Wiki source code of Tools description
Last modified by marissadiazpier on 2023/06/29 13:09
Show last authors
author | version | line-number | content |
---|---|---|---|
1 | **Human Brain Project Tools Description** | ||
2 | |||
3 | On this page you will find a list with a brief description of the tools we have for the HBP tools Book, if you have a suggestion or detect an omission please send your feedback to [[slu@ebrains.eu>>mailto:slu@ebrains.eu]]. | ||
4 | |||
5 | {{html}} | ||
6 | <html> | ||
7 | |||
8 | <head> | ||
9 | <meta http-equiv=Content-Type content="text/html; charset=windows-1252"> | ||
10 | <meta name=Generator content="Microsoft Word 15 (filtered)"> | ||
11 | <style> | ||
12 | <!-- | ||
13 | /* Font Definitions */ | ||
14 | @font-face | ||
15 | {font-family:"Cambria Math"; | ||
16 | panose-1:2 4 5 3 5 4 6 3 2 4;} | ||
17 | @font-face | ||
18 | {font-family:"Calibri Light"; | ||
19 | panose-1:2 15 3 2 2 2 4 3 2 4;} | ||
20 | @font-face | ||
21 | {font-family:Calibri; | ||
22 | panose-1:2 15 5 2 2 2 4 3 2 4;} | ||
23 | /* Style Definitions */ | ||
24 | p.MsoNormal, li.MsoNormal, div.MsoNormal | ||
25 | {margin-top:0cm; | ||
26 | margin-right:0cm; | ||
27 | margin-bottom:10.0pt; | ||
28 | margin-left:0cm; | ||
29 | line-height:120%; | ||
30 | font-size:10.5pt; | ||
31 | font-family:"Calibri",sans-serif;} | ||
32 | h1 | ||
33 | {mso-style-link:"Heading 1 Char"; | ||
34 | margin-top:18.0pt; | ||
35 | margin-right:0cm; | ||
36 | margin-bottom:2.0pt; | ||
37 | margin-left:0cm; | ||
38 | page-break-after:avoid; | ||
39 | font-size:20.0pt; | ||
40 | font-family:"Calibri Light",sans-serif; | ||
41 | color:#538135; | ||
42 | font-weight:normal;} | ||
43 | h2 | ||
44 | {mso-style-link:"Heading 2 Char"; | ||
45 | margin-top:4.0pt; | ||
46 | margin-right:0cm; | ||
47 | margin-bottom:0cm; | ||
48 | margin-left:0cm; | ||
49 | margin-bottom:.0001pt; | ||
50 | page-break-after:avoid; | ||
51 | font-size:14.0pt; | ||
52 | font-family:"Calibri Light",sans-serif; | ||
53 | color:#538135; | ||
54 | font-weight:normal;} | ||
55 | h3 | ||
56 | {mso-style-link:"Heading 3 Char"; | ||
57 | margin-top:4.0pt; | ||
58 | margin-right:0cm; | ||
59 | margin-bottom:0cm; | ||
60 | margin-left:0cm; | ||
61 | margin-bottom:.0001pt; | ||
62 | page-break-after:avoid; | ||
63 | font-size:12.0pt; | ||
64 | font-family:"Calibri Light",sans-serif; | ||
65 | color:#538135; | ||
66 | font-weight:normal;} | ||
67 | h4 | ||
68 | {mso-style-link:"Heading 4 Char"; | ||
69 | margin-top:4.0pt; | ||
70 | margin-right:0cm; | ||
71 | margin-bottom:0cm; | ||
72 | margin-left:0cm; | ||
73 | margin-bottom:.0001pt; | ||
74 | line-height:120%; | ||
75 | page-break-after:avoid; | ||
76 | font-size:11.0pt; | ||
77 | font-family:"Calibri Light",sans-serif; | ||
78 | color:#70AD47; | ||
79 | font-weight:normal;} | ||
80 | h5 | ||
81 | {mso-style-link:"Heading 5 Char"; | ||
82 | margin-top:2.0pt; | ||
83 | margin-right:0cm; | ||
84 | margin-bottom:0cm; | ||
85 | margin-left:0cm; | ||
86 | margin-bottom:.0001pt; | ||
87 | line-height:120%; | ||
88 | page-break-after:avoid; | ||
89 | font-size:11.0pt; | ||
90 | font-family:"Calibri Light",sans-serif; | ||
91 | color:#70AD47; | ||
92 | font-weight:normal; | ||
93 | font-style:italic;} | ||
94 | h6 | ||
95 | {mso-style-link:"Heading 6 Char"; | ||
96 | margin-top:2.0pt; | ||
97 | margin-right:0cm; | ||
98 | margin-bottom:0cm; | ||
99 | margin-left:0cm; | ||
100 | margin-bottom:.0001pt; | ||
101 | line-height:120%; | ||
102 | page-break-after:avoid; | ||
103 | font-size:10.5pt; | ||
104 | font-family:"Calibri Light",sans-serif; | ||
105 | color:#70AD47; | ||
106 | font-weight:normal;} | ||
107 | p.MsoHeading7, li.MsoHeading7, div.MsoHeading7 | ||
108 | {mso-style-link:"Heading 7 Char"; | ||
109 | margin-top:2.0pt; | ||
110 | margin-right:0cm; | ||
111 | margin-bottom:0cm; | ||
112 | margin-left:0cm; | ||
113 | margin-bottom:.0001pt; | ||
114 | line-height:120%; | ||
115 | page-break-after:avoid; | ||
116 | font-size:10.5pt; | ||
117 | font-family:"Calibri Light",sans-serif; | ||
118 | color:#70AD47; | ||
119 | font-weight:bold;} | ||
120 | p.MsoHeading8, li.MsoHeading8, div.MsoHeading8 | ||
121 | {mso-style-link:"Heading 8 Char"; | ||
122 | margin-top:2.0pt; | ||
123 | margin-right:0cm; | ||
124 | margin-bottom:0cm; | ||
125 | margin-left:0cm; | ||
126 | margin-bottom:.0001pt; | ||
127 | line-height:120%; | ||
128 | page-break-after:avoid; | ||
129 | font-size:10.0pt; | ||
130 | font-family:"Calibri Light",sans-serif; | ||
131 | color:#70AD47; | ||
132 | font-weight:bold; | ||
133 | font-style:italic;} | ||
134 | p.MsoHeading9, li.MsoHeading9, div.MsoHeading9 | ||
135 | {mso-style-link:"Heading 9 Char"; | ||
136 | margin-top:2.0pt; | ||
137 | margin-right:0cm; | ||
138 | margin-bottom:0cm; | ||
139 | margin-left:0cm; | ||
140 | margin-bottom:.0001pt; | ||
141 | line-height:120%; | ||
142 | page-break-after:avoid; | ||
143 | font-size:10.0pt; | ||
144 | font-family:"Calibri Light",sans-serif; | ||
145 | color:#70AD47; | ||
146 | font-style:italic;} | ||
147 | p.MsoToc1, li.MsoToc1, div.MsoToc1 | ||
148 | {margin-top:0cm; | ||
149 | margin-right:0cm; | ||
150 | margin-bottom:5.0pt; | ||
151 | margin-left:0cm; | ||
152 | line-height:107%; | ||
153 | font-size:11.0pt; | ||
154 | font-family:"Calibri",sans-serif;} | ||
155 | p.MsoToc2, li.MsoToc2, div.MsoToc2 | ||
156 | {margin-top:0cm; | ||
157 | margin-right:0cm; | ||
158 | margin-bottom:5.0pt; | ||
159 | margin-left:10.5pt; | ||
160 | line-height:120%; | ||
161 | font-size:10.5pt; | ||
162 | font-family:"Calibri",sans-serif;} | ||
163 | p.MsoToc3, li.MsoToc3, div.MsoToc3 | ||
164 | {margin-top:0cm; | ||
165 | margin-right:0cm; | ||
166 | margin-bottom:5.0pt; | ||
167 | margin-left:22.0pt; | ||
168 | line-height:107%; | ||
169 | font-size:11.0pt; | ||
170 | font-family:"Calibri",sans-serif;} | ||
171 | p.MsoToc4, li.MsoToc4, div.MsoToc4 | ||
172 | {margin-top:0cm; | ||
173 | margin-right:0cm; | ||
174 | margin-bottom:5.0pt; | ||
175 | margin-left:33.0pt; | ||
176 | line-height:107%; | ||
177 | font-size:11.0pt; | ||
178 | font-family:"Calibri",sans-serif;} | ||
179 | p.MsoToc5, li.MsoToc5, div.MsoToc5 | ||
180 | {margin-top:0cm; | ||
181 | margin-right:0cm; | ||
182 | margin-bottom:5.0pt; | ||
183 | margin-left:44.0pt; | ||
184 | line-height:107%; | ||
185 | font-size:11.0pt; | ||
186 | font-family:"Calibri",sans-serif;} | ||
187 | p.MsoToc6, li.MsoToc6, div.MsoToc6 | ||
188 | {margin-top:0cm; | ||
189 | margin-right:0cm; | ||
190 | margin-bottom:5.0pt; | ||
191 | margin-left:55.0pt; | ||
192 | line-height:107%; | ||
193 | font-size:11.0pt; | ||
194 | font-family:"Calibri",sans-serif;} | ||
195 | p.MsoToc7, li.MsoToc7, div.MsoToc7 | ||
196 | {margin-top:0cm; | ||
197 | margin-right:0cm; | ||
198 | margin-bottom:5.0pt; | ||
199 | margin-left:66.0pt; | ||
200 | line-height:107%; | ||
201 | font-size:11.0pt; | ||
202 | font-family:"Calibri",sans-serif;} | ||
203 | p.MsoToc8, li.MsoToc8, div.MsoToc8 | ||
204 | {margin-top:0cm; | ||
205 | margin-right:0cm; | ||
206 | margin-bottom:5.0pt; | ||
207 | margin-left:77.0pt; | ||
208 | line-height:107%; | ||
209 | font-size:11.0pt; | ||
210 | font-family:"Calibri",sans-serif;} | ||
211 | p.MsoToc9, li.MsoToc9, div.MsoToc9 | ||
212 | {margin-top:0cm; | ||
213 | margin-right:0cm; | ||
214 | margin-bottom:5.0pt; | ||
215 | margin-left:88.0pt; | ||
216 | line-height:107%; | ||
217 | font-size:11.0pt; | ||
218 | font-family:"Calibri",sans-serif;} | ||
219 | p.MsoCaption, li.MsoCaption, div.MsoCaption | ||
220 | {margin-top:0cm; | ||
221 | margin-right:0cm; | ||
222 | margin-bottom:10.0pt; | ||
223 | margin-left:0cm; | ||
224 | font-size:10.5pt; | ||
225 | font-family:"Calibri",sans-serif; | ||
226 | font-variant:small-caps; | ||
227 | color:#595959; | ||
228 | font-weight:bold;} | ||
229 | p.MsoTitle, li.MsoTitle, div.MsoTitle | ||
230 | {mso-style-link:"Title Char"; | ||
231 | margin:0cm; | ||
232 | margin-bottom:.0001pt; | ||
233 | font-size:48.0pt; | ||
234 | font-family:"Calibri Light",sans-serif; | ||
235 | color:#262626; | ||
236 | letter-spacing:-.75pt;} | ||
237 | p.MsoTitleCxSpFirst, li.MsoTitleCxSpFirst, div.MsoTitleCxSpFirst | ||
238 | {mso-style-link:"Title Char"; | ||
239 | margin:0cm; | ||
240 | margin-bottom:.0001pt; | ||
241 | font-size:48.0pt; | ||
242 | font-family:"Calibri Light",sans-serif; | ||
243 | color:#262626; | ||
244 | letter-spacing:-.75pt;} | ||
245 | p.MsoTitleCxSpMiddle, li.MsoTitleCxSpMiddle, div.MsoTitleCxSpMiddle | ||
246 | {mso-style-link:"Title Char"; | ||
247 | margin:0cm; | ||
248 | margin-bottom:.0001pt; | ||
249 | font-size:48.0pt; | ||
250 | font-family:"Calibri Light",sans-serif; | ||
251 | color:#262626; | ||
252 | letter-spacing:-.75pt;} | ||
253 | p.MsoTitleCxSpLast, li.MsoTitleCxSpLast, div.MsoTitleCxSpLast | ||
254 | {mso-style-link:"Title Char"; | ||
255 | margin:0cm; | ||
256 | margin-bottom:.0001pt; | ||
257 | font-size:48.0pt; | ||
258 | font-family:"Calibri Light",sans-serif; | ||
259 | color:#262626; | ||
260 | letter-spacing:-.75pt;} | ||
261 | p.MsoSubtitle, li.MsoSubtitle, div.MsoSubtitle | ||
262 | {mso-style-link:"Subtitle Char"; | ||
263 | margin-top:0cm; | ||
264 | margin-right:0cm; | ||
265 | margin-bottom:10.0pt; | ||
266 | margin-left:0cm; | ||
267 | font-size:15.0pt; | ||
268 | font-family:"Calibri Light",sans-serif;} | ||
269 | a:link, span.MsoHyperlink | ||
270 | {color:#0563C1; | ||
271 | text-decoration:underline;} | ||
272 | a:visited, span.MsoHyperlinkFollowed | ||
273 | {color:#954F72; | ||
274 | text-decoration:underline;} | ||
275 | em | ||
276 | {color:#70AD47;} | ||
277 | p.MsoNoSpacing, li.MsoNoSpacing, div.MsoNoSpacing | ||
278 | {margin:0cm; | ||
279 | margin-bottom:.0001pt; | ||
280 | font-size:10.5pt; | ||
281 | font-family:"Calibri",sans-serif;} | ||
282 | p.MsoQuote, li.MsoQuote, div.MsoQuote | ||
283 | {mso-style-link:"Quote Char"; | ||
284 | margin-top:8.0pt; | ||
285 | margin-right:36.0pt; | ||
286 | margin-bottom:10.0pt; | ||
287 | margin-left:36.0pt; | ||
288 | text-align:center; | ||
289 | line-height:120%; | ||
290 | font-size:10.5pt; | ||
291 | font-family:"Calibri",sans-serif; | ||
292 | color:#262626; | ||
293 | font-style:italic;} | ||
294 | p.MsoIntenseQuote, li.MsoIntenseQuote, div.MsoIntenseQuote | ||
295 | {mso-style-link:"Intense Quote Char"; | ||
296 | margin-top:8.0pt; | ||
297 | margin-right:36.0pt; | ||
298 | margin-bottom:8.0pt; | ||
299 | margin-left:36.0pt; | ||
300 | text-align:center; | ||
301 | line-height:110%; | ||
302 | font-size:16.0pt; | ||
303 | font-family:"Calibri Light",sans-serif; | ||
304 | color:#70AD47; | ||
305 | font-style:italic;} | ||
306 | span.MsoSubtleEmphasis | ||
307 | {font-style:italic;} | ||
308 | span.MsoIntenseEmphasis | ||
309 | {font-weight:bold; | ||
310 | font-style:italic;} | ||
311 | span.MsoSubtleReference | ||
312 | {font-variant:small-caps; | ||
313 | color:#595959;} | ||
314 | span.MsoIntenseReference | ||
315 | {font-variant:small-caps; | ||
316 | color:#70AD47; | ||
317 | font-weight:bold;} | ||
318 | span.MsoBookTitle | ||
319 | {font-variant:small-caps; | ||
320 | text-transform:none; | ||
321 | letter-spacing:.35pt; | ||
322 | font-weight:bold;} | ||
323 | p.MsoTocHeading, li.MsoTocHeading, div.MsoTocHeading | ||
324 | {margin-top:18.0pt; | ||
325 | margin-right:0cm; | ||
326 | margin-bottom:2.0pt; | ||
327 | margin-left:0cm; | ||
328 | page-break-after:avoid; | ||
329 | font-size:20.0pt; | ||
330 | font-family:"Calibri Light",sans-serif; | ||
331 | color:#538135;} | ||
332 | span.Heading1Char | ||
333 | {mso-style-name:"Heading 1 Char"; | ||
334 | mso-style-link:"Heading 1"; | ||
335 | font-family:"Calibri Light",sans-serif; | ||
336 | color:#538135;} | ||
337 | span.Heading2Char | ||
338 | {mso-style-name:"Heading 2 Char"; | ||
339 | mso-style-link:"Heading 2"; | ||
340 | font-family:"Calibri Light",sans-serif; | ||
341 | color:#538135;} | ||
342 | span.Heading3Char | ||
343 | {mso-style-name:"Heading 3 Char"; | ||
344 | mso-style-link:"Heading 3"; | ||
345 | font-family:"Calibri Light",sans-serif; | ||
346 | color:#538135;} | ||
347 | span.Heading4Char | ||
348 | {mso-style-name:"Heading 4 Char"; | ||
349 | mso-style-link:"Heading 4"; | ||
350 | font-family:"Calibri Light",sans-serif; | ||
351 | color:#70AD47;} | ||
352 | span.Heading5Char | ||
353 | {mso-style-name:"Heading 5 Char"; | ||
354 | mso-style-link:"Heading 5"; | ||
355 | font-family:"Calibri Light",sans-serif; | ||
356 | color:#70AD47; | ||
357 | font-style:italic;} | ||
358 | span.Heading6Char | ||
359 | {mso-style-name:"Heading 6 Char"; | ||
360 | mso-style-link:"Heading 6"; | ||
361 | font-family:"Calibri Light",sans-serif; | ||
362 | color:#70AD47;} | ||
363 | span.Heading7Char | ||
364 | {mso-style-name:"Heading 7 Char"; | ||
365 | mso-style-link:"Heading 7"; | ||
366 | font-family:"Calibri Light",sans-serif; | ||
367 | color:#70AD47; | ||
368 | font-weight:bold;} | ||
369 | span.Heading8Char | ||
370 | {mso-style-name:"Heading 8 Char"; | ||
371 | mso-style-link:"Heading 8"; | ||
372 | font-family:"Calibri Light",sans-serif; | ||
373 | color:#70AD47; | ||
374 | font-weight:bold; | ||
375 | font-style:italic;} | ||
376 | span.Heading9Char | ||
377 | {mso-style-name:"Heading 9 Char"; | ||
378 | mso-style-link:"Heading 9"; | ||
379 | font-family:"Calibri Light",sans-serif; | ||
380 | color:#70AD47; | ||
381 | font-style:italic;} | ||
382 | span.TitleChar | ||
383 | {mso-style-name:"Title Char"; | ||
384 | mso-style-link:Title; | ||
385 | font-family:"Calibri Light",sans-serif; | ||
386 | color:#262626; | ||
387 | letter-spacing:-.75pt;} | ||
388 | span.SubtitleChar | ||
389 | {mso-style-name:"Subtitle Char"; | ||
390 | mso-style-link:Subtitle; | ||
391 | font-family:"Calibri Light",sans-serif;} | ||
392 | span.QuoteChar | ||
393 | {mso-style-name:"Quote Char"; | ||
394 | mso-style-link:Quote; | ||
395 | color:#262626; | ||
396 | font-style:italic;} | ||
397 | span.IntenseQuoteChar | ||
398 | {mso-style-name:"Intense Quote Char"; | ||
399 | mso-style-link:"Intense Quote"; | ||
400 | font-family:"Calibri Light",sans-serif; | ||
401 | color:#70AD47; | ||
402 | font-style:italic;} | ||
403 | .MsoChpDefault | ||
404 | {font-size:10.5pt; | ||
405 | font-family:"Calibri",sans-serif;} | ||
406 | .MsoPapDefault | ||
407 | {margin-bottom:10.0pt; | ||
408 | line-height:120%;} | ||
409 | @page WordSection1 | ||
410 | {size:595.3pt 841.9pt; | ||
411 | margin:72.0pt 72.0pt 72.0pt 72.0pt;} | ||
412 | div.WordSection1 | ||
413 | {page:WordSection1;} | ||
414 | --> | ||
415 | </style> | ||
416 | |||
417 | </head> | ||
418 | |||
419 | <body lang=EN-US link="#0563C1" vlink="#954F72"> | ||
420 | |||
421 | <div class=WordSection1> | ||
422 | |||
423 | <p class=MsoTocHeading>HBP Tools list</p> | ||
424 | |||
425 | <p class=MsoToc2><span lang=en-DE><span class=MsoHyperlink><a | ||
426 | href="#_Toc138932248">AngoraPy<span style='color:windowtext;display:none; | ||
427 | text-decoration:none'>. </span><span | ||
428 | style='color:windowtext;display:none;text-decoration:none'>5</span></a></span></span></p> | ||
429 | |||
430 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
431 | href="#_Toc138932249">AnonyMI<span style='color:windowtext;display:none; | ||
432 | text-decoration:none'> </span><span | ||
433 | style='color:windowtext;display:none;text-decoration:none'>5</span></a></span></span></p> | ||
434 | |||
435 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
436 | href="#_Toc138932250">Arbor<span style='color:windowtext;display:none; | ||
437 | text-decoration:none'> </span><span | ||
438 | style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p> | ||
439 | |||
440 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
441 | href="#_Toc138932251">Arbor GUI<span style='color:windowtext;display:none; | ||
442 | text-decoration:none'> </span><span | ||
443 | style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p> | ||
444 | |||
445 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
446 | href="#_Toc138932252">Bayesian Virtual Epileptic Patient (BVEP)<span | ||
447 | style='color:windowtext;display:none;text-decoration:none'> </span><span | ||
448 | style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p> | ||
449 | |||
450 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
451 | href="#_Toc138932253">BIDS Extension Proposal Computational Model | ||
452 | Specifications<span style='color:windowtext;display:none;text-decoration:none'>. </span><span | ||
453 | style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p> | ||
454 | |||
455 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
456 | href="#_Toc138932254">BioBB<span style='color:windowtext;display:none; | ||
457 | text-decoration:none'>. </span><span | ||
458 | style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p> | ||
459 | |||
460 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
461 | href="#_Toc138932255">BioExcel-CV19<span style='color:windowtext;display:none; | ||
462 | text-decoration:none'>. </span><span | ||
463 | style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p> | ||
464 | |||
465 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
466 | href="#_Toc138932256">BioNAR<span style='color:windowtext;display:none; | ||
467 | text-decoration:none'>. </span><span | ||
468 | style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p> | ||
469 | |||
470 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
471 | href="#_Toc138932257">BlueNaaS-single cell<span style='color:windowtext; | ||
472 | display:none;text-decoration:none'> </span><span | ||
473 | style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p> | ||
474 | |||
475 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
476 | href="#_Toc138932258">BlueNaaS-subcellular<span style='color:windowtext; | ||
477 | display:none;text-decoration:none'> </span><span | ||
478 | style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p> | ||
479 | |||
480 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
481 | href="#_Toc138932259">BluePyEfe<span style='color:windowtext;display:none; | ||
482 | text-decoration:none'>. </span><span | ||
483 | style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p> | ||
484 | |||
485 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
486 | href="#_Toc138932260">BluePyMM<span style='color:windowtext;display:none; | ||
487 | text-decoration:none'>... </span><span | ||
488 | style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p> | ||
489 | |||
490 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
491 | href="#_Toc138932261">BluePyOpt<span style='color:windowtext;display:none; | ||
492 | text-decoration:none'> </span><span | ||
493 | style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p> | ||
494 | |||
495 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
496 | href="#_Toc138932262">Brain Cockpit<span style='color:windowtext;display:none; | ||
497 | text-decoration:none'> </span><span | ||
498 | style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p> | ||
499 | |||
500 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
501 | href="#_Toc138932263">BrainScaleS<span style='color:windowtext;display:none; | ||
502 | text-decoration:none'>. </span><span | ||
503 | style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p> | ||
504 | |||
505 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
506 | href="#_Toc138932264">Brayns<span style='color:windowtext;display:none; | ||
507 | text-decoration:none'>. </span><span | ||
508 | style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p> | ||
509 | |||
510 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
511 | href="#_Toc138932265">Brion<span style='color:windowtext;display:none; | ||
512 | text-decoration:none'>. </span><span | ||
513 | style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p> | ||
514 | |||
515 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
516 | href="#_Toc138932266">BSB<span style='color:windowtext;display:none;text-decoration: | ||
517 | none'>. </span><span | ||
518 | style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p> | ||
519 | |||
520 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
521 | href="#_Toc138932267">BSP Service Account<span style='color:windowtext; | ||
522 | display:none;text-decoration:none'> </span><span | ||
523 | style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p> | ||
524 | |||
525 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
526 | href="#_Toc138932268">bsp-usecase-wizard<span style='color:windowtext; | ||
527 | display:none;text-decoration:none'>. </span><span | ||
528 | style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p> | ||
529 | |||
530 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
531 | href="#_Toc138932269">CGMD Platform<span style='color:windowtext;display:none; | ||
532 | text-decoration:none'>.. </span><span | ||
533 | style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p> | ||
534 | |||
535 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
536 | href="#_Toc138932270">CNS-ligands<span style='color:windowtext;display:none; | ||
537 | text-decoration:none'>. </span><span | ||
538 | style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p> | ||
539 | |||
540 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
541 | href="#_Toc138932271">Cobrawap<span style='color:windowtext;display:none; | ||
542 | text-decoration:none'>. </span><span | ||
543 | style='color:windowtext;display:none;text-decoration:none'>10</span></a></span></span></p> | ||
544 | |||
545 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
546 | href="#_Toc138932272">Collaboratory Bucket service<span style='color:windowtext; | ||
547 | display:none;text-decoration:none'>. </span><span | ||
548 | style='color:windowtext;display:none;text-decoration:none'>10</span></a></span></span></p> | ||
549 | |||
550 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
551 | href="#_Toc138932273">Collaboratory Drive<span style='color:windowtext; | ||
552 | display:none;text-decoration:none'>. </span><span | ||
553 | style='color:windowtext;display:none;text-decoration:none'>10</span></a></span></span></p> | ||
554 | |||
555 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
556 | href="#_Toc138932274">Collaboratory IAM<span style='color:windowtext; | ||
557 | display:none;text-decoration:none'>... </span><span | ||
558 | style='color:windowtext;display:none;text-decoration:none'>10</span></a></span></span></p> | ||
559 | |||
560 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
561 | href="#_Toc138932275">Collaboratory Lab<span style='color:windowtext; | ||
562 | display:none;text-decoration:none'>. </span><span | ||
563 | style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p> | ||
564 | |||
565 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
566 | href="#_Toc138932276">Collaboratory Office<span style='color:windowtext; | ||
567 | display:none;text-decoration:none'>. </span><span | ||
568 | style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p> | ||
569 | |||
570 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
571 | href="#_Toc138932277">Collaboratory Wiki<span style='color:windowtext; | ||
572 | display:none;text-decoration:none'> </span><span | ||
573 | style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p> | ||
574 | |||
575 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
576 | href="#_Toc138932278">CoreNEURON<span style='color:windowtext;display:none; | ||
577 | text-decoration:none'>.. </span><span | ||
578 | style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p> | ||
579 | |||
580 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
581 | href="#_Toc138932279">CxSystem2<span style='color:windowtext;display:none; | ||
