visual grammars and visualisation declarative languages, 3180 -providing them with interoperability mechanisms. The main contribution of this 3181 -research is to provide a user-friendly system to design visualisation and data 3182 -processing operations that can be interconnected to form data analysis 3183 -workflows. Visualisations and data processes can be saved as cards. Cards and 3184 -workflows can be saved, distributed and reused between users.</span></p> 3185 - 3186 -<h2></h2> 3187 - 3188 -<h2><a name="_Toc138932397"><span lang=en-DE>Voluba</span></a></h2> 3189 - 3190 -<p class=MsoNormal><span lang=en-DE>A common problem in high-resolution brain 3191 -atlasing is spatial anchoring of volumes of interest from imaging experiments 3192 -into the detailed anatomical context of an ultrahigh-resolution reference model 3193 -like BigBrain. The interactive volumetric alignment tool voluba is implemented 3194 -as a web service and allows anchoring of volumetric image data to reference 3195 -volumes at microscopical spatial resolutions. It enables interactive 3196 -manipulation of image position, scale, and orientation, flipping of coordinate 3197 -axes, and entering of anatomical point landmarks in 3D. The resulting 3198 -transformation parameters can, amongst others, be downloaded or used to view 3199 -the anchored image volume in the interactive atlas viewer siibra-explorer.</span></p> 3200 - 3201 -<h2></h2> 3202 - 3203 -<h2><a name="_Toc138932398"><span lang=en-DE>WebAlign</span></a></h2> 3204 - 3205 -<p class=MsoNormal><span lang=en-DE>WebAlign is the web version of QuickNII. 3206 -Presently, it is available as a community app in the Collaboratory. Features 3207 -include: Spatial registration of sectional image data. Generation of customised 3208 -atlas maps for your sectional image data.</span></p> 3209 - 3210 -<h2></h2> 3211 - 3212 -<h2><a name="_Toc138932399"><span lang=en-DE>Webilastik</span></a></h2> 3213 - 3214 -<p class=MsoNormal><span lang=en-DE>webilastik brings the popular machine 3215 -learning-based image analysis tool ilastik from the desktop into the browser. 3216 -Users can perform semantic segmentation tasks on their data in the cloud. 3217 -webilastik runs computations on federated EBRAINS HPC resources and uses 3218 -EBRAINS infrastructure for data access and storage. webilastik makes machine 3219 -learning-based image analysis workflows accessible to users without deep 3220 -knowledge of image analysis and machine learning. webilastik is part of the 3221 -QUINT workflow for extraction, quantification and analysis of features from 3222 -rodent histological images.</span></p> 3223 - 3224 -<h2></h2> 3225 - 3226 -<h2><a name="_Toc138932400"><span lang=en-DE>WebWarp</span></a></h2> 3227 - 3228 -<p class=MsoNormal><span lang=en-DE>WebWarp is the web version of VisuAlign. 3229 -Presently, it is available as a community app in the Collaboratory. Features 3230 -include: Nonlinear refinements of atlas registration by WebAlign of sectional 3231 -image data. Generation of customised atlas maps for your sectional image data.</span></p> 3232 - 3233 -<h2></h2> 3234 - 3235 -<h2><a name="_Toc138932401"><span lang=en-DE>ZetaStitcher</span></a></h2> 3236 - 3237 -<p class=MsoNormal><span lang=en-DE>ZetaStitcher is a Python package designed 3238 -to stitch large volumetric images, such as those produced by Light-Sheet 3239 -Fluorescence Microscopes. It is able to quickly compute the optimal alignment 3240 -of large mosaics of tiles thanks to its ability to perform a sampling along the 3241 -tile depth, i.e., pairwise alignment is computed only at certain depths along 3242 -the thickness of the tile. This greatly reduces the amount of data that needs 3243 -to be read and transferred, thus, making the process much faster. ZetaStitcher 3244 -comes with an API that can be used to programmatically access the aligned 3245 -volume in a virtual fashion as if it were a big NumPy array, without having to 3246 -produce the fused 3D image of the whole sample.Cellular- and subcellular-scale 3247 -tools.</span></p> 3248 - 3249 -<h2></h2> 3250 - 3251 -<h2><a name="_Toc138932402"><span lang=en-DE>TauRAMD</span></a></h2> 3252 - 3253 -<p class=MsoNormal><span lang=en-DE>The TauRAMD technique makes use of RAMD 3254 -simulations to compute relative residence times (or dissociation rates) of 3255 -protein-ligand complexes. In the RAMD method, the egress of a molecule from a 3256 -target receptor is accelerated by the application of an adaptive randomly 3257 -oriented force on the ligand. This enables ligand egress events to be observed 3258 -in short, nanosecond timescale simulations without imposing any bias regarding 3259 -the ligand egress route taken. If coupled to the MD-IFP tool, the TauRAMD 3260 -method can be used to investigate dissociation mechanisms and characterize 3261 -transition states.</span></p> 3262 - 3263 -</div> 3264 - 3265 -</body> 3266 - 3267 -</html> 3268 - 3269 -{{/html}} 7 +On this page you will find a quick overview of the different tools and services available in EBRAINS. It will address, in an interactive way, how to use EBRAINS for specific use cases from the participants and focus on exploring all the potential that EBRAINS, as a digital research infrastructure, provides to its users. Researchers will have the opportunity to get creative and combine the different EBRAINS components to respond to existing questions and formulate new avenues based on collaboration, sharing, co-design, and innovation.