Wiki source code of Tools description
Last modified by marissadiazpier on 2023/06/29 13:09
Show last authors
| author | version | line-number | content |
|---|---|---|---|
| 1 | **Human Brain Project Tools Description** | ||
| 2 | |||
| 3 | On this page you will find a list with a brief description of the tools we have for the HBP tools Book, if you have a suggestion or detect an omission please send your feedback to [[slu@ebrains.eu>>mailto:slu@ebrains.eu]]. | ||
| 4 | |||
| 5 | {{html}} | ||
| 6 | <html> | ||
| 7 | |||
| 8 | <head> | ||
| 9 | <meta http-equiv=Content-Type content="text/html; charset=windows-1252"> | ||
| 10 | <meta name=Generator content="Microsoft Word 15 (filtered)"> | ||
| 11 | <style> | ||
| 12 | <!-- | ||
| 13 | /* Font Definitions */ | ||
| 14 | @font-face | ||
| 15 | {font-family:"Cambria Math"; | ||
| 16 | panose-1:2 4 5 3 5 4 6 3 2 4;} | ||
| 17 | @font-face | ||
| 18 | {font-family:"Calibri Light"; | ||
| 19 | panose-1:2 15 3 2 2 2 4 3 2 4;} | ||
| 20 | @font-face | ||
| 21 | {font-family:Calibri; | ||
| 22 | panose-1:2 15 5 2 2 2 4 3 2 4;} | ||
| 23 | /* Style Definitions */ | ||
| 24 | p.MsoNormal, li.MsoNormal, div.MsoNormal | ||
| 25 | {margin-top:0cm; | ||
| 26 | margin-right:0cm; | ||
| 27 | margin-bottom:10.0pt; | ||
| 28 | margin-left:0cm; | ||
| 29 | line-height:120%; | ||
| 30 | font-size:10.5pt; | ||
| 31 | font-family:"Calibri",sans-serif;} | ||
| 32 | h1 | ||
| 33 | {mso-style-link:"Heading 1 Char"; | ||
| 34 | margin-top:18.0pt; | ||
| 35 | margin-right:0cm; | ||
| 36 | margin-bottom:2.0pt; | ||
| 37 | margin-left:0cm; | ||
| 38 | page-break-after:avoid; | ||
| 39 | font-size:20.0pt; | ||
| 40 | font-family:"Calibri Light",sans-serif; | ||
| 41 | color:#538135; | ||
| 42 | font-weight:normal;} | ||
| 43 | h2 | ||
| 44 | {mso-style-link:"Heading 2 Char"; | ||
| 45 | margin-top:4.0pt; | ||
| 46 | margin-right:0cm; | ||
| 47 | margin-bottom:0cm; | ||
| 48 | margin-left:0cm; | ||
| 49 | margin-bottom:.0001pt; | ||
| 50 | page-break-after:avoid; | ||
| 51 | font-size:14.0pt; | ||
| 52 | font-family:"Calibri Light",sans-serif; | ||
| 53 | color:#538135; | ||
| 54 | font-weight:normal;} | ||
| 55 | h3 | ||
| 56 | {mso-style-link:"Heading 3 Char"; | ||
| 57 | margin-top:4.0pt; | ||
| 58 | margin-right:0cm; | ||
| 59 | margin-bottom:0cm; | ||
| 60 | margin-left:0cm; | ||
| 61 | margin-bottom:.0001pt; | ||
| 62 | page-break-after:avoid; | ||
| 63 | font-size:12.0pt; | ||
| 64 | font-family:"Calibri Light",sans-serif; | ||
| 65 | color:#538135; | ||
| 66 | font-weight:normal;} | ||
| 67 | h4 | ||
| 68 | {mso-style-link:"Heading 4 Char"; | ||
| 69 | margin-top:4.0pt; | ||
| 70 | margin-right:0cm; | ||
| 71 | margin-bottom:0cm; | ||
| 72 | margin-left:0cm; | ||
| 73 | margin-bottom:.0001pt; | ||
| 74 | line-height:120%; | ||
| 75 | page-break-after:avoid; | ||
| 76 | font-size:11.0pt; | ||
| 77 | font-family:"Calibri Light",sans-serif; | ||
| 78 | color:#70AD47; | ||
| 79 | font-weight:normal;} | ||
| 80 | h5 | ||
| 81 | {mso-style-link:"Heading 5 Char"; | ||
| 82 | margin-top:2.0pt; | ||
| 83 | margin-right:0cm; | ||
| 84 | margin-bottom:0cm; | ||
| 85 | margin-left:0cm; | ||
| 86 | margin-bottom:.0001pt; | ||
| 87 | line-height:120%; | ||
| 88 | page-break-after:avoid; | ||
| 89 | font-size:11.0pt; | ||