582 | text-decoration:none'>. </span><span | ||
583 | style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p> | ||
584 | |||
585 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
586 | href="#_Toc138932280">DeepSlice<span style='color:windowtext;display:none; | ||
587 | text-decoration:none'>. </span><span | ||
588 | style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p> | ||
589 | |||
590 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
591 | href="#_Toc138932281">EBRAINS Ethics & Society Toolkit<span | ||
592 | style='color:windowtext;display:none;text-decoration:none'> </span><span | ||
593 | style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p> | ||
594 | |||
595 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
596 | href="#_Toc138932282">EBRAINS Image Service<span style='color:windowtext; | ||
597 | display:none;text-decoration:none'>. </span><span | ||
598 | style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p> | ||
599 | |||
600 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
601 | href="#_Toc138932283">EBRAINS Knowledge Graph<span style='color:windowtext; | ||
602 | display:none;text-decoration:none'>. </span><span | ||
603 | style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p> | ||
604 | |||
605 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
606 | href="#_Toc138932284">EDI Toolkit<span style='color:windowtext;display:none; | ||
607 | text-decoration:none'> </span><span | ||
608 | style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p> | ||
609 | |||
610 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
611 | href="#_Toc138932285">eFEL<span style='color:windowtext;display:none; | ||
612 | text-decoration:none'>. </span><span | ||
613 | style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p> | ||
614 | |||
615 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
616 | href="#_Toc138932286">Electrophysiology Analysis Toolkit<span style='color: | ||
617 | windowtext;display:none;text-decoration:none'> </span><span | ||
618 | style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p> | ||
619 | |||
620 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
621 | href="#_Toc138932287">FAConstructor<span style='color:windowtext;display:none; | ||
622 | text-decoration:none'> </span><span | ||
623 | style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p> | ||
624 | |||
625 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
626 | href="#_Toc138932288">fairgraph<span style='color:windowtext;display:none; | ||
627 | text-decoration:none'>. </span><span | ||
628 | style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p> | ||
629 | |||
630 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
631 | href="#_Toc138932289">Fast sampling with neuromorphic hardware<span | ||
632 | style='color:windowtext;display:none;text-decoration:none'>. </span><span | ||
633 | style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p> | ||
634 | |||
635 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
636 | href="#_Toc138932290">fastPLI<span style='color:windowtext;display:none; | ||
637 | text-decoration:none'> </span><span | ||
638 | style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p> | ||
639 | |||
640 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
641 | href="#_Toc138932291">Feed-forward LFP-MEG estimator from mean-field models<span | ||
642 | style='color:windowtext;display:none;text-decoration:none'>. </span><span | ||
643 | style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p> | ||
644 | |||
645 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
646 | href="#_Toc138932292">FIL<span style='color:windowtext;display:none;text-decoration: | ||
647 | none'>. </span><span | ||
648 | style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p> | ||
649 | |||
650 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
651 | href="#_Toc138932293">FMRALIGN<span style='color:windowtext;display:none; | ||
652 | text-decoration:none'>.. </span><span | ||
653 | style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p> | ||
654 | |||
655 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
656 | href="#_Toc138932294">Foa3D<span style='color:windowtext;display:none; | ||
657 | text-decoration:none'>.. </span><span | ||
658 | style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p> | ||
659 | |||
660 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
661 | href="#_Toc138932295">Frites<span style='color:windowtext;display:none; | ||
662 | text-decoration:none'>. </span><span | ||
663 | style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p> | ||
664 | |||
665 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
666 | href="#_Toc138932296">gridspeccer<span style='color:windowtext;display:none; | ||
667 | text-decoration:none'> </span><span | ||
668 | style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p> | ||
669 | |||
670 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
671 | href="#_Toc138932297">Hal-Cgp<span style='color:windowtext;display:none; | ||
672 | text-decoration:none'>. </span><span | ||
673 | style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p> | ||
674 | |||
675 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
676 | href="#_Toc138932298">Health Data Cloud<span style='color:windowtext; | ||
677 | display:none;text-decoration:none'>. </span><span | ||
678 | style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p> | ||
679 | |||
680 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
681 | href="#_Toc138932299">Hodgkin-Huxley Neuron Builder<span style='color:windowtext; | ||
682 | display:none;text-decoration:none'> </span><span | ||
683 | style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p> | ||
684 | |||
685 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
686 | href="#_Toc138932300">HPC Job Proxy<span style='color:windowtext;display:none; | ||
687 | text-decoration:none'>. </span><span | ||
688 | style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p> | ||
689 | |||
690 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
691 | href="#_Toc138932301">HPC Status Monitor<span style='color:windowtext; | ||
692 | display:none;text-decoration:none'> </span><span | ||
693 | style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p> | ||
694 | |||
695 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
696 | href="#_Toc138932302">Human Intracerebral EEG Platform<span style='color:windowtext; | ||
697 | display:none;text-decoration:none'>.. </span><span | ||
698 | style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p> | ||
699 | |||
700 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
701 | href="#_Toc138932303">Hybrid MM/CG Webserver<span style='color:windowtext; | ||
702 | display:none;text-decoration:none'> </span><span | ||
703 | style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p> | ||
704 | |||
705 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
706 | href="#_Toc138932304">Insite<span style='color:windowtext;display:none; | ||
707 | text-decoration:none'>. </span><span | ||
708 | style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p> | ||
709 | |||
710 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
711 | href="#_Toc138932305">Interactive Brain Atlas Viewer<span style='color:windowtext; | ||
712 | display:none;text-decoration:none'> </span><span | ||
713 | style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p> | ||
714 | |||
715 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
716 | href="#_Toc138932306">JuGEx<span style='color:windowtext;display:none; | ||
717 | text-decoration:none'>. </span><span | ||
718 | style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p> | ||
719 | |||
720 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
721 | href="#_Toc138932307">KnowledgeSpace<span style='color:windowtext;display:none; | ||
722 | text-decoration:none'>. </span><span | ||
723 | style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p> | ||
724 | |||
725 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
726 | href="#_Toc138932308">L2L<span style='color:windowtext;display:none;text-decoration: | ||
727 | none'>. </span><span | ||
728 | style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p> | ||
729 | |||
730 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
731 | href="#_Toc138932309">Leveltlab/SpectralSegmentation<span style='color:windowtext; | ||
732 | display:none;text-decoration:none'>. </span><span | ||
733 | style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p> | ||
734 | |||
735 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
736 | href="#_Toc138932310">LFPy<span style='color:windowtext;display:none; | ||
737 | text-decoration:none'>. </span><span | ||
738 | style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p> | ||
739 | |||
740 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
741 | href="#_Toc138932311">libsonata<span style='color:windowtext;display:none; | ||
742 | text-decoration:none'>. </span><span | ||
743 | style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p> | ||
744 | |||
745 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
746 | href="#_Toc138932312">Live Papers<span style='color:windowtext;display:none; | ||
747 | text-decoration:none'>. </span><span | ||
748 | style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p> | ||
749 | |||
750 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
751 | href="#_Toc138932313">Livre<span style='color:windowtext;display:none; | ||
752 | text-decoration:none'>. </span><span | ||
753 | style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p> | ||
754 | |||
755 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
756 | href="#_Toc138932314">LocaliZoom<span style='color:windowtext;display:none; | ||
757 | text-decoration:none'>.. </span><span | ||
758 | style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p> | ||
759 | |||
760 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
761 | href="#_Toc138932315">MD-IFP<span style='color:windowtext;display:none; | ||
762 | text-decoration:none'>. </span><span | ||
763 | style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p> | ||
764 | |||
765 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
766 | href="#_Toc138932316">MEDUSA<span style='color:windowtext;display:none; | ||
767 | text-decoration:none'>. </span><span | ||
768 | style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p> | ||
769 | |||
770 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
771 | href="#_Toc138932317">MeshView<span style='color:windowtext;display:none; | ||
772 | text-decoration:none'>.. </span><span | ||
773 | style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p> | ||
774 | |||
775 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
776 | href="#_Toc138932318">MIP<span style='color:windowtext;display:none;text-decoration: | ||
777 | none'>. </span><span | ||
778 | style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p> | ||
779 | |||
780 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
781 | href="#_Toc138932319">Model Validation Service<span style='color:windowtext; | ||
782 | display:none;text-decoration:none'>. </span><span | ||
783 | style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p> | ||
784 | |||
785 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
786 | href="#_Toc138932320">Model Validation Test Suites<span style='color:windowtext; | ||
787 | display:none;text-decoration:none'>. </span><span | ||
788 | style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p> | ||
789 | |||
790 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
791 | href="#_Toc138932321">MoDEL-CNS<span style='color:windowtext;display:none; | ||
792 | text-decoration:none'>. </span><span | ||
793 | style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p> | ||
794 | |||
795 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
796 | href="#_Toc138932322">Modular Science<span style='color:windowtext;display: | ||
797 | none;text-decoration:none'>. </span><span | ||
798 | style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p> | ||
799 | |||
800 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
801 | href="#_Toc138932323">Monsteer<span style='color:windowtext;display:none; | ||
802 | text-decoration:none'> </span><span | ||
803 | style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p> | ||
804 | |||
805 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
806 | href="#_Toc138932324">MorphIO<span style='color:windowtext;display:none; | ||
807 | text-decoration:none'>.. </span><span | ||
808 | style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p> | ||
809 | |||
810 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
811 | href="#_Toc138932325">Morphology alignment tool<span style='color:windowtext; | ||
812 | display:none;text-decoration:none'> </span><span | ||
813 | style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p> | ||
814 | |||
815 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
816 | href="#_Toc138932326">MorphTool<span style='color:windowtext;display:none; | ||
817 | text-decoration:none'> </span><span | ||
818 | style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p> | ||
819 | |||
820 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
821 | href="#_Toc138932327">Multi-Brain<span style='color:windowtext;display:none; | ||
822 | text-decoration:none'>. </span><span | ||
823 | style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p> | ||
824 | |||
825 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
826 | href="#_Toc138932328">Multi-Image-OSD<span style='color:windowtext;display: | ||
827 | none;text-decoration:none'>.. </span><span | ||
828 | style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p> | ||
829 | |||
830 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
831 | href="#_Toc138932329">MUSIC<span style='color:windowtext;display:none; | ||
832 | text-decoration:none'>. </span><span | ||
833 | style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p> | ||
834 | |||
835 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
836 | href="#_Toc138932330">NEAT<span style='color:windowtext;display:none; | ||
837 | text-decoration:none'>. </span><span | ||
838 | style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p> | ||
839 | |||
840 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
841 | href="#_Toc138932331">Neo<span style='color:windowtext;display:none;text-decoration: | ||
842 | none'>. </span><span | ||
843 | style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p> | ||
844 | |||
845 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
846 | href="#_Toc138932332">Neo Viewer<span style='color:windowtext;display:none; | ||
847 | text-decoration:none'> </span><span | ||
848 | style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p> | ||
849 | |||
850 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
851 | href="#_Toc138932333">NEST Desktop<span style='color:windowtext;display:none; | ||
852 | text-decoration:none'>. </span><span | ||
853 | style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p> | ||
854 | |||
855 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
856 | href="#_Toc138932334">NEST Simulator<span style='color:windowtext;display:none; | ||
857 | text-decoration:none'> </span><span | ||
858 | style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p> | ||
859 | |||
860 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
861 | href="#_Toc138932335">NESTML<span style='color:windowtext;display:none; | ||
862 | text-decoration:none'>. </span><span | ||
863 | style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p> | ||
864 | |||
865 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
866 | href="#_Toc138932336">NetPyNE<span style='color:windowtext;display:none; | ||
867 | text-decoration:none'>. </span><span | ||
868 | style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p> | ||
869 | |||
870 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
871 | href="#_Toc138932337">NEURO-CONNECT<span style='color:windowtext;display:none; | ||
872 | text-decoration:none'>. </span><span | ||
873 | style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p> | ||
874 | |||
875 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
876 | href="#_Toc138932338">NeuroFeatureExtract<span style='color:windowtext; | ||
877 | display:none;text-decoration:none'> </span><span | ||
878 | style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p> | ||
879 | |||
880 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
881 | href="#_Toc138932339">NeurogenPy<span style='color:windowtext;display:none; | ||
882 | text-decoration:none'>. </span><span | ||
883 | style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p> | ||
884 | |||
885 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
886 | href="#_Toc138932340">NeuroM<span style='color:windowtext;display:none; | ||
887 | text-decoration:none'>... </span><span | ||
888 | style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p> | ||
889 | |||
890 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
891 | href="#_Toc138932341">Neuromorphic Computing Job Queue<span style='color:windowtext; | ||
892 | display:none;text-decoration:none'>. </span><span | ||
893 | style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p> | ||
894 | |||
895 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
896 | href="#_Toc138932342">Neuronize v2<span style='color:windowtext;display:none; | ||
897 | text-decoration:none'>. </span><span | ||
898 | style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p> | ||
899 | |||
900 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
901 | href="#_Toc138932343">NeuroR<span style='color:windowtext;display:none; | ||
902 | text-decoration:none'>. </span><span | ||
903 | style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p> | ||
904 | |||
905 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
906 | href="#_Toc138932344">Neurorobotics Platform<span style='color:windowtext; | ||
907 | display:none;text-decoration:none'>.. </span><span | ||
908 | style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p> | ||
909 | |||
910 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
911 | href="#_Toc138932345">Neurorobotics Platform Robot Designer<span | ||
912 | style='color:windowtext;display:none;text-decoration:none'> </span><span | ||
913 | style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p> | ||
914 | |||
915 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
916 | href="#_Toc138932346">NeuroScheme<span style='color:windowtext;display:none; | ||
917 | text-decoration:none'>. </span><span | ||
918 | style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p> | ||
919 | |||
920 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
921 | href="#_Toc138932347">NeuroSuites<span style='color:windowtext;display:none; | ||
922 | text-decoration:none'>. </span><span | ||
923 | style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p> | ||
924 | |||
925 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
926 | href="#_Toc138932348">NeuroTessMesh<span style='color:windowtext;display:none; | ||
927 | text-decoration:none'>. </span><span | ||
928 | style='color:windowtext;display:none;text-decoration:none'>25</span></a></span></span></p> | ||
929 | |||
930 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
931 | href="#_Toc138932349">NMODL Framework<span style='color:windowtext;display: | ||
932 | none;text-decoration:none'>. </span><span | ||
933 | style='color:windowtext;display:none;text-decoration:none'>25</span></a></span></span></p> | ||
934 | |||
935 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
936 | href="#_Toc138932350">NSuite<span style='color:windowtext;display:none; | ||
937 | text-decoration:none'>. </span><span | ||
938 | style='color:windowtext;display:none;text-decoration:none'>25</span></a></span></span></p> | ||
939 | |||
940 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
941 | href="#_Toc138932351">ODE-toolbox<span style='color:windowtext;display:none; | ||
942 | text-decoration:none'>. </span><span | ||
943 | style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> | ||
944 | |||
945 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
946 | href="#_Toc138932352">openMINDS<span style='color:windowtext;display:none; | ||
947 | text-decoration:none'>. </span><span | ||
948 | style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> | ||
949 | |||
950 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
951 | href="#_Toc138932353">openMINDS metadata for TVB-ready data<span | ||
952 | style='color:windowtext;display:none;text-decoration:none'>. </span><span | ||
953 | style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> | ||
954 | |||
955 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
956 | href="#_Toc138932354">PCI<span style='color:windowtext;display:none;text-decoration: | ||
957 | none'> </span><span | ||
958 | style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> | ||
959 | |||
960 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
961 | href="#_Toc138932355">PIPSA<span style='color:windowtext;display:none; | ||
962 | text-decoration:none'>. </span><span | ||
963 | style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> | ||
964 | |||
965 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
966 | href="#_Toc138932356">PoSCE<span style='color:windowtext;display:none; | ||
967 | text-decoration:none'>. </span><span | ||
968 | style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> | ||
969 | |||
970 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
971 | href="#_Toc138932357">Provenance API<span style='color:windowtext;display:none; | ||
972 | text-decoration:none'> </span><span | ||
973 | style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> | ||
974 | |||
975 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
976 | href="#_Toc138932358">PyNN<span style='color:windowtext;display:none; | ||
977 | text-decoration:none'>.. </span><span | ||
978 | style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p> | ||
979 | |||
980 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
981 | href="#_Toc138932359">Pyramidal Explorer<span style='color:windowtext; | ||
982 | display:none;text-decoration:none'> </span><span | ||
983 | style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p> | ||
984 | |||
985 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
986 | href="#_Toc138932360">QCAlign software<span style='color:windowtext;display: | ||
987 | none;text-decoration:none'>. </span><span | ||
988 | style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p> | ||
989 | |||
990 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
991 | href="#_Toc138932361">QuickNII<span style='color:windowtext;display:none; | ||
992 | text-decoration:none'> </span><span | ||
993 | style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p> | ||
994 | |||
995 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
996 | href="#_Toc138932362">Quota Manager<span style='color:windowtext;display:none; | ||
997 | text-decoration:none'> </span><span | ||
998 | style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p> | ||
999 | |||
1000 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1001 | href="#_Toc138932363">RateML<span style='color:windowtext;display:none; | ||
1002 | text-decoration:none'>. </span><span | ||
1003 | style='color:windowtext;display:none;text-decoration:none'>28</span></a></span></span></p> | ||
1004 | |||
1005 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1006 | href="#_Toc138932364">Region-wise CBPP using the Julich BrainÊCytoarchitectonic | ||
1007 | Atlas<span style='color:windowtext;display:none;text-decoration:none'>. </span><span | ||
1008 | style='color:windowtext;display:none;text-decoration:none'>28</span></a></span></span></p> | ||
1009 | |||
1010 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1011 | href="#_Toc138932365">RRI Capacity Development Resources<span style='color: | ||
1012 | windowtext;display:none;text-decoration:none'>. </span><span | ||
1013 | style='color:windowtext;display:none;text-decoration:none'>28</span></a></span></span></p> | ||
1014 | |||
1015 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1016 | href="#_Toc138932366">rsHRF<span style='color:windowtext;display:none; | ||
1017 | text-decoration:none'>. </span><span | ||
1018 | style='color:windowtext;display:none;text-decoration:none'>28</span></a></span></span></p> | ||
1019 | |||
1020 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1021 | href="#_Toc138932367">RTNeuron<span style='color:windowtext;display:none; | ||
1022 | text-decoration:none'>. </span><span | ||
1023 | style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p> | ||
1024 | |||
1025 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1026 | href="#_Toc138932368">sbs: Spike-based Sampling<span style='color:windowtext; | ||
1027 | display:none;text-decoration:none'>. </span><span | ||
1028 | style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p> | ||
1029 | |||
1030 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1031 | href="#_Toc138932369">SDA 7<span style='color:windowtext;display:none; | ||
1032 | text-decoration:none'>. </span><span | ||
1033 | style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p> | ||
1034 | |||
1035 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1036 | href="#_Toc138932370">Shape & Appearance Modelling<span style='color:windowtext; | ||
1037 | display:none;text-decoration:none'>. </span><span | ||
1038 | style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p> | ||
1039 | |||
1040 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1041 | href="#_Toc138932371">siibra-api<span style='color:windowtext;display:none; | ||
1042 | text-decoration:none'> </span><span | ||
1043 | style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p> | ||
1044 | |||
1045 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1046 | href="#_Toc138932372">siibra-explorer<span style='color:windowtext;display: | ||
1047 | none;text-decoration:none'> </span><span | ||
1048 | style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p> | ||
1049 | |||
1050 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1051 | href="#_Toc138932373">siibra-python<span style='color:windowtext;display:none; | ||
1052 | text-decoration:none'>. </span><span | ||
1053 | style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p> | ||
1054 | |||
1055 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1056 | href="#_Toc138932374">Single Cell Model (Re)builder Notebook<span | ||
1057 | style='color:windowtext;display:none;text-decoration:none'>. </span><span | ||
1058 | style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p> | ||
1059 | |||
1060 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1061 | href="#_Toc138932375">Slurm Plugin for Co-allocation of Compute and Data | ||
1062 | Resources<span style='color:windowtext;display:none;text-decoration:none'>. </span><span | ||
1063 | style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p> | ||
1064 | |||
1065 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1066 | href="#_Toc138932376">Snudda<span style='color:windowtext;display:none; | ||
1067 | text-decoration:none'>. </span><span | ||
1068 | style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p> | ||
1069 | |||
1070 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1071 | href="#_Toc138932377">SomaSegmenter<span style='color:windowtext;display:none; | ||
1072 | text-decoration:none'> </span><span | ||
1073 | style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p> | ||
1074 | |||
1075 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1076 | href="#_Toc138932378">SpiNNaker<span style='color:windowtext;display:none; | ||
1077 | text-decoration:none'> </span><span | ||
1078 | style='color:windowtext;display:none;text-decoration:none'>31</span></a></span></span></p> | ||
1079 | |||
1080 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1081 | href="#_Toc138932379">SSB toolkit<span style='color:windowtext;display:none; | ||
1082 | text-decoration:none'> </span><span | ||
1083 | style='color:windowtext;display:none;text-decoration:none'>31</span></a></span></span></p> | ||
1084 | |||
1085 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1086 | href="#_Toc138932380">Subcellular model building and calibration tool set<span | ||
1087 | style='color:windowtext;display:none;text-decoration:none'> </span><span | ||
1088 | style='color:windowtext;display:none;text-decoration:none'>31</span></a></span></span></p> | ||
1089 | |||
1090 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1091 | href="#_Toc138932381">Synaptic Events Fitting<span style='color:windowtext; | ||
1092 | display:none;text-decoration:none'>. </span><span | ||
1093 | style='color:windowtext;display:none;text-decoration:none'>31</span></a></span></span></p> | ||
1094 | |||
1095 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1096 | href="#_Toc138932382">Synaptic Plasticity Explorer<span style='color:windowtext; | ||
1097 | display:none;text-decoration:none'> </span><span | ||
1098 | style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p> | ||
1099 | |||
1100 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1101 | href="#_Toc138932383">Synaptic proteome database (SQLite)<span | ||
1102 | style='color:windowtext;display:none;text-decoration:none'> </span><span | ||
1103 | style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p> | ||
1104 | |||
1105 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1106 | href="#_Toc138932384">Synaptome.db<span style='color:windowtext;display:none; | ||
1107 | text-decoration:none'>. </span><span | ||
1108 | style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p> | ||
1109 | |||
1110 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1111 | href="#_Toc138932385">Tide<span style='color:windowtext;display:none; | ||
1112 | text-decoration:none'>. </span><span | ||
1113 | style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p> | ||
1114 | |||
1115 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1116 | href="#_Toc138932386">TVB EBRAINS<span style='color:windowtext;display:none; | ||
1117 | text-decoration:none'>. </span><span | ||
1118 | style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p> | ||
1119 | |||
1120 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1121 | href="#_Toc138932387">TVB Image Processing Pipeline<span style='color:windowtext; | ||
1122 | display:none;text-decoration:none'>. </span><span | ||
1123 | style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p> | ||
1124 | |||
1125 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1126 | href="#_Toc138932388">TVB Inversion<span style='color:windowtext;display:none; | ||
1127 | text-decoration:none'>. </span><span | ||
1128 | style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p> | ||
1129 | |||
1130 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1131 | href="#_Toc138932389">TVB Web App<span style='color:windowtext;display:none; | ||
1132 | text-decoration:none'>. </span><span | ||
1133 | style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p> | ||
1134 | |||
1135 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1136 | href="#_Toc138932390">TVB Widgets<span style='color:windowtext;display:none; | ||
1137 | text-decoration:none'>. </span><span | ||
1138 | style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p> | ||
1139 | |||
1140 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1141 | href="#_Toc138932391">TVB-Multiscale<span style='color:windowtext;display:none; | ||
1142 | text-decoration:none'>. </span><span | ||
1143 | style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p> | ||
1144 | |||
1145 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1146 | href="#_Toc138932392">VIOLA<span style='color:windowtext;display:none; | ||
1147 | text-decoration:none'>. </span><span | ||
1148 | style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p> | ||
1149 | |||
1150 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1151 | href="#_Toc138932393">Vishnu 1.0<span style='color:windowtext;display:none; | ||
1152 | text-decoration:none'>. </span><span | ||
1153 | style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p> | ||
1154 | |||
1155 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1156 | href="#_Toc138932394">ViSimpl<span style='color:windowtext;display:none; | ||
1157 | text-decoration:none'> </span><span | ||
1158 | style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p> | ||
1159 | |||
1160 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1161 | href="#_Toc138932395">VisuAlign<span style='color:windowtext;display:none; | ||
1162 | text-decoration:none'>. </span><span | ||
1163 | style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p> | ||
1164 | |||
1165 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1166 | href="#_Toc138932396">VMetaFlow<span style='color:windowtext;display:none; | ||
1167 | text-decoration:none'>.. </span><span | ||
1168 | style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p> | ||
1169 | |||
1170 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1171 | href="#_Toc138932397">Voluba<span style='color:windowtext;display:none; | ||
1172 | text-decoration:none'>. </span><span | ||
1173 | style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p> | ||
1174 | |||
1175 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1176 | href="#_Toc138932398">WebAlign<span style='color:windowtext;display:none; | ||
1177 | text-decoration:none'>. </span><span | ||
1178 | style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p> | ||
1179 | |||
1180 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1181 | href="#_Toc138932399">Webilastik<span style='color:windowtext;display:none; | ||
1182 | text-decoration:none'>. </span><span | ||
1183 | style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p> | ||
1184 | |||
1185 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1186 | href="#_Toc138932400">WebWarp<span style='color:windowtext;display:none; | ||
1187 | text-decoration:none'>. </span><span | ||
1188 | style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p> | ||
1189 | |||
1190 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1191 | href="#_Toc138932401">ZetaStitcher<span style='color:windowtext;display:none; | ||
1192 | text-decoration:none'> </span><span | ||
1193 | style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p> | ||
1194 | |||
1195 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
1196 | href="#_Toc138932402">TauRAMD<span style='color:windowtext;display:none; | ||
1197 | text-decoration:none'>.. </span><span | ||
1198 | style='color:windowtext;display:none;text-decoration:none'>36</span></a></span></span></p> | ||
1199 | |||
1200 | <p class=MsoNormal><span lang=en-DE> </span></p> | ||
1201 | |||
1202 | <h2><a name="_Toc138932248"><span lang=en-DE>AngoraPy</span></a></h2> | ||
1203 | |||
1204 | <p class=MsoNormal><span lang=en-DE>AngoraPy is an open-source Python library | ||
1205 | that helps neuroscientists build and train goal-driven models of the sensorimotor | ||
1206 | system. The toolbox comprises state-of-the-art machine learning techniques | ||
1207 | under the hood of an easy-to-use API. With the help of deep reinforcement | ||
1208 | learning, the connectivity required for solving complex, ecologically valid | ||
1209 | tasks, can be learned autonomously, obviating the need for hand-engineered or | ||
1210 | hypothesis-driven connectivity patterns. With AngoraPy, neuroscientists can | ||
1211 | train custom deep neural networks on custom sensorimotor tasks.</span></p> | ||
1212 | |||
1213 | <h2></h2> | ||
1214 | |||
1215 | <h2><a name="_Toc138932249"><span lang=en-DE>AnonyMI</span></a></h2> | ||
1216 | |||
1217 | <p class=MsoNormal><span lang=en-DE>AnonyMI is an MRI de-identification tool | ||
1218 | that uses 3D surface modelling in order to de-identify MRIs while retaining as | ||
1219 | much geometrical information as possible. It can be run automatically or | ||
1220 | manually, which allows precise tailoring for specific needs. AnonyMI is | ||
1221 | distributed as a plug-in of 3D Slicer, a widely used, open-source, stable and | ||
1222 | reliable image-processing software. It leverages the power of this platform for | ||
1223 | reading and saving images, which makes it applicable on almost any MRI file | ||
1224 | type, including all the most commonly used formats (e.g., DICOM, Nifti, Analyze | ||
1225 | etc.).</span></p> | ||
1226 | |||
1227 | <h2></h2> | ||
1228 | |||
1229 | <h2><a name="_Toc138932250"><span lang=en-DE>Arbor</span></a></h2> | ||
1230 | |||
1231 | <p class=MsoNormal><span lang=en-DE>Arbor is a simulation software library for | ||
1232 | neuron models with complex morphologies Ñ from single cells to large | ||
1233 | distributed networks. Developed entirely inside HBP, it enables running | ||
1234 | large-scale simulations on any HPC, including those available through EBRAINS. | ||
1235 | Arbor provides performance portability for native execution on all HPC | ||
1236 | architectures. Optimized vectorized code is generated for Intel, AMD and ARM | ||
1237 | CPUs, NVIDIA and AMD GPUs, and support will be added for new architectures as | ||
1238 | they become available. Model portability is easier due to an interface for | ||
1239 | model description independent of how Arbor represents models internally. | ||
1240 | Interoperability with other simulation engines is enabled via API for spike | ||
1241 | exchange and the output of voltages, currents and model state.</span></p> | ||
1242 | |||
1243 | <h2></h2> | ||
1244 | |||
1245 | <h2><a name="_Toc138932251"><span lang=en-DE>Arbor GUI</span></a></h2> | ||
1246 | |||
1247 | <p class=MsoNormal><span lang=en-DE>Arbor GUI strives to be self-contained, | ||
1248 | fast and easy to use. Design morphologically detailed cells for simulation in | ||
1249 | Arbor. Load morphologies from SWC .swc, NeuroML .nml, NeuroLucida .asc. Define | ||
1250 | and highlight Arbor regions and locsets. Paint ion dynamics and bio-physical | ||
1251 | properties onto morphologies. Place spike detectors and probes. Export cable | ||
1252 | cells to Arbor's internal format (ACC) for direct simulation. Import cable | ||
1253 | cells in ACC format. This project is under active development and welcomes | ||
1254 | early feedback.</span></p> | ||
1255 | |||
1256 | <h2></h2> | ||
1257 | |||
1258 | <h2><a name="_Toc138932252"><span lang=en-DE>Bayesian Virtual Epileptic Patient | ||
1259 | (BVEP)</span></a></h2> | ||
1260 | |||
1261 | <p class=MsoNormal><span lang=en-DE>BVEP relies on the fusion of structural | ||
1262 | data of individuals, a generative model of epileptiform discharges, and the | ||
1263 | state-of-the-art probabilistic machine learning algorithms. It uses self-tuning | ||
1264 | Monte Carlo sampling algorithm, and the deep neural density estimators for | ||
1265 | reliable and efficient model-based inference at source and sensor levels data. | ||
1266 | The Bayesian framework provides an appropriate patient-specific strategy for | ||
1267 | estimating the extent of epileptogenic and propagation zones of the brain | ||
1268 | regions to improve outcome after epilepsy surgery.</span></p> | ||
1269 | |||
1270 | <h2></h2> | ||
1271 | |||
1272 | <h2><a name="_Toc138932253"><span lang=en-DE>BIDS Extension Proposal | ||
1273 | Computational Model Specifications</span></a></h2> | ||
1274 | |||
1275 | <p class=MsoNormal><span lang=en-DE>A data structure schema for neural network | ||
1276 | computational models that aims to be generically applicable to all kinds of | ||
1277 | neural network simulation software, mathematical models, computational models, | ||
1278 | and data models, but with a focus on dynamic circuit models of brain activity. </span></p> | ||
1279 | |||
1280 | <h2></h2> | ||
1281 | |||
1282 | <h2><a name="_Toc138932254"><span lang=en-DE>BioBB</span></a></h2> | ||
1283 | |||
1284 | <p class=MsoNormal><span lang=en-DE>The BioExcel Building Blocks (BioBB) | ||
1285 | software library is a collection of Python wrappers on top of popular | ||
1286 | biomolecular simulation tools. The library offers a layer of interoperability | ||
1287 | between the wrapped tools, which make them compatible and prepared to be | ||
1288 | directly interconnected to build complex biomolecular workflows. Building and | ||
1289 | sharing complex biomolecular simulation workflows just requires joining and | ||
1290 | connecting BioExcelBuilding Blocks together. Biomolecular simulation workflows | ||
1291 | built using the BioBB library are integrated in the Collaboratory Jupyter lab | ||
1292 | infrastructure, allowing the exploration of dynamics and flexibility of | ||
1293 | proteins related to the Central Nervous Systems.</span></p> | ||
1294 | |||
1295 | <h2></h2> | ||
1296 | |||
1297 | <h2><a name="_Toc138932255"><span lang=en-DE>BioExcel-CV19</span></a></h2> | ||
1298 | |||
1299 | <p class=MsoNormal><span lang=en-DE>BioExcel-CV19 is a platform designed to | ||
1300 | provide web access to atomistic-MD trajectories for macromolecules involved in | ||
1301 | the COVID-19 disease. The project is part of the open access initiatives | ||
1302 | promoted by the world-wide scientific community to share information about | ||
1303 | COVID-19 research. BioExcel-CV19 web server interface presents the resulting | ||
1304 | trajectories, with a set of quality control analyses and system information. | ||
1305 | All data produced by the project is available to download from an associated | ||
1306 | programmatic access API.</span></p> | ||
1307 | |||
1308 | <h2></h2> | ||
1309 | |||
1310 | <h2><a name="_Toc138932256"><span lang=en-DE>BioNAR</span></a></h2> | ||
1311 | |||
1312 | <p class=MsoNormal><span lang=en-DE>BioNAR combines a selection of | ||
1313 | existing R protocols for network analysis with newly designed original | ||
1314 | methodological features to support step-by-step analysis of | ||
1315 | biological/biomedical networks. BioNAR supports a pipeline approach where many | ||
1316 | networks and iterative analyses can be performed. BioNAR helps to achieve a | ||
1317 | number of network analysis goals that are difficult to achieve anywhere else, | ||
1318 | e.g., choose the optimal clustering algorithm from a range of options based on | ||
1319 | independent annotation enrichment</span><span lang=en-DE style='font-family: | ||
1320 | "Times New Roman",serif'> </span><span lang=en-DE>predict a proteins influence | ||
1321 | within and across multiple sub-complexes in the network and estimate the | ||
1322 | co-occurrence or linkage between meta-data at the network level.</span></p> | ||
1323 | |||
1324 | <h2></h2> | ||
1325 | |||
1326 | <h2><a name="_Toc138932257"><span lang=en-DE>BlueNaaS-single cell</span></a></h2> | ||
1327 | |||
1328 | <p class=MsoNormal><span lang=en-DE>BlueNaaS-SingleCell is an open-source web | ||
1329 | application. It enables users to quickly visualize single cell model | ||
1330 | morphologies in 3D or as a dendrogram. Using a simple web user interface, single | ||
1331 | cell simulations can be easily configured and launched, producing voltage | ||
1332 | traces from selected compartments.</span></p> | ||
1333 | |||
1334 | <h2></h2> | ||
1335 | |||
1336 | <h2><a name="_Toc138932258"><span lang=en-DE>BlueNaaS-subcellular</span></a></h2> | ||
1337 | |||
1338 | <p class=MsoNormal><span lang=en-DE>BlueNaaS-Subcellular is a web-based | ||
1339 | environment for creation and simulation of reaction-diffusion models. It allows | ||
1340 | the user to import, combine and simulate existing models derived from other | ||
1341 | parts of the pipeline. It is integrated with a number of solvers for | ||
1342 | reaction-diffusion systems of equations and can represent rule-based systems | ||
1343 | using BioNetGen. Additionally, it supports simulation of spatially distributed | ||
1344 | systems using STEPS (stochastic engine for pathway simulation), providing | ||
1345 | spatial stochastic and deterministic solvers for simulation of reactions and | ||
1346 | diffusion on tetrahedral meshes. It includes some visualisation tools such as a | ||
1347 | geometry viewer, a contact map and a reactivity network graph.</span></p> | ||
1348 | |||
1349 | <h2></h2> | ||
1350 | |||
1351 | <h2><a name="_Toc138932259"><span lang=en-DE>BluePyEfe</span></a></h2> | ||
1352 | |||
1353 | <p class=MsoNormal><span lang=en-DE>BluePyEfe eases the process of reading | ||
1354 | experimental recordings and extracting batches of electrical features from | ||
1355 | these recordings. It combines trace reading functions and features extraction | ||
1356 | functions from the eFel library. BluePyEfe outputs protocols and features files | ||
1357 | in the format used by BluePyOpt for neuron electrical model building.</span></p> | ||
1358 | |||
1359 | <h2></h2> | ||
1360 | |||
1361 | <h2><a name="_Toc138932260"><span lang=en-DE>BluePyMM</span></a></h2> | ||
1362 | |||
1363 | <p class=MsoNormal><span lang=en-DE>When building a network simulation, | ||
1364 | biophysically detailed electrical models (e-models) need to be tested for every | ||
1365 | morphology that is possibly used in the circuit. With current resources, | ||
1366 | e-models are not re-optimised for every morphology in the network. In a process | ||
1367 | called Cell Model Management (MM), we test if an existing e-model matches a | ||
1368 | particular morphology 'well enough'. It takes as input a morphology release, a | ||
1369 | circuit recipe and a set of e-models, then finds all possible (morphology, | ||
1370 | e-model)-combinations (me-combos) based on e-type, m-type, and layer as | ||
1371 | described by the circuit recipe, then calculates the scores for every | ||
1372 | combination. Finally, it writes out the resulting accepted me-combos to a | ||
1373 | database and produces a report with information on the number of matches.</span></p> | ||
1374 | |||
1375 | <h2></h2> | ||
1376 | |||
1377 | <h2><a name="_Toc138932261"><span lang=en-DE>BluePyOpt</span></a></h2> | ||
1378 | |||
1379 | <p class=MsoNormal><span lang=en-DE>BluePyOpt simplifies the task of creating | ||
1380 | and sharing these optimisations, and the associated techniques and knowledge. | ||
1381 | This is achieved by abstracting the optimisation and evaluation tasks into | ||
1382 | various reusable and flexible discrete elements according to established best | ||
1383 | practices. Further, BluePyOpt provides methods for setting up both small- and | ||
1384 | large-scale optimisations on a variety of platforms, ranging from laptops to | ||
1385 | Linux clusters and cloud-based computer infrastructures.</span></p> | ||
1386 | |||
1387 | <h2></h2> | ||
1388 | |||
1389 | <h2><a name="_Toc138932262"><span lang=en-DE>Brain Cockpit</span></a></h2> | ||
1390 | |||
1391 | <p class=MsoNormal><span lang=en-DE>Brain Cockpit is a web app comprising a | ||
1392 | Typescript front-end and a Python back-end. It is meant to help explore large | ||
1393 | surface fMRI datasets projected on surface meshes and alignments computed | ||
1394 | between brains, such as those computed with Fused Unbalanced Gromov-Wasserstein | ||
1395 | (fugw) for Python.</span></p> | ||