| 90 | font-family:"Calibri Light",sans-serif; | ||
| 91 | color:#70AD47; | ||
| 92 | font-weight:normal; | ||
| 93 | font-style:italic;} | ||
| 94 | h6 | ||
| 95 | {mso-style-link:"Heading 6 Char"; | ||
| 96 | margin-top:2.0pt; | ||
| 97 | margin-right:0cm; | ||
| 98 | margin-bottom:0cm; | ||
| 99 | margin-left:0cm; | ||
| 100 | margin-bottom:.0001pt; | ||
| 101 | line-height:120%; | ||
| 102 | page-break-after:avoid; | ||
| 103 | font-size:10.5pt; | ||
| 104 | font-family:"Calibri Light",sans-serif; | ||
| 105 | color:#70AD47; | ||
| 106 | font-weight:normal;} | ||
| 107 | p.MsoHeading7, li.MsoHeading7, div.MsoHeading7 | ||
| 108 | {mso-style-link:"Heading 7 Char"; | ||
| 109 | margin-top:2.0pt; | ||
| 110 | margin-right:0cm; | ||
| 111 | margin-bottom:0cm; | ||
| 112 | margin-left:0cm; | ||
| 113 | margin-bottom:.0001pt; | ||
| 114 | line-height:120%; | ||
| 115 | page-break-after:avoid; | ||
| 116 | font-size:10.5pt; | ||
| 117 | font-family:"Calibri Light",sans-serif; | ||
| 118 | color:#70AD47; | ||
| 119 | font-weight:bold;} | ||
| 120 | p.MsoHeading8, li.MsoHeading8, div.MsoHeading8 | ||
| 121 | {mso-style-link:"Heading 8 Char"; | ||
| 122 | margin-top:2.0pt; | ||
| 123 | margin-right:0cm; | ||
| 124 | margin-bottom:0cm; | ||
| 125 | margin-left:0cm; | ||
| 126 | margin-bottom:.0001pt; | ||
| 127 | line-height:120%; | ||
| 128 | page-break-after:avoid; | ||
| 129 | font-size:10.0pt; | ||
| 130 | font-family:"Calibri Light",sans-serif; | ||
| 131 | color:#70AD47; | ||
| 132 | font-weight:bold; | ||
| 133 | font-style:italic;} | ||
| 134 | p.MsoHeading9, li.MsoHeading9, div.MsoHeading9 | ||
| 135 | {mso-style-link:"Heading 9 Char"; | ||
| 136 | margin-top:2.0pt; | ||
| 137 | margin-right:0cm; | ||
| 138 | margin-bottom:0cm; | ||
| 139 | margin-left:0cm; | ||
| 140 | margin-bottom:.0001pt; | ||
| 141 | line-height:120%; | ||
| 142 | page-break-after:avoid; | ||
| 143 | font-size:10.0pt; | ||
| 144 | font-family:"Calibri Light",sans-serif; | ||
| 145 | color:#70AD47; | ||
| 146 | font-style:italic;} | ||
| 147 | p.MsoToc1, li.MsoToc1, div.MsoToc1 | ||
| 148 | {margin-top:0cm; | ||
| 149 | margin-right:0cm; | ||
| 150 | margin-bottom:5.0pt; | ||
| 151 | margin-left:0cm; | ||
| 152 | line-height:107%; | ||
| 153 | font-size:11.0pt; | ||
| 154 | font-family:"Calibri",sans-serif;} | ||
| 155 | p.MsoToc2, li.MsoToc2, div.MsoToc2 | ||
| 156 | {margin-top:0cm; | ||
| 157 | margin-right:0cm; | ||
| 158 | margin-bottom:5.0pt; | ||
| 159 | margin-left:10.5pt; | ||
| 160 | line-height:120%; | ||
| 161 | font-size:10.5pt; | ||
| 162 | font-family:"Calibri",sans-serif;} | ||
| 163 | p.MsoToc3, li.MsoToc3, div.MsoToc3 | ||
| 164 | {margin-top:0cm; | ||
| 165 | margin-right:0cm; | ||
| 166 | margin-bottom:5.0pt; | ||
| 167 | margin-left:22.0pt; | ||
| 168 | line-height:107%; | ||
| 169 | font-size:11.0pt; | ||
| 170 | font-family:"Calibri",sans-serif;} | ||
| 171 | p.MsoToc4, li.MsoToc4, div.MsoToc4 | ||
| 172 | {margin-top:0cm; | ||
| 173 | margin-right:0cm; | ||
| 174 | margin-bottom:5.0pt; | ||
| 175 | margin-left:33.0pt; | ||
| 176 | line-height:107%; | ||
| 177 | font-size:11.0pt; | ||
| 178 | font-family:"Calibri",sans-serif;} | ||
| 179 | p.MsoToc5, li.MsoToc5, div.MsoToc5 | ||
| 180 | {margin-top:0cm; | ||
| 181 | margin-right:0cm; | ||
| 182 | margin-bottom:5.0pt; | ||
| 183 | margin-left:44.0pt; | ||
| 184 | line-height:107%; | ||
| 185 | font-size:11.0pt; | ||
| 186 | font-family:"Calibri",sans-serif;} | ||
| 187 | p.MsoToc6, li.MsoToc6, div.MsoToc6 | ||
| 188 | {margin-top:0cm; | ||
| 189 | margin-right:0cm; | ||
| 190 | margin-bottom:5.0pt; | ||
| 191 | margin-left:55.0pt; | ||
| 192 | line-height:107%; | ||
| 193 | font-size:11.0pt; | ||
| 194 | font-family:"Calibri",sans-serif;} | ||
| 195 | p.MsoToc7, li.MsoToc7, div.MsoToc7 | ||
| 196 | {margin-top:0cm; | ||
| 197 | margin-right:0cm; | ||
| 198 | margin-bottom:5.0pt; | ||
| 199 | margin-left:66.0pt; | ||
| 200 | line-height:107%; | ||
| 201 | font-size:11.0pt; | ||
| 202 | font-family:"Calibri",sans-serif;} | ||
| 203 | p.MsoToc8, li.MsoToc8, div.MsoToc8 | ||
| 204 | {margin-top:0cm; | ||
| 205 | margin-right:0cm; | ||
| 206 | margin-bottom:5.0pt; | ||
| 207 | margin-left:77.0pt; | ||
| 208 | line-height:107%; | ||
| 209 | font-size:11.0pt; | ||
| 210 | font-family:"Calibri",sans-serif;} | ||
| 211 | p.MsoToc9, li.MsoToc9, div.MsoToc9 | ||
| 212 | {margin-top:0cm; | ||
| 213 | margin-right:0cm; | ||
| 214 | margin-bottom:5.0pt; | ||
| 215 | margin-left:88.0pt; | ||
| 216 | line-height:107%; | ||
| 217 | font-size:11.0pt; | ||
| 218 | font-family:"Calibri",sans-serif;} | ||
| 219 | p.MsoCaption, li.MsoCaption, div.MsoCaption | ||
| 220 | {margin-top:0cm; | ||
| 221 | margin-right:0cm; | ||
| 222 | margin-bottom:10.0pt; | ||
| 223 | margin-left:0cm; | ||
| 224 | font-size:10.5pt; | ||
| 225 | font-family:"Calibri",sans-serif; | ||
| 226 | font-variant:small-caps; | ||
| 227 | color:#595959; | ||
| 228 | font-weight:bold;} | ||
| 229 | p.MsoTitle, li.MsoTitle, div.MsoTitle | ||
| 230 | {mso-style-link:"Title Char"; | ||
| 231 | margin:0cm; | ||
| 232 | margin-bottom:.0001pt; | ||
| 233 | font-size:48.0pt; | ||
| 234 | font-family:"Calibri Light",sans-serif; | ||
| 235 | color:#262626; | ||
| 236 | letter-spacing:-.75pt;} | ||
| 237 | p.MsoTitleCxSpFirst, li.MsoTitleCxSpFirst, div.MsoTitleCxSpFirst | ||
| 238 | {mso-style-link:"Title Char"; | ||
| 239 | margin:0cm; | ||
| 240 | margin-bottom:.0001pt; | ||
| 241 | font-size:48.0pt; | ||
| 242 | font-family:"Calibri Light",sans-serif; | ||
| 243 | color:#262626; | ||
| 244 | letter-spacing:-.75pt;} | ||
| 245 | p.MsoTitleCxSpMiddle, li.MsoTitleCxSpMiddle, div.MsoTitleCxSpMiddle | ||
| 246 | {mso-style-link:"Title Char"; | ||
| 247 | margin:0cm; | ||
| 248 | margin-bottom:.0001pt; | ||
| 249 | font-size:48.0pt; | ||
| 250 | font-family:"Calibri Light",sans-serif; | ||
| 251 | color:#262626; | ||
| 252 | letter-spacing:-.75pt;} | ||
| 253 | p.MsoTitleCxSpLast, li.MsoTitleCxSpLast, div.MsoTitleCxSpLast | ||
| 254 | {mso-style-link:"Title Char"; | ||
| 255 | margin:0cm; | ||
| 256 | margin-bottom:.0001pt; | ||
| 257 | font-size:48.0pt; | ||
| 258 | font-family:"Calibri Light",sans-serif; | ||
| 259 | color:#262626; | ||
| 260 | letter-spacing:-.75pt;} | ||
| 261 | p.MsoSubtitle, li.MsoSubtitle, div.MsoSubtitle | ||
| 262 | {mso-style-link:"Subtitle Char"; | ||
| 263 | margin-top:0cm; | ||
| 264 | margin-right:0cm; | ||
| 265 | margin-bottom:10.0pt; | ||
| 266 | margin-left:0cm; | ||
| 267 | font-size:15.0pt; | ||
| 268 | font-family:"Calibri Light",sans-serif;} | ||
| 269 | a:link, span.MsoHyperlink | ||