1396 | |||
1397 | <h2></h2> | ||
1398 | |||
1399 | <h2><a name="_Toc138932263"><span lang=en-DE>BrainScaleS</span></a></h2> | ||
1400 | |||
1401 | <p class=MsoNormal><span lang=en-DE>Emulate spiking neural networks in | ||
1402 | continuous time on the BrainScaleS analog neuromorphic computing system. Models | ||
1403 | and experiments can be described in Python using the PyNN modelling language, | ||
1404 | or in hxtorch, a PyTorch-based machine-learning-friendly API. The platform can | ||
1405 | be used interactively via the EBRAINS JupyterLab service or EBRAINS HPC</span><span | ||
1406 | lang=en-DE style='font-family:"Times New Roman",serif'> </span><span | ||
1407 | lang=en-DE>in addition, the NMPI web service provides batch-style access. The | ||
1408 | modelling APIs employ common data formats for input and output data, e.g., | ||
1409 | neo.</span></p> | ||
1410 | |||
1411 | <h2></h2> | ||
1412 | |||
1413 | <h2><a name="_Toc138932264"><span lang=en-DE>Brayns</span></a></h2> | ||
1414 | |||
1415 | <p class=MsoNormal><span lang=en-DE>Brayns is a large-scale scientific | ||
1416 | visualization platform based on Intel OSPRAY to perform CPU Ray-tracing and | ||
1417 | uses an extension-plugin architecture. The core provides basic functionalities | ||
1418 | that can be reused and/or extended on plugins, which are independent and can be | ||
1419 | loaded or disabled at start-up. This simplifies the process of adding support | ||
1420 | for new scientific visualization use cases, without compromising the | ||
1421 | reliability of the rest of the software. Brayns counts with braynsService, a | ||
1422 | rendering backend which can be accessed over the internet and streams images to | ||
1423 | connected clients. Already-made plugins include CircuitExplorer, DTI, | ||
1424 | AtlasExplorer, CylindricCamera and MoleculeExplorer.</span></p> | ||
1425 | |||
1426 | <p class=MsoNormal></p> | ||
1427 | |||
1428 | <h2><a name="_Toc138932265"><span lang=en-DE>Brion</span></a></h2> | ||
1429 | |||
1430 | <p class=MsoNormal><span lang=en-DE>Brion is a C++ project for read and write | ||
1431 | access to Blue Brain data structures, including BlueConfig/CircuitConfig, | ||
1432 | Circuit, CompartmentReport, Mesh, Morphology, Synapse and Target files. It also | ||
1433 | offers an interface in Python.</span></p> | ||
1434 | |||
1435 | <h2></h2> | ||
1436 | |||
1437 | <h2><a name="_Toc138932266"><span lang=en-DE>BSB</span></a></h2> | ||
1438 | |||
1439 | <p class=MsoNormal><span lang=en-DE>The BSB reconstructs realistic neural | ||
1440 | circuits by placing and connecting fibres and neurons with detailed | ||
1441 | morphologies or only simplified geometrical features. Configure your model the | ||
1442 | way you need. Interfaces with several simulators (CoreNEURON, Arbor, NEST) | ||
1443 | allow simulation of the reconstructed network and investigation of the | ||
1444 | structure-function-dynamics relationships at different levels of resolution. | ||
1445 | The 'scaffold' design allows an easy model reconfiguration reflecting variants | ||
1446 | across brain regions, animal species and physio-pathological conditions without | ||
1447 | dismounting the basic network structure. The BSB provides effortless parallel | ||
1448 | computing both for the reconstruction and simulation phase.</span></p> | ||
1449 | |||
1450 | <h2></h2> | ||
1451 | |||
1452 | <h2><a name="_Toc138932267"><span lang=en-DE>BSP Service Account</span></a></h2> | ||
1453 | |||
1454 | <p class=MsoNormal><span lang=en-DE>The BSP Service Account is a rest API | ||
1455 | service that allows developers to submit user's jobs on HPC systems and | ||
1456 | retrieve results using the EBRAINS authentication, even if users don't have a | ||
1457 | personal account on the available HPC facilities.</span></p> | ||
1458 | |||
1459 | <h2></h2> | ||
1460 | |||
1461 | <h2><a name="_Toc138932268"><span lang=en-DE>bsp-usecase-wizard</span></a></h2> | ||
1462 | |||
1463 | <p class=MsoNormal><span lang=en-DE>The CLS interactive workflows and use cases | ||
1464 | application guides the users through the resolution of realistic scientific | ||
1465 | problems. They are implemented as either front-end or full stack web | ||
1466 | applications or Python-based Jupyter Notebooks that allow the user to | ||
1467 | interactively build, reconstruct or simulate data-driven brain models and | ||
1468 | perform data analysis visualisation. Web applications are freely accessible and | ||
1469 | only require authentication to EBRAINS when specific actions are required | ||
1470 | (e.g., submitting a simulation job to an HBP HPC system). Jupyter Notebooks are | ||
1471 | cloned to the lab.ebrains.eu platform and require authentication via an EBRAINS | ||
1472 | account.</span></p> | ||
1473 | |||
1474 | <h2></h2> | ||
1475 | |||
1476 | <h2><a name="_Toc138932269"><span lang=en-DE>CGMD Platform</span></a></h2> | ||
1477 | |||
1478 | <p class=MsoNormal><span lang=en-DE>Recent advances in CGMD simulations have | ||
1479 | allowed longer and larger molecular dynamics simulations of biological | ||
1480 | macromolecules and their interactions. The CGMD platform is dedicated to the | ||
1481 | preparation, running, and analysis of CGMD simulations, and built on a | ||
1482 | completely revisited version of the Martini coarsE gRained MembrAne proteIn | ||
1483 | Dynamics (MERMAID) web server. In its current version, the platform expands the | ||
1484 | existing implementation of the Martini force field for membrane proteins to | ||
1485 | also allow the simulation of soluble proteins using the Martini and SIRAH force | ||
1486 | fields. Moreover, it offers an automated protocol for carrying out the | ||
1487 | backmapping of the coarse-grained description of the system into an atomistic | ||
1488 | one.</span></p> | ||
1489 | |||
1490 | <h2></h2> | ||
1491 | |||
1492 | <h2><a name="_Toc138932270"><span lang=en-DE>CNS-ligands</span></a></h2> | ||
1493 | |||
1494 | <p class=MsoNormal><span lang=en-DE>The project is part of the Parameter | ||
1495 | generation and mechanistic studies of neuronal cascades using multi-scale | ||
1496 | molecular simulations of the HBP. CNS conformers are generated using a powerful | ||
1497 | multilevel strategy that combines a low-level (LL) method for sampling the | ||
1498 | conformational minima and high-level (HL) ab initio calculations for estimating | ||
1499 | their relative stability. CNS database presents the results in a graphical user | ||
1500 | interface, displaying small molecule properties, analyses and generated 3D | ||
1501 | conformers. All data produced by the project is available to download.</span></p> | ||
1502 | |||
1503 | <h2></h2> | ||
1504 | |||
1505 | <h2><a name="_Toc138932271"><span lang=en-DE>Cobrawap</span></a></h2> | ||
1506 | |||
1507 | <p class=MsoNormal><span lang=en-DE>Cobrawap is an adaptable and reusable | ||
1508 | software tool to study wave-like activity propagation in the cortex. It allows for | ||
1509 | the integration of heterogeneous data from different measurement techniques and | ||
1510 | simulations through alignment to common wave descriptions. Cobrawap provides an | ||
1511 | extendable collection of processing and analysis methods that can be combined | ||
1512 | and adapted to specific input data and research applications. It enables broad | ||
1513 | and rigorous comparisons of wave characteristics across multiple datasets, | ||
1514 | model calibration and validation applications, and its modular building blocks | ||
1515 | may serve to construct related analysis pipelines.</span></p> | ||
1516 | |||
1517 | <h2></h2> | ||
1518 | |||
1519 | <h2><a name="_Toc138932272"><span lang=en-DE>Collaboratory Bucket service</span></a></h2> | ||
1520 | |||
1521 | <p class=MsoNormal><span lang=en-DE>The Bucket service provides object storage | ||
1522 | to EBRAINS users without them having to request an account on Fenix (the | ||
1523 | EBRAINS infrastructure provider) and storage resources there. This is the | ||
1524 | recommended storage for datasets that are shared by data providers, on the | ||
1525 | condition that these do not contain sensitive personal data. For sharing | ||
1526 | datasets with personal data, users should refer to the Health Data Cloud. The | ||
1527 | Bucket service is better suited for larger files that are usually not edited, | ||
1528 | such as datasets and videos. For Docker images, users should refer to the | ||
1529 | EBRAINS Docker registry. For smaller files and files which are more likely to | ||
1530 | be edited, users should consider the Collaboratory Drive service.</span></p> | ||
1531 | |||
1532 | <h2></h2> | ||
1533 | |||
1534 | <h2><a name="_Toc138932273"><span lang=en-DE>Collaboratory Drive</span></a></h2> | ||
1535 | |||
1536 | <p class=MsoNormal><span lang=en-DE>The Drive service offers users cloud | ||
1537 | storage space for their files in each collab (workspace). The Drive storage is | ||
1538 | mounted in the Collaboratory Lab to provide persistent storage (as opposed to | ||
1539 | the Lab containers which are deleted after a few hours of inactivity). All | ||
1540 | files are under version control. The Drive is intended for smaller files | ||
1541 | (currently limited to 1 GB) that change more often. Users must not save files | ||
1542 | containing personal information in the Drive (i.e. data of living human subjects). | ||
1543 | The Drive is also integrated with the Collaboratory Office service to offer | ||
1544 | easy collaborative editing of Office files online.</span></p> | ||
1545 | |||
1546 | <h2></h2> | ||
1547 | |||
1548 | <h2><a name="_Toc138932274"><span lang=en-DE>Collaboratory IAM</span></a></h2> | ||
1549 | |||
1550 | <p class=MsoNormal><span lang=en-DE>The EBRAINS Collaboratory IAM allows the | ||
1551 | developers of different EBRAINS services to benefit from a single sign-on | ||
1552 | solution. End users will benefit from a seamless experience, whereby they can | ||
1553 | access a specific service and have direct access from it to resources in other | ||
1554 | EBRAINS services without re-authentication. For the developer, it is a good way | ||
1555 | for separating concerns and offloading much of the identification and | ||
1556 | authentication to a central service. The EBRAINS IAM is recognised as an | ||
1557 | identity provider at Fenix supercomputing sites. The IAM service also provides | ||
1558 | three ways of managing groups of users: Units, Groups and Teams.</span></p> | ||
1559 | |||
1560 | <h2></h2> | ||
1561 | |||
1562 | <h2><a name="_Toc138932275"><span lang=en-DE>Collaboratory Lab</span></a></h2> | ||
1563 | |||
1564 | <p class=MsoNormal><span lang=en-DE>The Collaboratory Lab provides EBRAINS | ||
1565 | users with a user-friendly programming environment for reproducible science. | ||
1566 | EBRAINS tools are pre-installed for the user. The latest release is selected by | ||
1567 | default, but users can choose to run an older release to reuse an older | ||
1568 | notebook, or try out the very latest features in the weekly experimental | ||
1569 | deployment. Official releases are produced by EBRAINS every few months. End | ||
1570 | users do not need to build and install the tools, and, more importantly, they | ||
1571 | do not need to resolve dependency conflicts among tools as this has been | ||
1572 | handled for them.</span></p> | ||
1573 | |||
1574 | <h2></h2> | ||
1575 | |||
1576 | <h2><a name="_Toc138932276"><span lang=en-DE>Collaboratory Office</span></a></h2> | ||
1577 | |||
1578 | <p class=MsoNormal><span lang=en-DE>With the Office service, EBRAINS users can | ||
1579 | collaboratively edit Office documents (Word, PowerPoint or Excel) with most of | ||
1580 | the key features of the MS Office tools. It uses the open standard formats | ||
1581 | .docx, .pptx and .xlsx so that files can alternately be edited in the | ||
1582 | Collaboratory Office service and in other compatible tools including the MS | ||
1583 | Office suite.</span></p> | ||
1584 | |||
1585 | <h2></h2> | ||
1586 | |||
1587 | <h2><a name="_Toc138932277"><span lang=en-DE>Collaboratory Wiki</span></a></h2> | ||
1588 | |||
1589 | <p class=MsoNormal><span lang=en-DE>The Wiki service offers the user-friendly | ||
1590 | wiki functionality for publishing web content. It acts as central user | ||
1591 | interface and API to access the other Collaboratory services. EBRAINS | ||
1592 | developers can integrate their services as app which can be instantiated by | ||
1593 | users in their collabs. The Wiki is a good place to create tutorials and | ||
1594 | documentation and it is also the place to publish your work on the internet if | ||
1595 | you choose to do so.</span></p> | ||
1596 | |||
1597 | <h2></h2> | ||
1598 | |||
1599 | <h2><a name="_Toc138932278"><span lang=en-DE>CoreNEURON</span></a></h2> | ||
1600 | |||
1601 | <p class=MsoNormal><span lang=en-DE>In order to adapt NEURON to evolving | ||
1602 | computer architectures, the compute engine of the NEURON simulator was | ||
1603 | extracted and optimised as a library called CoreNEURON. CoreNEURON is a compute | ||
1604 | engine library for the NEURON simulator optimised for both memory usage and | ||
1605 | computational speed on modern CPU/GPU architectures. Some of its key goals are | ||
1606 | to: 1) Efficiently simulate large network models, 2) Support execution on | ||
1607 | accelerators such as GPU, 3) Support optimisations such as vectorisation and | ||
1608 | cache-efficient memory layout.</span></p> | ||
1609 | |||
1610 | <h2></h2> | ||
1611 | |||
1612 | <h2><a name="_Toc138932279"><span lang=en-DE>CxSystem2</span></a></h2> | ||
1613 | |||
1614 | <p class=MsoNormal><span lang=en-DE>CxSystem is a cerebral cortex simulation | ||
1615 | framework, which operates on personal computers. The CxSystem enables easy | ||
1616 | testing and build-up of diverse models at single-cell resolution and it is | ||
1617 | implemented on the top of the Python-based Brain2 simulator. The CxSystem | ||
1618 | interface comprises two csv files - one for anatomy and technical details, the | ||
1619 | other for physiological parameters.</span></p> | ||
1620 | |||
1621 | <h2></h2> | ||
1622 | |||
1623 | <h2><a name="_Toc138932280"><span lang=en-DE>DeepSlice</span></a></h2> | ||
1624 | |||
1625 | <p class=MsoNormal><span lang=en-DE>DeepSlice is a deep neural network that | ||
1626 | aligns histological sections of mouse brain to the Allen Mouse Brain Common | ||
1627 | Coordinate Framework, adjusting for anterior-posterior position, angle, | ||
1628 | rotation and scale. At present, DeepSlice only works with tissue cut in the | ||
1629 | coronal plane, although future versions will be compatible with sagittal and | ||
1630 | horizontal sections.</span></p> | ||
1631 | |||
1632 | <h2></h2> | ||
1633 | |||
1634 | <h2><a name="_Toc138932281"><span lang=en-DE>EBRAINS Ethics & Society | ||
1635 | Toolkit</span></a></h2> | ||
1636 | |||
1637 | <p class=MsoNormal><span lang=en-DE>The aim of the toolkit is to offer | ||
1638 | researchers who carry out cross-disciplinary brain research a possibility to | ||
1639 | engage with ethical and societal issues within brain health and brain disease. | ||
1640 | The user is presented with short introductory texts, scenario-based dilemmas, | ||
1641 | animations and quizzes, all tailored to specific areas of ethics and society in | ||
1642 | a setting of brain research. All exercises are reflection-oriented, with an | ||
1643 | interactive approach to inspire users to incorporate these reflections into | ||
1644 | their own research practices. Moreover, it is possible to gain further | ||
1645 | knowledge by utilising the links for relevant publications, teaching modules | ||
1646 | and the EBRAINS Community Space.</span></p> | ||
1647 | |||
1648 | <h2></h2> | ||
1649 | |||
1650 | <h2><a name="_Toc138932282"><span lang=en-DE>EBRAINS Image Service</span></a></h2> | ||
1651 | |||
1652 | <p class=MsoNormal><span lang=en-DE>The Image Service takes large 2D (and 3D) | ||
1653 | images and preprocesses them to generate small 2D tiles (or 3D chunks). | ||
1654 | Applications consuming image data (viewers or other) can then access regions of | ||
1655 | interest by downloading a few tiles rather than the entire large image. Tiles | ||
1656 | are also generated at coarser resolutions to support zooming out of large | ||
1657 | images. The service supports multiple input image formats. The serving of tiles | ||
1658 | to apps is provided by the Collaboratory Bucket (based on OpenStack Swift | ||
1659 | object storage), which provides significantly higher network bandwidth than | ||
1660 | could be provided by any VM.</span></p> | ||
1661 | |||
1662 | <h2></h2> | ||
1663 | |||
1664 | <h2><a name="_Toc138932283"><span lang=en-DE>EBRAINS Knowledge Graph</span></a></h2> | ||
1665 | |||
1666 | <p class=MsoNormal><span lang=en-DE>The EBRAINS Knowledge Graph (KG) is the | ||
1667 | metadata management system of the EBRAINS Data and Knowledge services. It | ||
1668 | provides fundamental services and tools to make neuroscientific data, models | ||
1669 | and related software FAIR. The KG Editor and API (incl. Python SDKs) allow to | ||
1670 | annotate scientific resources in a semantically correct way. The KG Search | ||
1671 | exposes the research information via an intuitive user interface and makes the | ||
1672 | information publicly available to any user. For advanced users, the KG Query | ||
1673 | Builder and KG Core API provide the necessary means to execute detailed queries | ||
1674 | on the graph database whilst enforcing fine-grained permission control.</span></p> | ||
1675 | |||
1676 | <h2></h2> | ||
1677 | |||
1678 | <h2><a name="_Toc138932284"><span lang=en-DE>EDI Toolkit</span></a></h2> | ||
1679 | |||
1680 | <p class=MsoNormal><span lang=en-DE>The EDI Toolkit supports projects in | ||
1681 | integrating EDI in their research content and as guiding principles for team | ||
1682 | collaboration. It is designed for everyday usage by offering: Basic information | ||
1683 | Guiding questions, templates and tools to design responsible research Quick | ||
1684 | checklists, guidance for suitable structures and standard procedures Measures | ||
1685 | to support EDI-based leadership, fair teams and events</span></p> | ||
1686 | |||
1687 | <h2></h2> | ||
1688 | |||
1689 | <h2><a name="_Toc138932285"><span lang=en-DE>eFEL</span></a></h2> | ||
1690 | |||
1691 | <p class=MsoNormal><span lang=en-DE>eFEL allows neuroscientists to | ||
1692 | automatically extract features from time series data recorded from neurons | ||
1693 | (both in vitro and in silico). Examples include action potential width and | ||
1694 | amplitude in voltage traces recorded during whole-cell patch clamp experiments. | ||
1695 | Users can provide a set of traces and select which features to calculate. The | ||
1696 | library will then extract the requested features and return the values.</span></p> | ||
1697 | |||
1698 | <h2></h2> | ||
1699 | |||
1700 | <h2><a name="_Toc138932286"><span lang=en-DE>Electrophysiology Analysis Toolkit</span></a></h2> | ||
1701 | |||
1702 | <p class=MsoNormal><span lang=en-DE>The Electrophysiology Analysis Toolkit | ||
1703 | (Elephant) is a Python library that provides a modular framework for the | ||
1704 | analysis of experimental and simulated neuronal activity data, such as spike | ||
1705 | trains, local field potentials, and intracellular data. Elephant builds on the | ||
1706 | Neo data model to facilitate usability, enable interoperability, and support | ||
1707 | data from dozens of file formats and network simulation tools. Its analysis | ||
1708 | functions are continuously validated against reference implementations and | ||
1709 | reports in the literature. Visualisations of analysis results are made | ||
1710 | available via the Viziphant companion library. Elephant aims to act as a | ||
1711 | platform for sharing analysis methods across the field.</span></p> | ||
1712 | |||
1713 | <h2></h2> | ||
1714 | |||
1715 | <h2><a name="_Toc138932287"><span lang=en-DE>FAConstructor</span></a></h2> | ||
1716 | |||
1717 | <p class=MsoNormal><span lang=en-DE>FAConstructor allows a simple and effective | ||
1718 | creation of fibre models based on mathematical functions or the manual input of | ||
1719 | data points. Models are visualised during creation and can be interacted with | ||
1720 | by translating them in 3D space.</span></p> | ||
1721 | |||
1722 | <h2></h2> | ||
1723 | |||
1724 | <h2><a name="_Toc138932288"><span lang=en-DE>fairgraph</span></a></h2> | ||
1725 | |||
1726 | <p class=MsoNormal><span lang=en-DE>fairgraph is a Python library for working | ||
1727 | with metadata in the EBRAINS Knowledge Graph (KG), with a particular focus on | ||
1728 | data reuse, although it is also useful in registering and curating metadata. | ||
1729 | The library represents metadata nodes (also known as openMINDS instances) from | ||
1730 | the KG as Python objects. fairgraph supports querying the KG, following links | ||
1731 | in the graph, downloading data and metadata, and creating new nodes in the KG. | ||
1732 | It builds on openMINDS and on the KG Core Python library.</span></p> | ||
1733 | |||
1734 | <h2></h2> | ||
1735 | |||
1736 | <h2><a name="_Toc138932289"><span lang=en-DE>Fast sampling with neuromorphic | ||
1737 | hardware</span></a></h2> | ||
1738 | |||
1739 | <p class=MsoNormal><span lang=en-DE>Compared to conventional neural networks, | ||
1740 | physical model devices offer a fast, efficient, and inherently parallel | ||
1741 | substrate capable of related forms of Markov chain Monte Carlo sampling. This | ||
1742 | software suite enables the use of a neuromorphic chip to replicate the | ||
1743 | properties of quantum systems through spike-based sampling.</span></p> | ||
1744 | |||
1745 | <h2></h2> | ||
1746 | |||
1747 | <h2><a name="_Toc138932290"><span lang=en-DE>fastPLI</span></a></h2> | ||
1748 | |||
1749 | <p class=MsoNormal><span lang=en-DE>fastPLI is an open-source toolbox based on | ||
1750 | Python and C++ for modelling myelinated axons, i.e., nerve fibres, and | ||
1751 | simulating the results of measurement of fibre orientations with a polarisation | ||
1752 | microscope using 3D-PLI. The fastPLI package includes the following modules: | ||
1753 | nerve fibre modelling, simulation, and analysis. All computationally intensive | ||
1754 | calculations are optimised either with Numba on the Python side or with | ||
1755 | multithreading C++ algorithms, which can be accessed via pybind11 inside the | ||
1756 | Python package. Additionally, the simulation module supports the Message | ||
1757 | Passing Interface (MPI) to facilitate the simulation of very large volumes on | ||
1758 | multiple computer nodes.</span></p> | ||
1759 | |||
1760 | <h2></h2> | ||
1761 | |||
1762 | <h2><a name="_Toc138932291"><span lang=en-DE>Feed-forward LFP-MEG estimator | ||
1763 | from mean-field models</span></a></h2> | ||
1764 | |||
1765 | <p class=MsoNormal><span lang=en-DE>This tool was developed to calculate the | ||
1766 | local field potentials (LFP) and magnetoencephalogram (MEG) signals generated | ||
1767 | by a population of neurons described by a mean-field model. The calculation of | ||
1768 | LFP is done via a kernel method based on unitary LFP's (the LFP generated by a | ||
1769 | single axon) which was recently introduced for spiking-networks simulations and | ||
1770 | that we adapt here for mean-field models. The calculation of the magnetic field | ||
1771 | is based on current-dipole and volume-conductor models, where the secondary | ||
1772 | currents (due to the conducting extracellular medium) are estimated using the | ||