| 270 | {color:#0563C1; | ||
| 271 | text-decoration:underline;} | ||
| 272 | a:visited, span.MsoHyperlinkFollowed | ||
| 273 | {color:#954F72; | ||
| 274 | text-decoration:underline;} | ||
| 275 | em | ||
| 276 | {color:#70AD47;} | ||
| 277 | p.MsoNoSpacing, li.MsoNoSpacing, div.MsoNoSpacing | ||
| 278 | {margin:0cm; | ||
| 279 | margin-bottom:.0001pt; | ||
| 280 | font-size:10.5pt; | ||
| 281 | font-family:"Calibri",sans-serif;} | ||
| 282 | p.MsoQuote, li.MsoQuote, div.MsoQuote | ||
| 283 | {mso-style-link:"Quote Char"; | ||
| 284 | margin-top:8.0pt; | ||
| 285 | margin-right:36.0pt; | ||
| 286 | margin-bottom:10.0pt; | ||
| 287 | margin-left:36.0pt; | ||
| 288 | text-align:center; | ||
| 289 | line-height:120%; | ||
| 290 | font-size:10.5pt; | ||
| 291 | font-family:"Calibri",sans-serif; | ||
| 292 | color:#262626; | ||
| 293 | font-style:italic;} | ||
| 294 | p.MsoIntenseQuote, li.MsoIntenseQuote, div.MsoIntenseQuote | ||
| 295 | {mso-style-link:"Intense Quote Char"; | ||
| 296 | margin-top:8.0pt; | ||
| 297 | margin-right:36.0pt; | ||
| 298 | margin-bottom:8.0pt; | ||
| 299 | margin-left:36.0pt; | ||
| 300 | text-align:center; | ||
| 301 | line-height:110%; | ||
| 302 | font-size:16.0pt; | ||
| 303 | font-family:"Calibri Light",sans-serif; | ||
| 304 | color:#70AD47; | ||
| 305 | font-style:italic;} | ||
| 306 | span.MsoSubtleEmphasis | ||
| 307 | {font-style:italic;} | ||
| 308 | span.MsoIntenseEmphasis | ||
| 309 | {font-weight:bold; | ||
| 310 | font-style:italic;} | ||
| 311 | span.MsoSubtleReference | ||
| 312 | {font-variant:small-caps; | ||
| 313 | color:#595959;} | ||
| 314 | span.MsoIntenseReference | ||
| 315 | {font-variant:small-caps; | ||
| 316 | color:#70AD47; | ||
| 317 | font-weight:bold;} | ||
| 318 | span.MsoBookTitle | ||
| 319 | {font-variant:small-caps; | ||
| 320 | text-transform:none; | ||
| 321 | letter-spacing:.35pt; | ||
| 322 | font-weight:bold;} | ||
| 323 | p.MsoTocHeading, li.MsoTocHeading, div.MsoTocHeading | ||
| 324 | {margin-top:18.0pt; | ||
| 325 | margin-right:0cm; | ||
| 326 | margin-bottom:2.0pt; | ||
| 327 | margin-left:0cm; | ||
| 328 | page-break-after:avoid; | ||
| 329 | font-size:20.0pt; | ||
| 330 | font-family:"Calibri Light",sans-serif; | ||
| 331 | color:#538135;} | ||
| 332 | span.Heading1Char | ||
| 333 | {mso-style-name:"Heading 1 Char"; | ||
| 334 | mso-style-link:"Heading 1"; | ||
| 335 | font-family:"Calibri Light",sans-serif; | ||
| 336 | color:#538135;} | ||
| 337 | span.Heading2Char | ||
| 338 | {mso-style-name:"Heading 2 Char"; | ||
| 339 | mso-style-link:"Heading 2"; | ||
| 340 | font-family:"Calibri Light",sans-serif; | ||
| 341 | color:#538135;} | ||
| 342 | span.Heading3Char | ||
| 343 | {mso-style-name:"Heading 3 Char"; | ||
| 344 | mso-style-link:"Heading 3"; | ||
| 345 | font-family:"Calibri Light",sans-serif; | ||
| 346 | color:#538135;} | ||
| 347 | span.Heading4Char | ||
| 348 | {mso-style-name:"Heading 4 Char"; | ||
| 349 | mso-style-link:"Heading 4"; | ||
| 350 | font-family:"Calibri Light",sans-serif; | ||
| 351 | color:#70AD47;} | ||
| 352 | span.Heading5Char | ||
| 353 | {mso-style-name:"Heading 5 Char"; | ||
| 354 | mso-style-link:"Heading 5"; | ||
| 355 | font-family:"Calibri Light",sans-serif; | ||
| 356 | color:#70AD47; | ||
| 357 | font-style:italic;} | ||