1773 | LFP calculated via the kernel method and where the effects of | ||
1774 | medium-inhomogeneities are incorporated.</span></p> | ||
1775 | |||
1776 | <h2></h2> | ||
1777 | |||
1778 | <h2><a name="_Toc138932292"><span lang=en-DE>FIL</span></a></h2> | ||
1779 | |||
1780 | <p class=MsoNormal><span lang=en-DE>This is a scheme for training and applying | ||
1781 | the FIL framework. Some functionality from SPM12 is required for handling | ||
1782 | images. After training, labelling a new image is relatively fast because | ||
1783 | optimising the latent variables can be formulated within a scheme similar to a recurrent | ||
1784 | Residual Network (ResNet).</span></p> | ||
1785 | |||
1786 | <h2></h2> | ||
1787 | |||
1788 | <h2><a name="_Toc138932293"><span lang=en-DE>FMRALIGN</span></a></h2> | ||
1789 | |||
1790 | <p class=MsoNormal><span lang=en-DE>This library is meant to be a light-weight | ||
1791 | Python library that handles functional alignment tasks (also known as | ||
1792 | hyperalignment). It is compatible with and inspired by Nilearn. Alternative | ||
1793 | implementations of these ideas can be found in the pymvpa or brainiak packages.</span></p> | ||
1794 | |||
1795 | <h2></h2> | ||
1796 | |||
1797 | <h2><a name="_Toc138932294"><span lang=en-DE>Foa3D</span></a></h2> | ||
1798 | |||
1799 | <p class=MsoNormal><span lang=en-DE>Foa3D is a tool for multiscale nerve fibre | ||
1800 | enhancement and orientation analysis in high-resolution volume images acquired | ||
1801 | by two-photon scanning or light-sheet fluorescence microscopy, exploiting the | ||
1802 | brain tissue autofluorescence or exogenous myelin stains. Its image processing | ||
1803 | pipeline is built around a 3D Frangi filter that enables the enhancement of | ||
1804 | fibre structures of varying diameters, and the generation of accurate 3D | ||
1805 | orientation maps in both grey and white matter. Foa3D features the computation | ||
1806 | of multiscale orientation distribution functions that facilitate the comparison | ||
1807 | with orientations assessed via 3D-PLI or 3D PS-OCT, and the validation of | ||
1808 | mesoscale dMRI-based connectivity information.</span></p> | ||
1809 | |||
1810 | <h2></h2> | ||
1811 | |||
1812 | <h2><a name="_Toc138932295"><span lang=en-DE>Frites</span></a></h2> | ||
1813 | |||
1814 | <p class=MsoNormal><span lang=en-DE>Frites allows the characterisation of | ||
1815 | task-related cognitive brain networks. Neural correlates of cognitive functions | ||
1816 | can be extracted both at the single brain area (or channel) and network level. | ||
1817 | The toolbox includes time-resolved directed (e.g., Granger causality) and | ||
1818 | undirected (e.g., Mutual Information) functional connectivity metrics. In | ||
1819 | addition, it includes cluster-based and permutation-based statistical methods | ||
1820 | for single-subject and group-level inference.</span></p> | ||
1821 | |||
1822 | <h2></h2> | ||
1823 | |||
1824 | <h2><a name="_Toc138932296"><span lang=en-DE>gridspeccer</span></a></h2> | ||
1825 | |||
1826 | <p class=MsoNormal><span lang=en-DE>Plotting tool to make plotting with many | ||
1827 | subfigures easier, especially for publications. After installation, gridspeccer | ||
1828 | can be used from the command line to create plots.</span></p> | ||
1829 | |||
1830 | <h2></h2> | ||
1831 | |||
1832 | <h2><a name="_Toc138932297"><span lang=en-DE>Hal-Cgp</span></a></h2> | ||
1833 | |||
1834 | <p class=MsoNormal><span lang=en-DE>Hal-Cgp is an extensible pure Python | ||
1835 | library implementing Cgp to represent, mutate and evaluate populations of | ||
1836 | individuals encoding symbolic expressions targeting applications with | ||
1837 | computationally expensive fitness evaluations. It supports the translation from | ||
1838 | a CGP genotype, a two-dimensional Cartesian graph, into the corresponding | ||
1839 | phenotype, a computational graph implementing a particular mathematical expression. | ||
1840 | These computational graphs can be exported as pure Python functions, in a | ||
1841 | NumPy-compatible format, SymPy expressions or PyTorch modules. The library | ||
1842 | implements a mu + lambda evolution strategy to evolve a population of | ||
1843 | individuals to optimise an objective function.</span></p> | ||
1844 | |||
1845 | <h2></h2> | ||
1846 | |||
1847 | <h2><a name="_Toc138932298"><span lang=en-DE>Health Data Cloud</span></a></h2> | ||
1848 | |||
1849 | <p class=MsoNormal><span lang=en-DE>The Health Data Cloud (HDC) provides | ||
1850 | EBRAINS services for sensitive data as a federated research data ecosystem that | ||
1851 | enables scientists across Europe and beyond to collect, process and share | ||
1852 | sensitive data in compliance with EU General Data Protection Regulations | ||
1853 | (GDPR). The HDC is a federation of interoperable nodes. Nodes share a common | ||
1854 | system architecture based on CharitŽ Virtual Research Environment (VRE), | ||
1855 | enabling research consortia to manage and process data, and making data | ||
1856 | discoverable and sharable via the EBRAINS Knowledge Graph.</span></p> | ||
1857 | |||
1858 | <p class=MsoNormal></p> | ||
1859 | |||
1860 | <p class=MsoNormal><a name="_Toc138932299"><span class=Heading2Char><span | ||
1861 | lang=en-DE style='font-size:14.0pt;line-height:120%'>Hodgkin-Huxley Neuron | ||
1862 | Builder</span></span></a></p> | ||
1863 | |||
1864 | <p class=MsoNormal><span lang=en-DE>The Hodgkin-Huxley Neuron Builder is a | ||
1865 | web-application that allows users to interactively go through an entire NEURON | ||
1866 | model building pipeline of individual biophysically detailed cells. 2. Model | ||
1867 | parameter optimisation via HPC systems. 3. In silico experiments using the | ||
1868 | optimised model cell. </span></p> | ||
1869 | |||
1870 | <h2></h2> | ||
1871 | |||
1872 | <h2><a name="_Toc138932300"><span lang=en-DE>HPC Job Proxy</span></a></h2> | ||
1873 | |||
1874 | <p class=MsoNormal><span lang=en-DE>The HPC Job Proxy provides a simplified way | ||
1875 | for EBRAINS service providers to launch jobs on Fenix supercomputers on behalf | ||
1876 | of EBRAINS end users. The proxy offers a wrapper over the Unicore service which | ||
1877 | adds logging, access to stdout/stderr/status, verification of user quota, and | ||
1878 | updating of user quota at the end of the job.</span></p> | ||
1879 | |||
1880 | <h2></h2> | ||
1881 | |||
1882 | <h2><a name="_Toc138932301"><span lang=en-DE>HPC Status Monitor</span></a></h2> | ||
1883 | |||
1884 | <p class=MsoNormal><span lang=en-DE>The HPC Status Monitor allows a real-time | ||
1885 | check of the availability status of the HPC Systems accessible from HBP tools | ||
1886 | and services and provides an instant snapshot of the resource quotas available | ||
1887 | to individual users on each system.</span></p> | ||
1888 | |||
1889 | <h2></h2> | ||
1890 | |||
1891 | <h2><a name="_Toc138932302"><span lang=en-DE>Human Intracerebral EEG Platform</span></a></h2> | ||
1892 | |||
1893 | <p class=MsoNormal><span lang=en-DE>The HIP is an open-source platform designed | ||
1894 | for collecting, managing, analysing and sharing multi-scale iEEG data at an | ||
1895 | international level. Its mission is to assist clinicians and researchers in | ||
1896 | improving research capabilities by simplifying iEEG data analysis and | ||
1897 | interpretation. The HIP integrates different software, modules and services | ||
1898 | necessary for investigating spatio-temporal dynamics of neural processes in a | ||
1899 | secure and optimised fashion. The interface is browser-based and allows | ||
1900 | selecting sets of tools according to specific research needs.</span></p> | ||
1901 | |||
1902 | <h2></h2> | ||
1903 | |||
1904 | <h2><a name="_Toc138932303"><span lang=en-DE>Hybrid MM/CG Webserver</span></a></h2> | ||
1905 | |||
1906 | <p class=MsoNormal><span lang=en-DE>MM/CG simulations help predict ligand poses | ||
1907 | in hGPCRs for pharmacological applications. This approach allows for the | ||
1908 | description of the ligand, the binding cavity and the surrounding water | ||
1909 | molecules at atomistic resolution, while coarse-graining the rest of the | ||
1910 | receptor. The webserver automatises and speeds up the simulation set-up of | ||
1911 | hGPCR/ligand complexes. It also allows for equilibration of the systems, either | ||
1912 | fully automatically or interactively. The results are visualised online, | ||
1913 | helping the user identify possible issues and modify the set-up parameters. | ||
1914 | This framework allows for the automatic preparation and running of hybrid | ||
1915 | molecular dynamics simulations of molecules and their cognate receptors.</span></p> | ||
1916 | |||
1917 | <h2></h2> | ||
1918 | |||
1919 | <h2><a name="_Toc138932304"><span lang=en-DE>Insite</span></a></h2> | ||
1920 | |||
1921 | <p class=MsoNormal><span lang=en-DE>Insite enables users to access data via the | ||
1922 | in transit paradigm for NEST, TVB and Arbor simulations. Compared to the | ||
1923 | traditional approach of offline processing, in transit paradigms allow | ||
1924 | accessing of data while the simulation runs. This is especially useful for | ||
1925 | simulations that produce large amounts of data and are running for a long time. | ||
1926 | In transit allows the user to access only parts of the data and prevents the | ||
1927 | need for storing all data. It also allows the user early insights into the data | ||
1928 | even before the simulation finishes. Insite provides an easy-to-use and | ||
1929 | easy-to-integrate architecture to enable in transit features in other tools.</span></p> | ||
1930 | |||
1931 | <h2></h2> | ||
1932 | |||
1933 | <h2><a name="_Toc138932305"><span lang=en-DE>Interactive Brain Atlas Viewer</span></a></h2> | ||
1934 | |||
1935 | <p class=MsoNormal><span lang=en-DE>The Interactive Brain Atlas Viewer provides | ||
1936 | various kinds of interactive visualisations for multi-modal brain and head | ||
1937 | image data: different parcellations, degrees of transparency and overlays. The | ||
1938 | Viewer provides the following functions and supports data from the following | ||
1939 | sources: EEG, white matter tracts, MRI and PET 3D volumes, 2D slices, | ||
1940 | intracranial electrodes, brain activity, multiscale brain network models, | ||
1941 | supplementary information for brain regions and functional brain networks in | ||
1942 | multiple languages. It comes as a web app, mobile app and desktop app.</span></p> | ||
1943 | |||
1944 | <h2></h2> | ||
1945 | |||
1946 | <h2><a name="_Toc138932306"><span lang=en-DE>JuGEx</span></a></h2> | ||
1947 | |||
1948 | <p class=MsoNormal><span lang=en-DE>Decoding the chain from genes to cognition | ||
1949 | requires detailed insights into how areas with specific gene activities and | ||
1950 | microanatomical architectures contribute to brain function and dysfunction. The | ||
1951 | Allen Human Brain Atlas contains regional gene expression data, while the | ||
1952 | Julich Brain Atlas, which can be accessed via siibra, offers 3D | ||
1953 | cytoarchitectonic maps reflecting the interindividual variability. JuGEx offers | ||
1954 | an integrated framework that combines the analytical benefits of both | ||
1955 | repositories towards a multilevel brain atlas of adult humans. JuGEx is a new | ||
1956 | method for integrating tissue transcriptome and cytoarchitectonic segregation.</span></p> | ||
1957 | |||
1958 | <h2></h2> | ||
1959 | |||
1960 | <h2><a name="_Toc138932307"><span lang=en-DE>KnowledgeSpace</span></a></h2> | ||
1961 | |||
1962 | <p class=MsoNormal><span lang=en-DE>KnowledgeSpace (KS) is a globally-used, | ||
1963 | data-driven encyclopaedia and search engine for the neuroscience community. As | ||
1964 | an encyclopaedia, KS provides curated definitions of brain research concepts | ||
1965 | found in different neuroscience community ontologies, Wikipedia and | ||
1966 | dictionaries. The dataset discovery in KS makes research datasets across many | ||
1967 | large-scale brain initiatives universally accessible and useful. It also | ||
1968 | promotes FAIR data principles that will help data publishers to follow best | ||
1969 | practices for data storage and publication. As more and more data publishers | ||
1970 | follow data standards like OpenMINDS or DATS, the quality of data discovery | ||
1971 | through KS will improve. The related publications are also curated from PubMed | ||
1972 | and linked to the concepts in KS to provide an improved search capability.</span></p> | ||
1973 | |||
1974 | <h2></h2> | ||
1975 | |||
1976 | <h2><a name="_Toc138932308"><span lang=en-DE>L2L</span></a></h2> | ||
1977 | |||
1978 | <p class=MsoNormal><span lang=en-DE>L2L is an easy-to-use and flexible | ||
1979 | framework to perform parameter and hyper-parameter space exploration of | ||
1980 | mathematical models on HPC infrastructure. L2L is an implementation of the | ||
1981 | learning-to-learn concept written in Python. This open-source software allows | ||
1982 | several instances of an optimisation target to be executed with different | ||
1983 | parameters in an massively parallel fashion on HPC. L2L provides a set of | ||
1984 | built-in optimiser algorithms, which make adaptive and efficient exploration of | ||
1985 | parameter spaces possible. Different from other optimisation toolboxes, L2L | ||
1986 | provides maximum flexibility for the way the optimisation target can be | ||
1987 | executed.</span></p> | ||
1988 | |||
1989 | <h2></h2> | ||
1990 | |||
1991 | <h2><a name="_Toc138932309"><span lang=en-DE>Leveltlab/SpectralSegmentation</span></a></h2> | ||
1992 | |||
1993 | <p class=MsoNormal><span lang=en-DE>SpecSeg is a toolbox that segments neurons | ||
1994 | and neurites in chronic calcium imaging datasets based on low-frequency | ||
1995 | cross-spectral power. The pipeline includes a graphical user interface to edit | ||
1996 | the automatically extracted ROIs, to add new ones or delete ROIs by further | ||
1997 | constraining their properties.</span></p> | ||
1998 | |||
1999 | <h2></h2> | ||
2000 | |||
2001 | <h2><a name="_Toc138932310"><span lang=en-DE>LFPy</span></a></h2> | ||
2002 | |||
2003 | <p class=MsoNormal><span lang=en-DE>LFPy is an open-source Python module linking | ||
2004 | simulated neural activity with measurable brain signals. This is done by | ||
2005 | enabling calculation of brain signals from neural activity simulated with | ||
2006 | multi-compartment neuron models (single cells or networks). LFPy can be used to | ||
2007 | simulate brain signals like extracellular action potentials, local field | ||
2008 | potentials (LFP), and in vitro MEA recordings, as well as ECoG, EEG, and MEG | ||
2009 | signals. LFPy is well-integrated with the NEURON simulator and can, through | ||
2010 | LFPykit, also be used with other simulators like Arbor. Through the recently | ||
2011 | developed extensions hybridLFPy and LFPykernels, LFPy can also be used to | ||
2012 | calculate brain signals directly from point-neuron network models or | ||
2013 | population-based models.</span></p> | ||
2014 | |||
2015 | <h2></h2> | ||
2016 | |||
2017 | <h2><a name="_Toc138932311"><span lang=en-DE>libsonata</span></a></h2> | ||
2018 | |||
2019 | <p class=MsoNormal><span lang=en-DE>libsonata allows circuit and simulation | ||
2020 | config loading, node set materialisation, and access to node and edge | ||
2021 | populations in an efficient manner. It is generally a read-only library, but | ||
2022 | support for writing edge indices has been added.</span></p> | ||
2023 | |||
2024 | <h2></h2> | ||
2025 | |||
2026 | <h2><a name="_Toc138932312"><span lang=en-DE>Live Papers</span></a></h2> | ||
2027 | |||
2028 | <p class=MsoNormal><span lang=en-DE>EBRAINS Live Papers are structured and | ||
2029 | interactive documents that complement published scientific articles. Live | ||
2030 | Papers feature integrated tools and services that allow users to download, | ||
2031 | visualise or simulate data, models and results presented in the corresponding | ||
2032 | publications: Build interactive documents to showcase your data and the | ||
2033 | simulation or data analysis code used in your research. Easily link to | ||
2034 | resources in community databases such as EBRAINS, NeuroMorpho.org, ModelDB, and | ||
2035 | Allen Brain Atlas. Embedded, interactive visualisation of electrophysiology | ||
2036 | data and neuronal reconstructions. Launch EBRAINS simulation tools to explore | ||
2037 | single neuron models in your browser. Share live papers pre-publication with | ||
2038 | anonymous reviewers during peer review of your manuscript. Explore already | ||
2039 | published live papers, or develop your own live paper with our authoring tool.</span></p> | ||
2040 | |||
2041 | <h2></h2> | ||
2042 | |||
2043 | <h2><a name="_Toc138932313"><span lang=en-DE>Livre</span></a></h2> | ||
2044 | |||
2045 | <p class=MsoNormal><span lang=en-DE>Livre is an out-of-core, multi-node, | ||
2046 | multi-GPU, OpenGL volume rendering engine to visualise large volumetric | ||
2047 | datasets. It provides the following major features to facilitate rendering of | ||
2048 | large volumetric datasets: Visualisation of pre-processed UVF format volume | ||
2049 | datasets. Real-time voxelisation of different data sources (surface meshes, BBP | ||
2050 | morphologies, local field potentials, etc.) through the use of plugins. | ||
2051 | Multi-node, multi-GPU rendering (only sort-first rendering).</span></p> | ||
2052 | |||
2053 | <h2></h2> | ||
2054 | |||
2055 | <h2><a name="_Toc138932314"><span lang=en-DE>LocaliZoom</span></a></h2> | ||
2056 | |||
2057 | <p class=MsoNormal><span lang=en-DE>Pan-and-zoom type viewer displaying image | ||
2058 | series with overlaid atlas delineations. LocaliZoom is a pan-and-zoom type | ||
2059 | viewer displaying high-resolution image series coupled with overlaid atlas | ||
2060 | delineations. It has three operating modes: Display series with atlas overlay. | ||
2061 | Both linear and nonlinear alignments are supported (created with QuickNII or | ||
2062 | VisuAlign). Create or edit nonlinear alignments. Create markup which can be | ||
2063 | exported as MeshView point clouds or to Excel for further numerical analysis.</span></p> | ||
2064 | |||
2065 | <h2></h2> | ||
2066 | |||
2067 | <h2><a name="_Toc138932315"><span lang=en-DE>MD-IFP</span></a></h2> | ||
2068 | |||
2069 | <p class=MsoNormal><span lang=en-DE>MD-IFP is a python workflow for the | ||
2070 | generation and analysis of protein-ligand interaction fingerprints from | ||
2071 | molecular dynamics trajectories. If used for the analysis of Random | ||
2072 | Acceleration Molecular Dynamics (RAMD) trajectories, it can help to investigate | ||
2073 | dissociation mechanisms by characterising transition states as well as the | ||
2074 | determinants and hot-spots for dissociation. As such, the combined use of | ||
2075 | RAMD and MD-IFP may assist the early stages of drug discovery campaigns for the | ||
2076 | design of new molecules or ligand optimisation.</span></p> | ||
2077 | |||
2078 | <h2></h2> | ||
2079 | |||
2080 | <h2><a name="_Toc138932316"><span lang=en-DE>MEDUSA</span></a></h2> | ||
2081 | |||
2082 | <p class=MsoNormal><span lang=en-DE>Using a spherical meshing technique that | ||
2083 | decomposes each microstructural item into a set of overlapping spheres, the | ||
2084 | phantom construction is made very fast while reliably avoiding the collisions | ||
2085 | between items in the scene. This novel method is applied to the construction of | ||
2086 | human brain white matter microstructural components, namely axonal fibers, | ||
2087 | oligodendrocytes and astrocytes. The algorithm reaches high values of packing | ||
2088 | density and angular dispersion for the axonal fibers, even in the case of | ||
2089 | multiple white matter fiber populations and enables the construction of complex | ||
2090 | biomimicking geometries including myelinated axons, beaded axons and glial | ||
2091 | cells.</span></p> | ||
2092 | |||
2093 | <h2></h2> | ||
2094 | |||
2095 | <h2><a name="_Toc138932317"><span lang=en-DE>MeshView</span></a></h2> | ||
2096 | |||
2097 | <p class=MsoNormal><span lang=en-DE>MeshView is a web application for real-time | ||
2098 | 3D display of surface mesh data representing structural parcellations from | ||
2099 | volumetric atlases, such as the Waxholm Space atlas of the Sprague Dawley rat | ||
2100 | brain. Key features: orbiting view with toggleable opaque/transparent/hidden | ||
2101 | parcellation meshes, rendering user-defined cut surface as if meshes were solid | ||
2102 | objects, rendering point-clouds (simple type-in, or loaded from JSON). The | ||
2103 | coordinate system is compatible with QuickNII.</span></p> | ||
2104 | |||
2105 | <h2></h2> | ||
2106 | |||
2107 | <h2><a name="_Toc138932318"><span lang=en-DE>MIP</span></a></h2> | ||
2108 | |||
2109 | <p class=MsoNormal><span lang=en-DE>MIP is an open-source platform enabling | ||
2110 | federated data analysis in a secure environment for centres involved in | ||
2111 | collaborative initiatives. It allows users to initiate or join disease-oriented | ||
2112 | federations with the aim of analysing large-scale distributed clinical | ||
2113 | datasets. For each federation, users can create specific data models based on | ||
2114 | well-accepted common data elements, approved by all participating centres. MIP | ||
2115 | experts assist in creating the data models and facilitate coordination and | ||
2116 | communication among centres. They provide advice and support for data curation, | ||
2117 | harmonisation, and anonymisation, as well as data governance, especially with | ||
2118 | regards to Data Sharing Agreements and general ethical considerations.</span></p> | ||
2119 | |||
2120 | <h2></h2> | ||
2121 | |||
2122 | <h2><a name="_Toc138932319"><span lang=en-DE>Model Validation Service</span></a></h2> | ||
2123 | |||
2124 | <p class=MsoNormal><span lang=en-DE>The HBP/EBRAINS Model Validation Service is | ||
2125 | a set of tools for performing and tracking validation of models with respect to | ||
2126 | experimental data. It consists of a web API, a GUI client (the Model Catalog | ||
2127 | app) and a Python client. The service enables users to store, query, view and | ||
2128 | download: (i) model descriptions/scripts, (ii) validation test definitions and | ||
2129 | (iii) validation results. In a typical workflow, users will find models and | ||
2130 | validation tests by searching the Model Catalog (or upload their own), run the | ||
2131 | tests using the Python client in a Jupyter notebook, with simulations running | ||
2132 | locally or on HPC, and then upload the results.</span></p> | ||
2133 | |||
2134 | <h2></h2> | ||
2135 | |||
2136 | <h2><a name="_Toc138932320"><span lang=en-DE>Model Validation Test Suites</span></a></h2> | ||
2137 | |||
2138 | <p class=MsoNormal><span lang=en-DE>As part of the HBP/EBRAINS model validation | ||
2139 | framework, we provide a Python Software Development Kit (SDK) for model | ||
2140 | validation, which provides: (i) validation test definitions and (ii) interface | ||
2141 | definitions intended to decouple model validation from the details of model | ||
2142 | implementation. This more formal approach to model validation aims to make it | ||
2143 | quicker and easier to compare models, to provide validation test suites for | ||
2144 | models and to develop new validations of existing models. The SDK consists of a | ||
2145 | collection of Python packages all using the sciunit framework: HippoUnit, | ||