| 358 | span.Heading6Char | ||
| 359 | {mso-style-name:"Heading 6 Char"; | ||
| 360 | mso-style-link:"Heading 6"; | ||
| 361 | font-family:"Calibri Light",sans-serif; | ||
| 362 | color:#70AD47;} | ||
| 363 | span.Heading7Char | ||
| 364 | {mso-style-name:"Heading 7 Char"; | ||
| 365 | mso-style-link:"Heading 7"; | ||
| 366 | font-family:"Calibri Light",sans-serif; | ||
| 367 | color:#70AD47; | ||
| 368 | font-weight:bold;} | ||
| 369 | span.Heading8Char | ||
| 370 | {mso-style-name:"Heading 8 Char"; | ||
| 371 | mso-style-link:"Heading 8"; | ||
| 372 | font-family:"Calibri Light",sans-serif; | ||
| 373 | color:#70AD47; | ||
| 374 | font-weight:bold; | ||
| 375 | font-style:italic;} | ||
| 376 | span.Heading9Char | ||
| 377 | {mso-style-name:"Heading 9 Char"; | ||
| 378 | mso-style-link:"Heading 9"; | ||
| 379 | font-family:"Calibri Light",sans-serif; | ||
| 380 | color:#70AD47; | ||
| 381 | font-style:italic;} | ||
| 382 | span.TitleChar | ||
| 383 | {mso-style-name:"Title Char"; | ||
| 384 | mso-style-link:Title; | ||
| 385 | font-family:"Calibri Light",sans-serif; | ||
| 386 | color:#262626; | ||
| 387 | letter-spacing:-.75pt;} | ||
| 388 | span.SubtitleChar | ||
| 389 | {mso-style-name:"Subtitle Char"; | ||
| 390 | mso-style-link:Subtitle; | ||
| 391 | font-family:"Calibri Light",sans-serif;} | ||
| 392 | span.QuoteChar | ||
| 393 | {mso-style-name:"Quote Char"; | ||
| 394 | mso-style-link:Quote; | ||
| 395 | color:#262626; | ||
| 396 | font-style:italic;} | ||
| 397 | span.IntenseQuoteChar | ||
| 398 | {mso-style-name:"Intense Quote Char"; | ||
| 399 | mso-style-link:"Intense Quote"; | ||
| 400 | font-family:"Calibri Light",sans-serif; | ||
| 401 | color:#70AD47; | ||
| 402 | font-style:italic;} | ||
| 403 | .MsoChpDefault | ||
| 404 | {font-size:10.5pt; | ||
| 405 | font-family:"Calibri",sans-serif;} | ||
| 406 | .MsoPapDefault | ||
| 407 | {margin-bottom:10.0pt; | ||
| 408 | line-height:120%;} | ||
| 409 | @page WordSection1 | ||
| 410 | {size:595.3pt 841.9pt; | ||
| 411 | margin:72.0pt 72.0pt 72.0pt 72.0pt;} | ||
| 412 | div.WordSection1 | ||
| 413 | {page:WordSection1;} | ||
| 414 | --> | ||
| 415 | </style> | ||
| 416 | |||
| 417 | </head> | ||
| 418 | |||
| 419 | <body lang=EN-US link="#0563C1" vlink="#954F72"> | ||
| 420 | |||
| 421 | <div class=WordSection1> | ||
| 422 | |||
| 423 | <p class=MsoTocHeading>HBP Tools list</p> | ||
| 424 | |||
| 425 | <p class=MsoToc2><span lang=en-DE><span class=MsoHyperlink><a | ||
| 426 | href="#_Toc138932248">AngoraPy<span style='color:windowtext;display:none; | ||
| 427 | text-decoration:none'>. </span><span | ||
| 428 | style='color:windowtext;display:none;text-decoration:none'>5</span></a></span></span></p> | ||
| 429 | |||
| 430 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 431 | href="#_Toc138932249">AnonyMI<span style='color:windowtext;display:none; | ||
| 432 | text-decoration:none'> </span><span | ||
| 433 | style='color:windowtext;display:none;text-decoration:none'>5</span></a></span></span></p> | ||
| 434 | |||
| 435 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 436 | href="#_Toc138932250">Arbor<span style='color:windowtext;display:none; | ||
| 437 | text-decoration:none'> </span><span | ||
| 438 | style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p> | ||
| 439 | |||
| 440 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 441 | href="#_Toc138932251">Arbor GUI<span style='color:windowtext;display:none; | ||
| 442 | text-decoration:none'> </span><span | ||
| 443 | style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p> | ||
| 444 | |||
| 445 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 446 | href="#_Toc138932252">Bayesian Virtual Epileptic Patient (BVEP)<span | ||
| 447 | style='color:windowtext;display:none;text-decoration:none'> </span><span | ||
| 448 | style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p> | ||
| 449 | |||
| 450 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 451 | href="#_Toc138932253">BIDS Extension Proposal Computational Model | ||
| 452 | Specifications<span style='color:windowtext;display:none;text-decoration:none'>. </span><span | ||
| 453 | style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p> | ||
| 454 | |||
| 455 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 456 | href="#_Toc138932254">BioBB<span style='color:windowtext;display:none; | ||
| 457 | text-decoration:none'>. </span><span | ||
| 458 | style='color:windowtext;display:none;text-decoration:none'>6</span></a></span></span></p> | ||
| 459 | |||
| 460 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 461 | href="#_Toc138932255">BioExcel-CV19<span style='color:windowtext;display:none; | ||
| 462 | text-decoration:none'>. </span><span | ||
| 463 | style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p> | ||
| 464 | |||
| 465 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 466 | href="#_Toc138932256">BioNAR<span style='color:windowtext;display:none; | ||
| 467 | text-decoration:none'>. </span><span | ||
| 468 | style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p> | ||
| 469 | |||
| 470 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 471 | href="#_Toc138932257">BlueNaaS-single cell<span style='color:windowtext; | ||
| 472 | display:none;text-decoration:none'> </span><span | ||
| 473 | style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p> | ||
| 474 | |||
| 475 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 476 | href="#_Toc138932258">BlueNaaS-subcellular<span style='color:windowtext; | ||
| 477 | display:none;text-decoration:none'> </span><span | ||
| 478 | style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p> | ||
| 479 | |||
| 480 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 481 | href="#_Toc138932259">BluePyEfe<span style='color:windowtext;display:none; | ||
| 482 | text-decoration:none'>. </span><span | ||
| 483 | style='color:windowtext;display:none;text-decoration:none'>7</span></a></span></span></p> | ||
| 484 | |||
| 485 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 486 | href="#_Toc138932260">BluePyMM<span style='color:windowtext;display:none; | ||
| 487 | text-decoration:none'>... </span><span | ||
| 488 | style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p> | ||
| 489 | |||
| 490 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 491 | href="#_Toc138932261">BluePyOpt<span style='color:windowtext;display:none; | ||
| 492 | text-decoration:none'> </span><span | ||
| 493 | style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p> | ||
| 494 | |||