2146 | MorphoUnit, NetworkUnit, BasalUnit, CerebUnit, eFELUnit, HippoNetworkUnit.</span></p> | ||
2147 | |||
2148 | <h2></h2> | ||
2149 | |||
2150 | <h2><a name="_Toc138932321"><span lang=en-DE>MoDEL-CNS</span></a></h2> | ||
2151 | |||
2152 | <p class=MsoNormal><span lang=en-DE>MoDEL-CNS is a database and server platform | ||
2153 | designed to provide web access to atomistic MD trajectories for relevant signal | ||
2154 | transduction proteins. The project is part of the service for providing | ||
2155 | molecular simulation-based predictions for systems neurobiology of the HBP. | ||
2156 | MoDEL-CNS expands the MD Extended Library database of atomistic MD trajectories | ||
2157 | with proteins involved in CNS processes, including membrane proteins. MoDEL-CNS | ||
2158 | web server interface presents the resulting trajectories, analyses and protein | ||
2159 | properties. All data produced are available to download.</span></p> | ||
2160 | |||
2161 | <h2></h2> | ||
2162 | |||
2163 | <h2><a name="_Toc138932322"><span lang=en-DE>Modular Science</span></a></h2> | ||
2164 | |||
2165 | <p class=MsoNormal><span lang=en-DE>Modular Science is a middleware that | ||
2166 | provides robust deployment of complex multi-application workflows. It contains | ||
2167 | protocols and interfaces for multi-scale co-simulation workloads on | ||
2168 | high-performance computers and local hardware. It allows for synchronisation | ||
2169 | and coordination of individual components and contains dedicated and | ||
2170 | parallelised modules for data transformations between scales. Modular Science | ||
2171 | offers insight into both the system level and the individual subsystems to | ||
2172 | steer the execution, to monitor resource usage, and system health & status | ||
2173 | with small overheads on performance. Modular Science comes with a number of | ||
2174 | neuroscience co-simulation use cases including NEST-TVB, NEST-Arbor, LFPy and neurorobotics.</span></p> | ||
2175 | |||
2176 | <h2></h2> | ||
2177 | |||
2178 | <h2><a name="_Toc138932323"><span lang=en-DE>Monsteer</span></a></h2> | ||
2179 | |||
2180 | <p class=MsoNormal><span lang=en-DE>Monsteer is a library for interactive | ||
2181 | supercomputing in the neuroscience domain. It facilitates the coupling of | ||
2182 | running simulations (currently NEST) with interactive visualization and | ||
2183 | analysis applications. Monsteer supports streaming of simulation data to | ||
2184 | clients (currently limited to spikes) as well as control of the simulator from | ||
2185 | the clients (also known as computational steering). Monsteer's main components | ||
2186 | are a C++ library, a MUSIC-based application and Python helpers.</span></p> | ||
2187 | |||
2188 | <h2></h2> | ||
2189 | |||
2190 | <h2><a name="_Toc138932324"><span lang=en-DE>MorphIO</span></a></h2> | ||
2191 | |||
2192 | <p class=MsoNormal><span lang=en-DE>MorphIO is a library for reading and | ||
2193 | writing neuron morphology files. It supports the following formats: SWC, ASC | ||
2194 | (also known as neurolucida), H5. There are two APIs: mutable, for creating or | ||
2195 | editing morphologies, and immutable, for read-only operations. Both are | ||
2196 | represented in C++ and Python. Extended formats include glia, mitochondria and | ||
2197 | endoplasmic reticulum.</span></p> | ||
2198 | |||
2199 | <h2></h2> | ||
2200 | |||
2201 | <h2><a name="_Toc138932325"><span lang=en-DE>Morphology alignment tool</span></a></h2> | ||
2202 | |||
2203 | <p class=MsoNormal><span lang=en-DE>Starting with serial sections of a brain in | ||
2204 | which a complete single morphology has been labelled, the pieces of neurite | ||
2205 | (axons/dendrites) in each section are traced with Neurolucida or similar | ||
2206 | microscope-attached software. The slices are then aligned, first using an | ||
2207 | automated algorithm that tries to find matching pieces in adjacent sections | ||
2208 | (Python script), and second using a GUI-driven tool (web-based, JavaScript). | ||
2209 | Finally, the pieces are stitched into a complete neuron (Python script). The | ||
2210 | neuron and tissue volume are then registered to one of the EBRAINS-supported | ||
2211 | reference templates (Python script). The web-based tool can also be used to align | ||
2212 | slices without a neuron being present.</span></p> | ||
2213 | |||
2214 | <h2></h2> | ||
2215 | |||
2216 | <h2><a name="_Toc138932326"><span lang=en-DE>MorphTool</span></a></h2> | ||
2217 | |||
2218 | <p class=MsoNormal><span lang=en-DE>MorphTool is a python toolkit designed for | ||
2219 | editing morphological skeletons of cell reconstructions. It has been developed | ||
2220 | to provide helper programmes that perform simple tasks such as morphology | ||
2221 | diffing, file conversion, soma area calculation, skeleton simplification, | ||
2222 | process resampling, morphology repair and spatial transformations. It allows | ||
2223 | neuroscientists to curate and manipulate morphological reconstruction and | ||
2224 | correct morphological artifacts due to the manual reconstruction process.</span></p> | ||
2225 | |||
2226 | <h2></h2> | ||
2227 | |||
2228 | <h2><a name="_Toc138932327"><span lang=en-DE>Multi-Brain</span></a></h2> | ||
2229 | |||
2230 | <p class=MsoNormal><span lang=en-DE>The Multi-Brain (MB) model has the | ||
2231 | general aim of integrating a number of disparate image analysis components | ||
2232 | within a single unified generative modelling framework. Its objective is to | ||
2233 | achieve diffeomorphic alignment of a wide variety of medical image modalities | ||
2234 | into a common anatomical space. This involves the ability to construct a | ||
2235 | "tissue probability template" from a population of scans | ||
2236 | through group-wise alignment. The MB model has been shown to provide accurate | ||
2237 | modelling of the intensity distributions of different imaging modalities.</span></p> | ||
2238 | |||
2239 | <h2></h2> | ||
2240 | |||
2241 | <h2><a name="_Toc138932328"><span lang=en-DE>Multi-Image-OSD</span></a></h2> | ||
2242 | |||
2243 | <p class=MsoNormal><span lang=en-DE>It has browser-based classic pan and zoom | ||
2244 | capabilities. A collection of images can be displayed as a filmstrip (Filmstrip | ||
2245 | Mode) or as a table (Collection Mode) with adjustable number of rows and | ||
2246 | columns. The tool supports keyboard or/and mouse navigation options, as well as | ||
2247 | touch devices. Utilising the open standard Deep Zoom Image (DZI) format, it is | ||
2248 | able to efficiently visualise very large brain images in the gigapixel range, | ||
2249 | allowing to zoom from common, display-sized overview resolutions down to the | ||
2250 | microscopic resolution without downloading the underlying, very large image | ||
2251 | dataset.</span></p> | ||
2252 | |||
2253 | <h2></h2> | ||
2254 | |||
2255 | <h2><a name="_Toc138932329"><span lang=en-DE>MUSIC</span></a></h2> | ||
2256 | |||
2257 | <p class=MsoNormal><span lang=en-DE>MUSIC is a communication framework in the | ||
2258 | domain of computational neuroscience and neuromorphic computing which enables | ||
2259 | co-simulations, where components of a model are simulated by different | ||
2260 | simulators or hardware. It consists of an API and C++ library which can be | ||
2261 | linked into existing software with minor modifications. MUSIC enables the | ||
2262 | communication of neuronal spike events, continuous values and text messages | ||
2263 | while hiding the complexity of data distribution over ranks, as well as | ||
2264 | scheduling of communication in the face of loops. MUSIC is light-weight with a | ||
2265 | simple API.</span></p> | ||
2266 | |||
2267 | <h2></h2> | ||
2268 | |||
2269 | <h2><a name="_Toc138932330"><span lang=en-DE>NEAT</span></a></h2> | ||
2270 | |||
2271 | <p class=MsoNormal><span lang=en-DE>NEAT allows for the convenient definition | ||
2272 | of morphological neuron models. These models can be simulated through an | ||
2273 | interface with the NEURON simulator or analysed with two classical methods: (i) | ||
2274 | the separation-of-variables method to obtain impedance kernels as a | ||
2275 | superposition of exponentials and (ii) Koch's method to compute impedances with | ||
2276 | linearised ion channels analytically in the frequency domain. NEAT also | ||
2277 | implements the neural evaluation tree framework and an associated C++ simulator | ||
2278 | to analyse sub-unit independence. Finally, NEAT implements a new method to | ||
2279 | simplify morphological neuron models into models with few compartments, which | ||
2280 | can also be simulated with NEURON.</span></p> | ||
2281 | |||
2282 | <h2></h2> | ||
2283 | |||
2284 | <h2><a name="_Toc138932331"><span lang=en-DE>Neo</span></a></h2> | ||
2285 | |||
2286 | <p class=MsoNormal><span lang=en-DE>Neo implements a hierarchical data model | ||
2287 | well adapted to intracellular and extracellular electrophysiology and EEG data. | ||
2288 | It improves interoperability between Python tools for analysing, visualising | ||
2289 | and generating electrophysiology data by providing a common, shared object | ||
2290 | model. It reads a wide range of neurophysiology file formats, including Spike2, | ||
2291 | NeuroExplorer, AlphaOmega, Axon, Blackrock, Plexon, Tdt and Igor Pro and writes | ||
2292 | to open formats such as NWB and NIX. Neo objects behave just like normal NumPy | ||
2293 | arrays, but with additional metadata, checks for dimensional consistency and | ||
2294 | automatic unit conversion. Neo has been endorsed as a community standard by the | ||
2295 | International Neuroinformatics Coordinating Facility (INCF).</span></p> | ||
2296 | |||
2297 | <h2></h2> | ||
2298 | |||
2299 | <h2><a name="_Toc138932332"><span lang=en-DE>Neo Viewer</span></a></h2> | ||
2300 | |||
2301 | <p class=MsoNormal><span lang=en-DE>Neo Viewer consists of a REST-API and a | ||
2302 | Javascript component that can be embedded in any web page. Electrophysiology | ||
2303 | traces can be zoomed, scrolled and saved as images. Individual points can be | ||
2304 | measured off the graphs. Neo Viewer can visualise data from most of the | ||
2305 | widely-used file formats in neurophysiology, including community standards such | ||
2306 | as NWB.</span></p> | ||
2307 | |||
2308 | <h2></h2> | ||
2309 | |||
2310 | <h2><a name="_Toc138932333"><span lang=en-DE>NEST Desktop</span></a></h2> | ||
2311 | |||
2312 | <p class=MsoNormal><span lang=en-DE>NEST Desktop comprises of GUI components | ||
2313 | for creating and configuring network models, running simulations, and | ||
2314 | visualising and analysing simulation results. NEST Desktop allows students to | ||
2315 | explore important concepts in computational neuroscience without the need to | ||
2316 | first learn a simulator control language. This is done by offering a | ||
2317 | server-side NEST simulator, which can also be installed as a package together | ||
2318 | with a web server providing NEST Desktop as visual front-end. Besides local | ||
2319 | installations, distributed setups can be installed, and direct use through | ||
2320 | EBRAINS is possible. NEST Desktop has also been used as a modelling front-end | ||
2321 | of the Neurorobotics Platform.</span></p> | ||
2322 | |||
2323 | <h2></h2> | ||
2324 | |||
2325 | <h2><a name="_Toc138932334"><span lang=en-DE>NEST Simulator</span></a></h2> | ||
2326 | |||
2327 | <p class=MsoNormal><span lang=en-DE>NEST is used in computational neuroscience | ||
2328 | to model and study behaviour of large networks of neurons. The models describe | ||
2329 | single neuron and synapse behaviour and their connections. Different mechanisms | ||
2330 | of plasticity can be used to investigate artificial learning and help to shed | ||
2331 | light on the fundamental principles of how the brain works. NEST offers | ||
2332 | convenient and efficient commands to define and connect large networks, ranging | ||
2333 | from algorithmically determined connections to data-driven connectivity. Create | ||
2334 | connections between neurons using numerous synapse models from STDP to gap | ||
2335 | junctions.</span></p> | ||
2336 | |||
2337 | <h2></h2> | ||
2338 | |||
2339 | <h2><a name="_Toc138932335"><span lang=en-DE>NESTML</span></a></h2> | ||
2340 | |||
2341 | <p class=MsoNormal><span lang=en-DE>NESTML is a domain-specific language for | ||
2342 | neuron and synapse models. These dynamical models can be used in simulations of | ||
2343 | brain activity on several platforms, in particular NEST Simulator. NESTML | ||
2344 | combines an easy to understand, yet powerful syntax with good simulation | ||
2345 | performance by means of code generation (C++ for NEST Simulator), but flexibly | ||
2346 | supports other simulation engines including neuromorphic hardware.</span></p> | ||
2347 | |||
2348 | <h2></h2> | ||
2349 | |||
2350 | <h2><a name="_Toc138932336"><span lang=en-DE>NetPyNE</span></a></h2> | ||
2351 | |||
2352 | <p class=MsoNormal><span lang=en-DE>NetPyNE provides programmatic and graphical | ||
2353 | interfaces to develop data-driven multiscale brain neural circuit models using | ||
2354 | Python and NEURON. Users can define models using a standardised | ||
2355 | JSON-compatible, rule-based, declarative format. Based on these specifications, | ||
2356 | NetPyNE will generate the network in CoreNEURON, enabling users to run | ||
2357 | parallel simulations, optimise and explore network parameters through automated | ||
2358 | batch runs, and use built-in functions for visualisation and analysis (e.g., | ||
2359 | generate connectivity matrices, voltage traces, spike raster plots, local field | ||
2360 | potentials and information theoretic measures). NetPyNE also facilitates model | ||
2361 | sharing by exporting and importing standardised formats: NeuroML and SONATA.</span></p> | ||
2362 | |||
2363 | <h2></h2> | ||
2364 | |||
2365 | <h2><a name="_Toc138932337"><span lang=en-DE>NEURO-CONNECT</span></a></h2> | ||
2366 | |||
2367 | <p class=MsoNormal><span lang=en-DE>The NEURO-CONNECT platform provides | ||
2368 | functions to integrate multimodal brain imaging information in a unifying | ||
2369 | feature space. Thus, Surface Based Morphometry (SBM), Functional Magnetic | ||
2370 | Resonance Imaging (fMRI) and Diffusion Tensor Imaging (DTI) can be combined and | ||
2371 | visualised at the whole-brain scale. Moreover, multiple brain atlases are | ||
2372 | aligned to match research outcomes to neuroanatomical entities. The datasets | ||
2373 | are appended with openMINDS metadata and thus enable integrative data analysis | ||
2374 | and machine learning.</span></p> | ||
2375 | |||
2376 | <h2></h2> | ||
2377 | |||
2378 | <h2><a name="_Toc138932338"><span lang=en-DE>NeuroFeatureExtract</span></a></h2> | ||
2379 | |||
2380 | <p class=MsoNormal><span lang=en-DE>The NeuroFeatureExtract is a web | ||
2381 | application that allows the users to extract an ensemble of | ||
2382 | electrophysiological properties from voltage traces recorded upon electrical | ||
2383 | stimulation of neuronal cells. The main outcome of the application is the | ||
2384 | generation of two files Ð features.json and protocol.json Ð that can be used | ||
2385 | for later analysis and model parameter optimisations via the Hodgkin-Huxley | ||
2386 | Neuron Builder application.</span></p> | ||
2387 | |||
2388 | <h2></h2> | ||
2389 | |||
2390 | <h2><a name="_Toc138932339"><span lang=en-DE>NeurogenPy</span></a></h2> | ||
2391 | |||
2392 | <p class=MsoNormal><span lang=en-DE>NeurogenPy is a Python package for working | ||
2393 | with Bayesian networks. It is focused on the analysis of gene expression data | ||
2394 | and learning of gene regulatory networks, modelled as Bayesian networks. For | ||
2395 | that reason, at the moment, only the Gaussian and fully discrete cases are | ||
2396 | supported. The package provides different structure learning algorithms, | ||
2397 | parameters estimation and input/output formats. For some of them, already | ||
2398 | existing implementations have been used, with bnlearn, pgmpy, networkx and | ||
2399 | igraph being the most relevant used packages. This project has been conceived | ||
2400 | to be included as a plugin in the EBRAINS interactive atlas viewer, but it may | ||
2401 | be used for other purposes.</span></p> | ||
2402 | |||
2403 | <h2></h2> | ||
2404 | |||
2405 | <h2><a name="_Toc138932340"><span lang=en-DE>NeuroM</span></a></h2> | ||
2406 | |||
2407 | <p class=MsoNormal><span lang=en-DE>NeuroM is a Python toolkit for the analysis | ||
2408 | and processing of neuron morphologies. It allows the extraction of various | ||
2409 | information about morphologies, e.g., the segment lengths of a morphology via | ||
2410 | the segment_lengths feature. More than 50 features that can be extracted.</span></p> | ||
2411 | |||
2412 | <h2></h2> | ||
2413 | |||
2414 | <h2><a name="_Toc138932341"><span lang=en-DE>Neuromorphic Computing Job Queue</span></a></h2> | ||
2415 | |||
2416 | <p class=MsoNormal><span lang=en-DE>The Neuromorphic Computing Job Queue allows | ||
2417 | users to run simulations/emulations on the SpiNNaker and BrainScaleS systems by | ||
2418 | submitting a PyNN script and associated job configuration information to a | ||
2419 | central queue. The system consists of a web API, a GUI client (the Job Manager | ||
2420 | app) and a Python client. Users can submit scripts stored locally on their own | ||
2421 | machine, in a Git repository, in the KG, or in EBRAINS Collaboratory storage | ||
2422 | (Drive/Bucket). Users can track the progress of their job, and view and/or | ||
2423 | download the results, log files, and provenance information.</span></p> | ||
2424 | |||
2425 | <h2></h2> | ||
2426 | |||
2427 | <h2><a name="_Toc138932342"><span lang=en-DE>Neuronize v2</span></a></h2> | ||
2428 | |||
2429 | <p class=MsoNormal><span lang=en-DE>Neuronize v2 has been developed to generate | ||
2430 | a connected neural 3D mesh. If the input is a neuron tracing, it generates a 3D | ||
2431 | mesh from it, including the shape of the soma. If the input is data extracted | ||
2432 | with Imaris Filament Tracer (a set of unconnected meshes of a neuron), | ||
2433 | Neuronize v2 generates a single connected 3D mesh of the whole neuron (also | ||
2434 | generating the soma) and provides its neural tracing, which can then be | ||
2435 | imported into tools such as Neurolucida, facilitating the interoperability of | ||
2436 | two of the most widely used proprietary tools.</span></p> | ||
2437 | |||
2438 | <h2></h2> | ||
2439 | |||
2440 | <h2><a name="_Toc138932343"><span lang=en-DE>NeuroR</span></a></h2> | ||
2441 | |||
2442 | <p class=MsoNormal><span lang=en-DE>NeuroR is a collection of tools to repair | ||
2443 | morphologies. This includes cut plane detection, sanitisation (removing | ||
2444 | unifurcations, invalid soma counts, short segments) and 'unravelling': the | ||
2445 | action of 'stretching' the cell that has been shrunk due to the dehydratation | ||
2446 | caused by the slicing.</span></p> | ||
2447 | |||
2448 | <h2></h2> | ||
2449 | |||
2450 | <h2><a name="_Toc138932344"><span lang=en-DE>Neurorobotics Platform</span></a></h2> | ||
2451 | |||
2452 | <p class=MsoNormal><span lang=en-DE>The Neurorobotics Platform (NRP) is an | ||
2453 | integrative simulation framework that enables in silico experimentation and | ||
2454 | embodiment of brain models inside virtual agents interacting with realistic | ||
2455 | simulated environments. Entirely Open Source, it offers a browser-based | ||
2456 | graphical user interface for online access. It can be installed locally (Docker | ||
2457 | or source install). It can be interfaced with multiple spike-based neuromorphic | ||
2458 | chips (SpiNNaker, Intel Loihi). You can download and install the NRP locally | ||
2459 | for maximum experimental convenience or access it online in order to leverage | ||
2460 | the HBP High Performance Computing infrastructure for large-scale experiments.</span></p> | ||
2461 | |||
2462 | <h2></h2> | ||
2463 | |||
2464 | <h2><a name="_Toc138932345"><span lang=en-DE>Neurorobotics Platform Robot | ||
2465 | Designer</span></a></h2> | ||
2466 | |||
2467 | <p class=MsoNormal><span lang=en-DE>The Robot Designer is a plugin for the 3D | ||
2468 | modeling suite Blender that enables researchers to design morphologies for | ||
2469 | simulation experiments in, particularly but not restricted to, the | ||
2470 | Neurorobotics Platform. This plugin helps researchers design and parameterize | ||
2471 | models with a Graphical User Interface, simplifying and speeding up the design | ||
2472 | process.cess. It includes design capabilities for musculoskeletal bodies as | ||
2473 | well as robotic systems, fostering not only the understanding of biological | ||
2474 | motions and enabling better robot designs, but also enabling true Neurorobotic | ||
2475 | experiments that consist of biomimetic models such as tendon-driven robots or a | ||
2476 | transition between biology and technology.</span></p> | ||
2477 | |||
2478 | <h2></h2> | ||
2479 | |||
2480 | <h2><a name="_Toc138932346"><span lang=en-DE>NeuroScheme</span></a></h2> | ||
2481 | |||
2482 | <p class=MsoNormal><span lang=en-DE>NeuroScheme uses schematic | ||
2483 | representations, such as icons and glyphs, to encode attributes of neural | ||
2484 | structures (neurons, columns, layers, populations, etc.), alleviating problems | ||
2485 | with displaying, navigating and analysing large datasets. It manages | ||
2486 | hierarchically organised neural structures</span><span lang=en-DE | ||
2487 | style='font-family:"Times New Roman",serif'> </span><span lang=en-DE>users can | ||
2488 | navigate through the levels of the hierarchy and hone in on and explore the | ||
2489 | data at their desired level of detail. NeuroScheme has currently two built-in | ||
2490 | "domains", which specify entities, attributes and | ||
2491 | relationships used for specific use cases: the 'cortex' domain, designed for | ||
2492 | navigating and analysing cerebral cortex structures</span><span lang=en-DE | ||
2493 | style='font-family:"Times New Roman",serif'> </span><span lang=en-DE>and the | ||
2494 | 'congen' domain, used to define the properties of cells and connections, create | ||
2495 | circuits of neurons and build populations.</span></p> | ||
2496 | |||
2497 | <h2></h2> | ||
2498 | |||
2499 | <h2><a name="_Toc138932347"><span lang=en-DE>NeuroSuites</span></a></h2> | ||
2500 | |||
2501 | <p class=MsoNormal><span lang=en-DE>NeuroSuites is a web-based platform | ||
2502 | designed to handle large-scale, high-dimensional data in the field of | ||
2503 | neuroscience. It offers neuroscience-oriented applications and tools for data | ||
2504 | analysis, machine learning and visualisation, while also providing | ||
2505 | general-purpose tools for data scientists in other research fields. NeuroSuites | ||
2506 | requires no software installation and runs on the backend of a server, making | ||
2507 | it accessible from various devices. The platform's main strengths include its | ||
2508 | defined architecture, ability to handle complex neuroscience data and the | ||
2509 | variety of available tools.</span></p> | ||
2510 | |||
2511 | <h2></h2> | ||
2512 | |||
2513 | <h2><a name="_Toc138932348"><span lang=en-DE>NeuroTessMesh</span></a></h2> | ||
2514 | |||
2515 | <p class=MsoNormal><span lang=en-DE>NeuroTessMesh takes morphological tracings | ||
2516 | of cells acquired by neuroscientists and generates 3D models that approximate | ||
2517 | the neuronal membrane. The resolution of the models can be adapted at the time | ||
2518 | of visualisation. You can colour-code different parts of a morphology, | ||
2519 | differentiating relevant morphological variables or even neuronal activity. | ||
2520 | NeuroTessMesh copes with many of the problems associated with the visualisation | ||
2521 | of neural circuits consisting of large numbers of cells. It facilitates the | ||
2522 | recovery and visualisation of the 3D geometry of cells included in databases, | ||
2523 | such as NeuroMorpho, and allows to approximate missing information such as the | ||
2524 | soma's morphology.</span></p> | ||
2525 | |||
2526 | <h2></h2> | ||
2527 | |||
2528 | <h2><a name="_Toc138932349"><span lang=en-DE>NMODL Framework</span></a></h2> | ||
2529 | |||
2530 | <p class=MsoNormal><span lang=en-DE>NMODL Framework is designed with | ||
2531 | modern compiler and code generation techniques. It provides modular tools for | ||
2532 | parsing, analysing and transforming NMODL it provides an easy to use, high | ||
2533 | level Python API</span><span lang=en-DE style='font-family:"Times New Roman",serif'> | ||
2534 | </span><span lang=en-DE> it generates optimised code for modern compute architectures | ||
2535 | including CPUs and GPUs</span><span lang=en-DE style='font-family:"Times New Roman",serif'> | ||
2536 | </span><span lang=en-DE> it provides flexibility to implement new simulator | ||
2537 | backends and it supports full NMODL specification.</span></p> | ||
2538 | |||
2539 | <h2></h2> | ||
2540 | |||
2541 | <h2><a name="_Toc138932350"><span lang=en-DE>NSuite</span></a></h2> | ||
2542 | |||
2543 | <p class=MsoNormal><span lang=en-DE>NSuite is a framework for maintaining and | ||
2544 | running benchmarks and validation tests for multi-compartment neural network | ||
2545 | simulations on HPC systems. NSuite automates the process of building simulation | ||
2546 | engines, and running benchmarks and validation tests. NSuite is specifically | ||
2547 | designed to allow easy deployment on HPC systems in testing workflows, such as | ||
2548 | benchmark-driven development or continuous integration. The development of | ||
2549 | NSuite has been driven by the need (1) for a definitive resource for comparing | ||
2550 | performance and correctness of simulation engines on HPC systems, (2) to verify | ||
2551 | the performance and correctness of individual simulation engines as they change | ||
2552 | over time and (3) to test that changes to an HPC system do not cause | ||
2553 | performance or correctness regressions in simulation engines. The framework | ||
2554 | currently supports the simulation engines Arbor, NEURON, and CoreNeuron, while | ||
2555 | allowing other simulation engines to be added.</span></p> | ||
2556 | |||
2557 | <p class=MsoNormal></p> | ||
2558 | |||
2559 | <p class=MsoNormal><span lang=en-DE>Nutil</span></p> | ||
2560 | |||
2561 | <p class=MsoNormal><span lang=en-DE>Nutil is a pre- and post-processing toolbox | ||
2562 | that enables analysis of large collections of histological images of rodent | ||
2563 | brain sections. The software is open source and has both a graphical user | ||
2564 | interface for specifying the input and output parameters and a command-line | ||
2565 | execution option for batch processing. Nutil includes a transformation tool for | ||
2566 | automated scaling, rotation, mirroring and renaming of image files, a file | ||
2567 | format converter, a simple resize tool and a post-processing method for | ||
2568 | quantifying and localising labelled features based on a reference atlas of the | ||
2569 | brain (mouse or rat). The quantification method requires input from customised | ||
2570 | brain atlas maps generated with the QuickNII software, and segmentations | ||
2571 | generated with ilastik or another image analysis tool. The output from Nutil | ||
2572 | include csv reports, 3D point cloud coordinate files and atlas map images | ||
2573 | superimposed with colour-coded objects.</span></p> | ||
2574 | |||
2575 | <h2></h2> | ||
2576 | |||
2577 | <h2><a name="_Toc138932351"><span lang=en-DE>ODE-toolbox</span></a></h2> | ||
2578 | |||
2579 | <p class=MsoNormal><span lang=en-DE>ODE-toolbox is a Python package that | ||
2580 | assists in solver benchmarking, and recommends solvers on the basis of a set of | ||
2581 | user-configurable heuristics. For all dynamical equations that admit an | ||
2582 | analytic solution, ODE-toolbox generates propagator matrices that allow the | ||
2583 | solution to be calculated at machine precision. For all others, first-order | ||
2584 | update expressions are returned based on the Jacobian matrix. In addition to | ||
2585 | continuous dynamics, discrete events can be used to model instantaneous changes | ||
2586 | in system state, such as a neuronal action potential. These can be generated by | ||
2587 | the system under test as well as applied as external stimuli, making | ||
2588 | ODE-toolbox particularly well-suited for applications in computational | ||
2589 | neuroscience.</span></p> | ||
2590 | |||
2591 | <h2></h2> | ||
2592 | |||
2593 | <h2><a name="_Toc138932352"><span lang=en-DE>openMINDS</span></a></h2> | ||
2594 | |||
2595 | <p class=MsoNormal><span lang=en-DE>openMINDS is composed of: (i) integrated | ||
2596 | metadata models adoptable by any graph database system (GDBS), (ii) a set of | ||
2597 | libraries of serviceable metadata instances with external resource references | ||
2598 | for local and global knowledge integration, and (iii) supportive tooling for | ||
2599 | handling the metadata models and instances. Moreover, the framework provides | ||
2600 | machine-readable mappings to other standardisation efforts (e.g., schema.org). | ||
2601 | With this, openMINDS is a unique and powerful metadata framework for flexible | ||
2602 | knowledge integration within and beyond any GDBS.</span></p> | ||
2603 | |||
2604 | <h2></h2> | ||
2605 | |||
2606 | <h2><a name="_Toc138932353"><span lang=en-DE>openMINDS metadata for TVB-ready | ||
2607 | data</span></a></h2> | ||
2608 | |||
2609 | <p class=MsoNormal><span lang=en-DE>Jupyter Python notebook with code and | ||
2610 | commentaries for creating openMINDS metadata version 1.0 in JSON-LD format for | ||
2611 | ingestion of TVB-ready data in EBRAINS Knowledge Graph.</span></p> | ||
2612 | |||
2613 | <h2></h2> | ||
2614 | |||
2615 | <h2><a name="_Toc138932354"><span lang=en-DE>PCI</span></a></h2> | ||
2616 | |||
2617 | <p class=MsoNormal><span lang=en-DE>The notebook allows the computation of the | ||
2618 | PCI Lempel-Ziv and PCI state transitions. In order to run the examples, a wake | ||
2619 | and sleep data set needs to be provided in the Python-MNE format.</span></p> | ||
2620 | |||
2621 | <h2></h2> | ||
2622 | |||
2623 | <h2><a name="_Toc138932355"><span lang=en-DE>PIPSA</span></a></h2> | ||
2624 | |||
2625 | <p class=MsoNormal><span lang=en-DE>PIPSA enables the comparison of the | ||
2626 | electrostatic interaction properties of proteins. It permits the classification | ||
2627 | of proteins according to their interaction properties. PIPSA may assist in | ||
2628 | function assignment, the estimation of binding properties and enzyme kinetic | ||
2629 | parameters.</span></p> | ||
2630 | |||
2631 | <h2></h2> | ||
2632 | |||
2633 | <h2><a name="_Toc138932356"><span lang=en-DE>PoSCE</span></a></h2> | ||
2634 | |||
2635 | <p class=MsoNormal><span lang=en-DE>PoSCE is a functional connectivity | ||
2636 | estimator of fMRI time-series. It relies on the Riemannian geometry of | ||
2637 | covariances and integrates prior knowledge of covariance distribution over a | ||
2638 | population.</span></p> | ||
2639 | |||
2640 | <h2></h2> | ||
2641 | |||
2642 | <h2><a name="_Toc138932357"><span lang=en-DE>Provenance API</span></a></h2> | ||
2643 | |||
2644 | <p class=MsoNormal><span lang=en-DE>The EBRAINS Provenance API is a web service | ||
2645 | to facilitate working with computational provenance metadata. Metadata are | ||
2646 | stored in the EBRAINS Knowledge Graph (KG) using openMINDS schemas. The | ||
2647 | Provenance API provides a somewhat simplified interface compared to accessing | ||
2648 | the KG directly and performs checks of metadata consistency. The service covers | ||
2649 | workflows involving simulation, data analysis, visualisation, optimisation, | ||
2650 | data movement and model validation.</span></p> | ||
2651 | |||
2652 | <h2></h2> | ||
2653 | |||
2654 | <h2><a name="_Toc138932358"><span lang=en-DE>PyNN</span></a></h2> | ||
2655 | |||
2656 | <p class=MsoNormal><span lang=en-DE>A model description written with the PyNN | ||
2657 | API and the Python programming language runs on any simulator that PyNN | ||
2658 | supports (currently NEURON, NEST and Brian 2) as well as on the BrainScaleS | ||
2659 | and SpiNNaker neuromorphic hardware systems. PyNN provides a library of | ||
2660 | standard neuron, synapse and synaptic plasticity models, verified to work the | ||
2661 | same on different simulators. PyNN also provides commonly used connectivity | ||
2662 | algorithms (e.g. all-to-all, random, distance-dependent, small-world) but makes | ||
2663 | it easy to provide your own connectivity in a simulator-independent way. PyNN | ||
2664 | transparently supports distributed simulations using MPI.</span></p> | ||
2665 | |||
2666 | <h2></h2> | ||
2667 | |||
2668 | <h2><a name="_Toc138932359"><span lang=en-DE>Pyramidal Explorer</span></a></h2> | ||
2669 | |||
2670 | <p class=MsoNormal><span lang=en-DE>PyramidalExplorer is a tool to | ||
2671 | interactively explore and reveal the detailed organisation of the microanatomy | ||
2672 | of pyramidal neurons with functionally related models. Possible regional | ||
2673 | differences in the pyramidal cell architecture can be interactively discovered | ||
2674 | by combining quantitative morphological information about the structure of the | ||
2675 | cell with implemented functional models. The key contribution of this tool is the | ||
2676 | morpho-functional oriented design, allowing the user to navigate within the 3D | ||
2677 | dataset, filter and perform content-based retrieval operations to find the | ||
2678 | spines that are alike and dissimilar within the neuron, according to particular | ||
2679 | morphological or functional variables.</span></p> | ||
2680 | |||
2681 | <h2></h2> | ||
2682 | |||
2683 | <h2><a name="_Toc138932360"><span lang=en-DE>QCAlign software</span></a></h2> | ||
2684 | |||
2685 | <p class=MsoNormal><span lang=en-DE>The QUINT workflow enables spatial analysis | ||
2686 | of labelling in series of brain sections from mouse and rat based on | ||
2687 | registration to a reference brain atlas. The QCAlign software supports the use | ||
2688 | of QUINT for high-throughput studies by providing information about: 1. The | ||
2689 | quality of the section images used as input to the QUINT workflow. 2. The | ||
2690 | quality of the atlas registration performed in the QUINT workflow. 3. QCAlign | ||
2691 | also makes it easier for the user to explore the atlas hierarchy and decide on | ||
2692 | a customised hierarchy level to use for the investigation</span></p> | ||
2693 | |||
2694 | <h2></h2> | ||
2695 | |||
2696 | <h2><a name="_Toc138932361"><span lang=en-DE>QuickNII</span></a></h2> | ||
2697 | |||
2698 | <p class=MsoNormal><span lang=en-DE>QuickNII is a tool for user-guided affine | ||
2699 | registration (anchoring) of 2D experimental image data, typically high | ||
2700 | resolution microscopic images, to 3D atlas reference space, facilitating data | ||
2701 | integration through standardised coordinate systems. Key features: Generate | ||
2702 | user-defined cut planes through the atlas templates, matching the orientation | ||
2703 | of the cut plane of the 2D experimental image data, as a first step towards | ||
2704 | anchoring of images to the relevant atlas template. Propagate spatial | ||
2705 | transformations across series of sections following anchoring of selected | ||
2706 | images.</span></p> | ||
2707 | |||
2708 | <h2></h2> | ||
2709 | |||
2710 | <h2><a name="_Toc138932362"><span lang=en-DE>Quota Manager</span></a></h2> | ||
2711 | |||
2712 | <p class=MsoNormal><span lang=en-DE>The Quota Manager enables each EBRAINS | ||
2713 | service to manage user quotas for resources EBRAINS users consume in their | ||
2714 | respective services. The goal is to encourage the responsible use of resources. | ||
2715 | It is recommended that all users (except possibly guest accounts) are provided | ||
2716 | with a default quota, and that specific users have the option of receiving | ||
2717 | larger quotas based on their affiliation, role or motivated requests.</span></p> | ||
2718 | |||
2719 | <h2></h2> | ||
2720 | |||
2721 | <h2><a name="_Toc138932363"><span lang=en-DE>RateML</span></a></h2> | ||
2722 | |||
2723 | <p class=MsoNormal><span lang=en-DE>RateML enables users to generate | ||
2724 | whole-brain network models from a succinct declarative description, in which | ||
2725 | the mathematics of the model are described without specifying how their | ||
2726 | simulation should be implemented. RateML builds on NeuroML's Low Entropy Model | ||
2727 | Specification (LEMS), an XML-based language for specifying models of dynamical systems, | ||
2728 | allowing descriptions of neural mass and discretized neural field models, as | ||
2729 | implemented by the TVB simulator. The end user describes their model's | ||
2730 | mathematics once and generates and runs code for different languages, targeting | ||
2731 | both CPUs for fast single simulations and GPUs for parallel ensemble | ||
2732 | simulations.</span></p> | ||
2733 | |||
2734 | <h2></h2> | ||
2735 | |||
2736 | <h2><a name="_Toc138932364"><span lang=en-DE>Region-wise CBPP using the Julich | ||
2737 | BrainÊCytoarchitectonic Atlas</span></a></h2> | ||
2738 | |||
2739 | <p class=MsoNormal><span lang=en-DE>Many studies have been investigating the | ||
2740 | relationships between interindividual variability in brain regions' | ||
2741 | connectivity and behavioural phenotypes, by utilising connectivity-based | ||
2742 | prediction models. Recently, we demonstrated that an approach based on the | ||
2743 | combination of whole-brain and region-wise CBPP can provide important insight | ||
2744 | into the predictive model, and hence in brain-behaviour relationships, by | ||
2745 | offering interpretable patterns. Here, we applied this approach using the | ||
2746 | Julich Brain Cytoarchitectonic Atlas with the resting-state functional | ||
2747 | connectivity and psychometric variables from the Human Connectome Project | ||
2748 | dataset, illustrating each brain region's predictive power for a range of | ||
2749 | psychometric variables. As a result, a psychometric prediction profile was | ||
2750 | established for each brain region, which can be validated against brain mapping | ||
2751 | literature.</span></p> | ||
2752 | |||
2753 | <h2></h2> | ||
2754 | |||
2755 | <h2><a name="_Toc138932365"><span lang=en-DE>RRI Capacity Development Resources</span></a></h2> | ||
2756 | |||
2757 | <p class=MsoNormal><span lang=en-DE>A series of training resources developed to | ||
2758 | enable anticipation, critical reflection and public engagement/deliberation of | ||
2759 | societal consequences of brain research and innovation activities. These | ||
2760 | resources were designed primarily for HBP researchers and EBRAINS leadership | ||
2761 | and management, involving EBRAINS data and infrastructure providers. However, | ||
2762 | they are also useful for engaging the wider public with RRI. The resources are | ||
2763 | based on the legacy of over 10 years of research and activities of the ethics | ||
2764 | and society-team in the HBP. They cover important RRI-related topics on | ||
2765 | neuroethics, data governance, dual-use, public engagement and foresight, | ||
2766 | diversity, search integrity etc.</span></p> | ||
2767 | |||
2768 | <h2></h2> | ||
2769 | |||
2770 | <h2><a name="_Toc138932366"><span lang=en-DE>rsHRF</span></a></h2> | ||
2771 | |||
2772 | <p class=MsoNormal><span lang=en-DE>This toolbox is aimed to retrieve the | ||
2773 | onsets of pseudo-events triggering an hemodynamic response from resting state | ||
2774 | fMRI BOLD signals. It is based on point process theory and fits a model to | ||
2775 | retrieve the optimal lag between the events and the HRF onset, as well as the | ||
2776 | HRF shape, using different shape parameters or combinations of basis functions. | ||
2777 | Once the HRF has been retrieved for each voxel/vertex, it can be deconvolved | ||
2778 | from the time series (for example, to improve lag-based connectivity | ||
2779 | estimates), or one can map the shape parameters everywhere in the brain | ||
2780 | (including white matter) and use it as a pathophysiological indicator.</span></p> | ||
2781 | |||
2782 | <h2></h2> | ||
2783 | |||
2784 | <h2><a name="_Toc138932367"><span lang=en-DE>RTNeuron</span></a></h2> | ||
2785 | |||
2786 | <p class=MsoNormal><span lang=en-DE>The main utility of RTNeuron is twofold: | ||
2787 | (i) the interactive visual inspection of structural and functional features of | ||
2788 | the cortical column model and (ii) the generation of high-quality movies and | ||
2789 | images for presentations and publications.RTNeuron provides a C++ library with | ||
2790 | an OpenGL-based rendering backend, a Python wrapping and a Python application | ||
2791 | called rtneuron. RTNeuron is only supported in GNU/Linux systems. However, it | ||
2792 | should also be possible to build it on Windows systems. For OS/X it may be | ||
2793 | quite challenging and require changes in OpenGL-related code to get it working.</span></p> | ||
2794 | |||
2795 | <h2></h2> | ||
2796 | |||
2797 | <h2><a name="_Toc138932368"><span lang=en-DE>sbs: Spike-based Sampling</span></a></h2> | ||
2798 | |||
2799 | <p class=MsoNormal><span lang=en-DE>Spike-based sampling, sbs, is a software | ||
2800 | suite that takes care of calibrating spiking neurons for given target | ||
2801 | distributions and allows the evaluation of these distributions as they are | ||
2802 | produced by stochastic spiking networks.</span></p> | ||
2803 | |||
2804 | <h2></h2> | ||
2805 | |||
2806 | <h2><a name="_Toc138932369"><span lang=en-DE>SDA 7</span></a></h2> | ||
2807 | |||
2808 | <p class=MsoNormal><span lang=en-DE>SDA 7 can be used to carry out Brownian | ||
2809 | dynamics simulations of the diffusional association in a continuum aqueous | ||
2810 | solvent of two solute molecules, e.g., proteins, or of a solute molecule to an | ||
2811 | inorganic surface. SDA 7 can also be used to simulate the diffusion of multiple | ||
2812 | proteins, in dilute or concentrated solutions, e.g., to study the effects of | ||
2813 | macromolecular crowding.</span></p> | ||
2814 | |||
2815 | <h2></h2> | ||
2816 | |||
2817 | <h2><a name="_Toc138932370"><span lang=en-DE>Shape & Appearance Modelling</span></a></h2> | ||
2818 | |||
2819 | <p class=MsoNormal><span lang=en-DE>A framework for automatically learning | ||
2820 | shape and appearance models for medical (and certain other) images. The | ||
2821 | algorithm was developed with the aim of eventually enabling distributed | ||
2822 | privacy-preserving analysis of brain image data, such that shared information | ||
2823 | (shape and appearance basis functions) may be passed across sites, whereas | ||
2824 | latent variables that encode individual images remain secure within each site. | ||
2825 | These latent variables are proposed as features for privacy-preserving data | ||
2826 | mining applications.</span></p> | ||
2827 | |||
2828 | <h2></h2> | ||
2829 | |||
2830 | <h2><a name="_Toc138932371"><span lang=en-DE>siibra-api</span></a></h2> | ||
2831 | |||
2832 | <p class=MsoNormal><span lang=en-DE>siibra-api provides an HTTP wrapper around | ||
2833 | siibra-python, allowing developers to access atlas (meta)data over HTTP | ||
2834 | protocol. Deployed on the EBRAINS infrastructure, developers can access the | ||
2835 | centralised (meta)data on atlases, as provided by siibra-python, regardless of | ||
2836 | the programming language.</span></p> | ||
2837 | |||
2838 | <h2></h2> | ||
2839 | |||
2840 | <h2><a name="_Toc138932372"><span lang=en-DE>siibra-explorer</span></a></h2> | ||
2841 | |||
2842 | <p class=MsoNormal><span lang=en-DE>The interactive atlas viewer | ||
2843 | siibra-explorer allows exploring the different EBRAINS atlases for the human, | ||
2844 | monkey and rodent brains together with a comprehensive set of linked multimodal | ||
2845 | data features. It provides a 3-planar view of a parcellated reference volume | ||
2846 | combined with a rotatable overview of the 3D surface. Several templates can be | ||
2847 | selected to navigate through the brain from MRI-scale to microscopic | ||
2848 | resolution, allowing inspection of terabyte-size image data. Anatomically | ||
2849 | anchored datasets reflecting aspects of cellular and molecular organisation, | ||
2850 | fibres, function and connectivity can be discovered by selecting brain regions | ||
2851 | from parcellations, or zooming and panning the reference brain. siibra-explorer | ||
2852 | also allows annotation of brain locations as points and polygons and is | ||
2853 | extensible via interactive plugins.</span></p> | ||
2854 | |||
2855 | <h2></h2> | ||
2856 | |||
2857 | <h2><a name="_Toc138932373"><span lang=en-DE>siibra-python</span></a></h2> | ||
2858 | |||
2859 | <p class=MsoNormal><span lang=en-DE>siibra-python is a Python client to a brain | ||
2860 | atlas framework that integrates brain parcellations and reference spaces at | ||
2861 | different spatial scales and connects them with a broad range of multimodal | ||
2862 | regional data features. It aims to facilitate programmatic and reproducible | ||
2863 | incorporation of brain parcellations and brain region features from different | ||
2864 | sources into neuroscience workflows. Also, siibra-python provides an easy | ||
2865 | access to data features on the EBRAINS Knowledge Graph in a well-structured | ||
2866 | manner. Users can preconfigure their own data to use within siibra-python.</span></p> | ||
2867 | |||
2868 | <h2></h2> | ||
2869 | |||
2870 | <h2><a name="_Toc138932374"><span lang=en-DE>Single Cell Model (Re)builder | ||
2871 | Notebook</span></a></h2> | ||
2872 | |||
2873 | <p class=MsoNormal><span lang=en-DE>The Single Cell Model (Re)builder Notebook | ||
2874 | is a web application, implemented via a Jupyter Notebook on EBRAINS, which | ||
2875 | allows users to configure the BluePyOpt to re-run an optimisation with their | ||
2876 | own choices for the parameters range. The optimisation jobs are submitted | ||
2877 | through Neuroscience Gateway.</span></p> | ||
2878 | |||
2879 | <h2></h2> | ||
2880 | |||
2881 | <h2><a name="_Toc138932375"><span lang=en-DE>Slurm Plugin for Co-allocation of | ||
2882 | Compute and Data Resources</span></a></h2> | ||
2883 | |||
2884 | <p class=MsoNormal><span lang=en-DE>This Simple linux utility for resource | ||
2885 | management (Slurm) plugin enables the co-allocation of compute and data resources | ||
2886 | on a shared multi-tiered storage cluster by estimating waiting times when the | ||
2887 | high-performance storage (burst buffers) will become available to submitted | ||
2888 | jobs. Based on the current job queue and the estimated waiting time, the plugin | ||
2889 | decides whether scheduling the high-performance or lower-performance storage | ||
2890 | system (parallel file system) benefits the job's turnaround time. The | ||
2891 | estimation depends on additional information the user provides at submission | ||
2892 | time.</span></p> | ||
2893 | |||
2894 | <h2></h2> | ||
2895 | |||
2896 | <h2><a name="_Toc138932376"><span lang=en-DE>Snudda</span></a></h2> | ||
2897 | |||
2898 | <p class=MsoNormal><span lang=en-DE>Snudda ('touch' in Swedish) allows the user | ||
2899 | to set up and generate microcircuits where the connectivity between neurons is | ||
2900 | based on reconstructed neuron morphologies. The touch detection algorithm looks | ||
2901 | for overlaps of axons and dendrites, and places putative synapses where they | ||
2902 | touch. The putative synapses are pruned, removing a fraction to match | ||
2903 | statistics from pairwise connectivity experiments. If needed, Snudda can also | ||
2904 | use probability functions to create realistic microcircuits. The Snudda | ||
2905 | software is written in Python and includes support for supercomputers. It uses | ||
2906 | ipyparallel to parallelise network creation, and NEURON as the backend for | ||
2907 | simulations. Install using pip or by directly downloading.</span></p> | ||
2908 | |||
2909 | <h2></h2> | ||
2910 | |||
2911 | <h2><a name="_Toc138932377"><span lang=en-DE>SomaSegmenter</span></a></h2> | ||
2912 | |||
2913 | <p class=MsoNormal><span lang=en-DE>SomaSegmenter allows neuronal soma | ||
2914 | segmentation in fluorescence microscopy imaging datasets with the use of a | ||
2915 | parametrised version of the U-Net segmentation model, including additional | ||
2916 | features such as residual links and tile-based frame reconstruction.</span></p> | ||
2917 | |||
2918 | <h2></h2> | ||
2919 | |||
2920 | <h2><a name="_Toc138932378"><span lang=en-DE>SpiNNaker</span></a></h2> | ||
2921 | |||
2922 | <p class=MsoNormal><span lang=en-DE>SpiNNaker is a neuromorphic computer with | ||
2923 | over a million low power, small memory ARM cores arranged in chips, connected | ||
2924 | together with a unique brain-like mesh network, and designed to simulate | ||
2925 | networks of spiking point neurons. Software is provided to compile networks | ||
2926 | described with PyNN into running simulations, and to extract and convert | ||
2927 | results into the neo data format, as well as providing support for live | ||
2928 | interaction with running simulations. This allows integration with external | ||
2929 | devices such as real or virtual robotics as well as live simulation | ||
2930 | visualisation. Scripts can be written and executed using Jupyter for | ||
2931 | interactive access.</span></p> | ||
2932 | |||
2933 | <h2></h2> | ||
2934 | |||
2935 | <h2><a name="_Toc138932379"><span lang=en-DE>SSB toolkit</span></a></h2> | ||
2936 | |||
2937 | <p class=MsoNormal><span lang=en-DE>The SSB toolkit is an open-source Python | ||
2938 | library to simulate mathematical models of the signal transduction pathways of | ||
2939 | G-protein coupled receptors (GPCRs). By merging structural macromolecular data | ||
2940 | with systems biology simulations, the framework allows simulation of the signal | ||
2941 | transduction kinetics induced by ligand-GPCR interactions, as well as the consequent | ||
2942 | change of concentration of signalling molecular species, as a function of time | ||
2943 | and ligand concentration. Therefore, this tool allows the possibility to | ||
2944 | investigate the subcellular effects of ligand binding upon receptor activation, | ||
2945 | deepening the understanding of the relationship between the molecular level of | ||
2946 | ligand-target interactions and higher-level cellular and physiological or | ||
2947 | pathological response mechanisms.</span></p> | ||
2948 | |||
2949 | <h2></h2> | ||
2950 | |||
2951 | <h2><a name="_Toc138932380"><span lang=en-DE>Subcellular model building and | ||
2952 | calibration tool set</span></a></h2> | ||
2953 | |||
2954 | <p class=MsoNormal><span lang=en-DE>The toolset includes interoperable modules | ||
2955 | for: model building, calibration (parameter estimation) and model analysis. All | ||
2956 | information needed to perform these tasks (models, experimental calibration | ||
2957 | data and prior assumptions on parameter distributions) are stored in a | ||
2958 | structured, human- and machine-readable file format based on SBtab. The toolset | ||
2959 | enables simulations of the same model in simulators with different | ||
2960 | characteristics, e.g., STEPS, NEURON, MATLAB's Simbiology and R via automatic | ||
2961 | code generation. The parameter estimation can include uncertainty | ||
2962 | quantification and is done by optimisation or Bayesian approaches. Model | ||
2963 | analysis includes global sensitivity analysis and functionality for analysing | ||
2964 | thermodynamic constraints and conserved moieties.</span></p> | ||
2965 | |||
2966 | <h2></h2> | ||
2967 | |||
2968 | <h2><a name="_Toc138932381"><span lang=en-DE>Synaptic Events Fitting</span></a></h2> | ||
2969 | |||
2970 | <p class=MsoNormal><span lang=en-DE>The Synaptic Events Fitting is a web | ||
2971 | application, implemented in a Jupyter Notebook on EBRAINS that allows users to | ||
2972 | fit synaptic events using data and models from the EBRAINS Knowledge Graph | ||
2973 | (KG). Select, download and visualise experimental data from the KG and then choose | ||
2974 | the data to be fitted. A mod file is then selected (local or default) together | ||
2975 | with the corresponding configuration file (including protocol and the name of | ||
2976 | the parameters to be fitted, their initial values and allowed variation range, | ||
2977 | exclusion rules and an optional set of dependencies). The fitting procedure can | ||
2978 | run on Neuroscience Gateway. Fetch the fitting results from the storage of the | ||
2979 | HPC system to the storage of the Collab or to analyse the optimised parameters.</span></p> | ||
2980 | |||
2981 | <h2></h2> | ||
2982 | |||
2983 | <h2><a name="_Toc138932382"><span lang=en-DE>Synaptic Plasticity Explorer</span></a></h2> | ||
2984 | |||
2985 | <p class=MsoNormal><span lang=en-DE>The Synaptic Plasticity Explorer is a web | ||
2986 | application, implemented via a Jupyter Notebook on EBRAINS, which allows to | ||
2987 | configure and test, through an intuitive GUI, different synaptic plasticity | ||
2988 | models and protocols on single cell optimised models, available in the EBRAINS | ||
2989 | Model Catalog. It consists of two tabs: 'Config', where the user can specify | ||
2990 | the plasticity model to use and the synaptic parameters, and 'Sim', where the | ||
2991 | recording location, weight's evolution and number of simulations to run are | ||
2992 | defined. The results are plotted at the end of the simulation and the traces | ||
2993 | are available for download.</span></p> | ||
2994 | |||
2995 | <h2></h2> | ||
2996 | |||
2997 | <h2><a name="_Toc138932383"><span lang=en-DE>Synaptic proteome database | ||
2998 | (SQLite)</span></a></h2> | ||
2999 | |||
3000 | <p class=MsoNormal><span lang=en-DE>Integration of 57 published synaptic | ||
3001 | proteomic datasets reveals a stunningly complex picture involving over 7000 | ||
3002 | proteins. Molecular complexes were reconstructed using evidence-based | ||
3003 | protein-protein interaction data available from public databases. The | ||
3004 | constructed molecular interaction network model is embedded into an SQLite | ||
3005 | implementation, allowing queries that generate custom network models based on | ||
3006 | meta-data including species, synaptic compartment, brain region, and method of | ||
3007 | extraction.</span></p> | ||
3008 | |||
3009 | <h2></h2> | ||
3010 | |||
3011 | <h2><a name="_Toc138932384"><span lang=en-DE>Synaptome.db</span></a></h2> | ||
3012 | |||
3013 | <p class=MsoNormal><span lang=en-DE>The Synaptome.db bioconductor package | ||
3014 | contains a local copy of the Synaptic proteome database. On top of this it | ||
3015 | provides a set of utility R functions to query and analyse its content. It | ||
3016 | allows for extraction of information for specific genes and building the | ||
3017 | protein-protein interaction graph for gene sets, synaptic compartments and | ||
3018 | brain regions.</span></p> | ||
3019 | |||
3020 | <h2></h2> | ||
3021 | |||
3022 | <h2><a name="_Toc138932385"><span lang=en-DE>Tide</span></a></h2> | ||
3023 | |||
3024 | <p class=MsoNormal><span lang=en-DE>BlueBrain's Tide provides multi-window, | ||
3025 | multi-user touch interaction on large surfaces Ð think of a giant collaborative | ||
3026 | wall-mounted tablet. Tide is a distributed application that can run on multiple | ||
3027 | machines to power display walls or projection systems of any size. Its user interface | ||
3028 | is designed to offer an intuitive experience on touch walls. It works just as | ||
3029 | well on non-touch-capable installations by using its web interface from any web | ||
3030 | browser.</span></p> | ||
3031 | |||
3032 | <h2></h2> | ||
3033 | |||
3034 | <h2><a name="_Toc138932386"><span lang=en-DE>TVB EBRAINS</span></a></h2> | ||
3035 | |||
3036 | <p class=MsoNormal><span lang=en-DE>TVB EBRAINS is the principal full brain | ||
3037 | network simulation engine in EBRAINS and covers every aspect of realising | ||
3038 | personalised whole-brain simulations on the EBRAINS platform. It consists of | ||
3039 | the simulation tools and adaptors connecting the data, atlas and computing | ||
3040 | services to the rest of the TVB ecosystem and Cloud services available in | ||
3041 | EBRAINS. As such it allows the user to find and fetch relevant datasets through | ||
3042 | the EBRAINS Knowledge Graph and Atlas services, construct the personalised TVB | ||
3043 | models and use the HPC systems to perform parameter exploration, optimisation and | ||
3044 | inference studies. The user can orchestrate the workflow from the Jupyterlab | ||
3045 | interactive computing environment of the EBRAINS Collaboratory or use the | ||
3046 | dedicated web application of TVB.</span></p> | ||
3047 | |||
3048 | <h2></h2> | ||
3049 | |||
3050 | <h2><a name="_Toc138932387"><span lang=en-DE>TVB Image Processing Pipeline</span></a></h2> | ||
3051 | |||
3052 | <p class=MsoNormal><span lang=en-DE>TVB Image Processing Pipeline takes multimodal | ||
3053 | MRI data sets (anatomical, functional and diffusion-weighted MRI) as input and | ||
3054 | generates structural connectomes, region-average fMRI time series, functional | ||
3055 | connectomes, brain surfaces, electrode positions, lead field matrices and atlas | ||
3056 | parcellations as output. The pipeline performs preprocessing and | ||
3057 | distortion-correction on MRI data as well as white matter fibre bundle | ||
3058 | tractography on diffusion data. Outputs are formatted according to two data | ||
3059 | standards: a TVB-ready data set that can be directly used to simulate brain | ||
3060 | network models and the same output in BIDS format.</span></p> | ||
3061 | |||
3062 | <h2></h2> | ||
3063 | |||
3064 | <h2><a name="_Toc138932388"><span lang=en-DE>TVB Inversion</span></a></h2> | ||
3065 | |||
3066 | <p class=MsoNormal><span lang=en-DE>The TVB Inversion package implements the | ||
3067 | machinery required to perform parameter exploration and inference over | ||
3068 | parameters of The Virtual Brain simulator. It implements Simulation Based | ||
3069 | Inference (SBI) which is a Bayesian inference method for complex models, where | ||
3070 | calculation of the likelihood function is either analytically or | ||
3071 | computationally intractable. As such, it allows the user to formulate with | ||
3072 | great expressive power both the model and the inference scenario in terms of | ||
3073 | observed data features and model parameters. Part of the integration with TVB | ||
3074 | entails the option to perform numerous simulations in parallel, which can be | ||
3075 | used for parameter space exploration.</span></p> | ||
3076 | |||
3077 | <h2></h2> | ||
3078 | |||
3079 | <h2><a name="_Toc138932389"><span lang=en-DE>TVB Web App</span></a></h2> | ||
3080 | |||
3081 | <p class=MsoNormal><span lang=en-DE>TVB Web App provides The Virtual Brain | ||
3082 | Simulator as an EBRAINS Cloud Service with an HPC back-end. Scientists can run | ||
3083 | intense personalised brain simulations without having to deploy software. Users | ||
3084 | can access the service with their EBRAINS credentials (single sign on). TVB Web | ||
3085 | App uses private/public key cryptography, sandboxing, and access control to | ||
3086 | protect personalised health information contained in digital human brain twins | ||
3087 | while being processed on HPC. Users can upload their connectomes or use | ||
3088 | TVB-ready image-derived data discoverable via the EBRAINS Knowledge Graph. | ||
3089 | Users can also use containerised processing workflows available on EBRAINS to | ||
3090 | render image raw data into simulation-ready formats.</span></p> | ||
3091 | |||
3092 | <h2></h2> | ||
3093 | |||
3094 | <h2><a name="_Toc138932390"><span lang=en-DE>TVB Widgets</span></a></h2> | ||
3095 | |||
3096 | <p class=MsoNormal><span lang=en-DE>In order to support the usability of | ||
3097 | EBRAINS workflows, TVB-widgets has been developed as a set of modular graphic | ||
3098 | components and software solutions, easy to use in the Collaboratory within the | ||
3099 | JupyterLab. These GUI components are based on and under open source licence, | ||
3100 | supporting open neuroscience and support features like: Setup of models and | ||
3101 | region-specific or cohort simulations. Selection of Data sources and their | ||
3102 | links to models. Querying data from siibra and the EBRAINS Knowledge Graph. | ||
3103 | Deployment and monitoring jobs on HPC resources. Analysis and visualisation. | ||
3104 | Visual workflow builder for configuring and launching TVB simulations.</span></p> | ||
3105 | |||
3106 | <h2></h2> | ||
3107 | |||
3108 | <h2><a name="_Toc138932391"><span lang=en-DE>TVB-Multiscale</span></a></h2> | ||
3109 | |||
3110 | <p class=MsoNormal><span lang=en-DE>TVB-Multiscale is a Python toolbox aimed at | ||
3111 | facilitating the configuration of multiscale brain models and their | ||
3112 | co-simulation with TVB and spiking network simulators (currently NEST, | ||
3113 | NetPyNE (NEURON) and ANNarchy). A multiscale brain model consists of a full | ||
3114 | brain model formulated at the coarse scale of networks of tens up to thousands | ||
3115 | of brain regions, and an additional model of networks of spiking neurons | ||
3116 | describing selected brain regions at a finer scale. The toolbox has a | ||
3117 | user-friendly interface for configuring different kinds of models for | ||
3118 | transforming and exchanging data between the two scales during co-simulation.</span></p> | ||
3119 | |||
3120 | <h2></h2> | ||
3121 | |||
3122 | <h2><a name="_Toc138932392"><span lang=en-DE>VIOLA</span></a></h2> | ||
3123 | |||
3124 | <p class=MsoNormal><span lang=en-DE>VIOLA is an interactive, web-based tool to | ||
3125 | visualise activity data in multiple 2D layers such as the simulation output of | ||
3126 | neuronal networks with 2D geometry. As a reference implementation for a | ||
3127 | developed set of interactive visualisation concepts, the tool combines and | ||
3128 | adapts modern interactive visualisation paradigms, such as coordinated multiple | ||
3129 | views, for massively parallel neurophysiological data. The software allows for | ||
3130 | an explorative and qualitative assessment of the spatiotemporal features of | ||
3131 | neuronal activity, which can be performed prior to a detailed quantitative data | ||
3132 | analysis of specific aspects of the data.</span></p> | ||
3133 | |||
3134 | <h2></h2> | ||
3135 | |||
3136 | <h2><a name="_Toc138932393"><span lang=en-DE>Vishnu 1.0</span></a></h2> | ||
3137 | |||
3138 | <p class=MsoNormal><span lang=en-DE>DC Explorer, Pyramidal Explorer and Clint | ||
3139 | Explorer are the core of an application suite designed to help scientists to | ||
3140 | explore their data. Vishnu 1.0 is a communication framework that allows them to | ||
3141 | interchange information and cooperate in real time. It provides a unique access | ||
3142 | point to the three applications and manages a database with the users' | ||
3143 | datasets. Vishnu was originally designed to integrate data for | ||
3144 | Espina.Whole-brain-scale tools.</span></p> | ||
3145 | |||
3146 | <h2></h2> | ||
3147 | |||
3148 | <h2><a name="_Toc138932394"><span lang=en-DE>ViSimpl</span></a></h2> | ||
3149 | |||
3150 | <p class=MsoNormal><span lang=en-DE>ViSimpl integrates a set of visualisation | ||
3151 | and interaction components that provide a semantic view of brain data with the | ||
3152 | aim of improving its analysis procedures. ViSimpl provides 3D particle-based | ||
3153 | rendering that visualises simulation data with their associated spatial and | ||
3154 | temporal information, enhancing the knowledge extraction process. It also | ||
3155 | provides abstract representations of the time-varying magnitudes, supporting | ||
3156 | different data aggregation and disaggregation operations and giving focus and | ||
3157 | context clues. In addition, ViSimpl provides synchronised playback control of | ||
3158 | the simulation being analysed.</span></p> | ||
3159 | |||
3160 | <h2></h2> | ||
3161 | |||
3162 | <h2><a name="_Toc138932395"><span lang=en-DE>VisuAlign</span></a></h2> | ||
3163 | |||
3164 | <p class=MsoNormal><span lang=en-DE>VisuAlign is a tool for user-guided | ||
3165 | nonlinear registration after QuickNII of 2D experimental image data, typically | ||
3166 | high resolution microscopic images, to 3D atlas reference space, facilitating | ||
3167 | data integration through standardised coordinate systems. Key features: | ||
3168 | Generate user-defined cut planes through the atlas templates, matching the | ||
3169 | orientation of the cut plane of the 2D experimental image data, as a first step | ||
3170 | towards anchoring of images to the relevant atlas template. Propagate spatial | ||
3171 | transformations across series of sections following anchoring of selected | ||
3172 | images.</span></p> | ||
3173 | |||
3174 | <h2></h2> | ||
3175 | |||
3176 | <h2><a name="_Toc138932396"><span lang=en-DE>VMetaFlow</span></a></h2> | ||
3177 | |||
3178 | <p class=MsoNormal><span lang=en-DE>VMetaFlow is an abstraction layer placed | ||
3179 | over existing visual grammars and visualisation declarative languages, | ||
3180 | providing them with interoperability mechanisms. The main contribution of this | ||
3181 | research is to provide a user-friendly system to design visualisation and data | ||
3182 | processing operations that can be interconnected to form data analysis | ||
3183 | workflows. Visualisations and data processes can be saved as cards. Cards and | ||
3184 | workflows can be saved, distributed and reused between users.</span></p> | ||
3185 | |||
3186 | <h2></h2> | ||
3187 | |||
3188 | <h2><a name="_Toc138932397"><span lang=en-DE>Voluba</span></a></h2> | ||
3189 | |||
3190 | <p class=MsoNormal><span lang=en-DE>A common problem in high-resolution brain | ||
3191 | atlasing is spatial anchoring of volumes of interest from imaging experiments | ||
3192 | into the detailed anatomical context of an ultrahigh-resolution reference model | ||
3193 | like BigBrain. The interactive volumetric alignment tool voluba is implemented | ||
3194 | as a web service and allows anchoring of volumetric image data to reference | ||
3195 | volumes at microscopical spatial resolutions. It enables interactive | ||
3196 | manipulation of image position, scale, and orientation, flipping of coordinate | ||
3197 | axes, and entering of anatomical point landmarks in 3D. The resulting | ||
3198 | transformation parameters can, amongst others, be downloaded or used to view | ||
3199 | the anchored image volume in the interactive atlas viewer siibra-explorer.</span></p> | ||
3200 | |||
3201 | <h2></h2> | ||
3202 | |||
3203 | <h2><a name="_Toc138932398"><span lang=en-DE>WebAlign</span></a></h2> | ||
3204 | |||
3205 | <p class=MsoNormal><span lang=en-DE>WebAlign is the web version of QuickNII. | ||
3206 | Presently, it is available as a community app in the Collaboratory. Features | ||
3207 | include: Spatial registration of sectional image data. Generation of customised | ||
3208 | atlas maps for your sectional image data.</span></p> | ||
3209 | |||
3210 | <h2></h2> | ||
3211 | |||
3212 | <h2><a name="_Toc138932399"><span lang=en-DE>Webilastik</span></a></h2> | ||
3213 | |||
3214 | <p class=MsoNormal><span lang=en-DE>webilastik brings the popular machine | ||
3215 | learning-based image analysis tool ilastik from the desktop into the browser. | ||
3216 | Users can perform semantic segmentation tasks on their data in the cloud. | ||
3217 | webilastik runs computations on federated EBRAINS HPC resources and uses | ||
3218 | EBRAINS infrastructure for data access and storage. webilastik makes machine | ||
3219 | learning-based image analysis workflows accessible to users without deep | ||
3220 | knowledge of image analysis and machine learning. webilastik is part of the | ||
3221 | QUINT workflow for extraction, quantification and analysis of features from | ||
3222 | rodent histological images.</span></p> | ||
3223 | |||
3224 | <h2></h2> | ||
3225 | |||
3226 | <h2><a name="_Toc138932400"><span lang=en-DE>WebWarp</span></a></h2> | ||
3227 | |||
3228 | <p class=MsoNormal><span lang=en-DE>WebWarp is the web version of VisuAlign. | ||
3229 | Presently, it is available as a community app in the Collaboratory. Features | ||
3230 | include: Nonlinear refinements of atlas registration by WebAlign of sectional | ||
3231 | image data. Generation of customised atlas maps for your sectional image data.</span></p> | ||
3232 | |||
3233 | <h2></h2> | ||
3234 | |||
3235 | <h2><a name="_Toc138932401"><span lang=en-DE>ZetaStitcher</span></a></h2> | ||
3236 | |||
3237 | <p class=MsoNormal><span lang=en-DE>ZetaStitcher is a Python package designed | ||
3238 | to stitch large volumetric images, such as those produced by Light-Sheet | ||
3239 | Fluorescence Microscopes. It is able to quickly compute the optimal alignment | ||
3240 | of large mosaics of tiles thanks to its ability to perform a sampling along the | ||
3241 | tile depth, i.e., pairwise alignment is computed only at certain depths along | ||
3242 | the thickness of the tile. This greatly reduces the amount of data that needs | ||
3243 | to be read and transferred, thus, making the process much faster. ZetaStitcher | ||
3244 | comes with an API that can be used to programmatically access the aligned | ||
3245 | volume in a virtual fashion as if it were a big NumPy array, without having to | ||
3246 | produce the fused 3D image of the whole sample.Cellular- and subcellular-scale | ||
3247 | tools.</span></p> | ||
3248 | |||
3249 | <h2></h2> | ||
3250 | |||
3251 | <h2><a name="_Toc138932402"><span lang=en-DE>TauRAMD</span></a></h2> | ||
3252 | |||
3253 | <p class=MsoNormal><span lang=en-DE>The TauRAMD technique makes use of RAMD | ||
3254 | simulations to compute relative residence times (or dissociation rates) of | ||
3255 | protein-ligand complexes. In the RAMD method, the egress of a molecule from a | ||
3256 | target receptor is accelerated by the application of an adaptive randomly | ||
3257 | oriented force on the ligand. This enables ligand egress events to be observed | ||
3258 | in short, nanosecond timescale simulations without imposing any bias regarding | ||
3259 | the ligand egress route taken. If coupled to the MD-IFP tool, the TauRAMD | ||
3260 | method can be used to investigate dissociation mechanisms and characterize | ||
3261 | transition states.</span></p> | ||
3262 | |||
3263 | </div> | ||
3264 | |||
3265 | </body> | ||
3266 | |||
3267 | </html> | ||
3268 | |||
3269 | {{/html}} |