| 495 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 496 | href="#_Toc138932262">Brain Cockpit<span style='color:windowtext;display:none; | ||
| 497 | text-decoration:none'> </span><span | ||
| 498 | style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p> | ||
| 499 | |||
| 500 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 501 | href="#_Toc138932263">BrainScaleS<span style='color:windowtext;display:none; | ||
| 502 | text-decoration:none'>. </span><span | ||
| 503 | style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p> | ||
| 504 | |||
| 505 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 506 | href="#_Toc138932264">Brayns<span style='color:windowtext;display:none; | ||
| 507 | text-decoration:none'>. </span><span | ||
| 508 | style='color:windowtext;display:none;text-decoration:none'>8</span></a></span></span></p> | ||
| 509 | |||
| 510 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 511 | href="#_Toc138932265">Brion<span style='color:windowtext;display:none; | ||
| 512 | text-decoration:none'>. </span><span | ||
| 513 | style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p> | ||
| 514 | |||
| 515 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 516 | href="#_Toc138932266">BSB<span style='color:windowtext;display:none;text-decoration: | ||
| 517 | none'>. </span><span | ||
| 518 | style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p> | ||
| 519 | |||
| 520 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 521 | href="#_Toc138932267">BSP Service Account<span style='color:windowtext; | ||
| 522 | display:none;text-decoration:none'> </span><span | ||
| 523 | style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p> | ||
| 524 | |||
| 525 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 526 | href="#_Toc138932268">bsp-usecase-wizard<span style='color:windowtext; | ||
| 527 | display:none;text-decoration:none'>. </span><span | ||
| 528 | style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p> | ||
| 529 | |||
| 530 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 531 | href="#_Toc138932269">CGMD Platform<span style='color:windowtext;display:none; | ||
| 532 | text-decoration:none'>.. </span><span | ||
| 533 | style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p> | ||
| 534 | |||
| 535 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 536 | href="#_Toc138932270">CNS-ligands<span style='color:windowtext;display:none; | ||
| 537 | text-decoration:none'>. </span><span | ||
| 538 | style='color:windowtext;display:none;text-decoration:none'>9</span></a></span></span></p> | ||
| 539 | |||
| 540 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 541 | href="#_Toc138932271">Cobrawap<span style='color:windowtext;display:none; | ||
| 542 | text-decoration:none'>. </span><span | ||
| 543 | style='color:windowtext;display:none;text-decoration:none'>10</span></a></span></span></p> | ||
| 544 | |||
| 545 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 546 | href="#_Toc138932272">Collaboratory Bucket service<span style='color:windowtext; | ||
| 547 | display:none;text-decoration:none'>. </span><span | ||
| 548 | style='color:windowtext;display:none;text-decoration:none'>10</span></a></span></span></p> | ||
| 549 | |||
| 550 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 551 | href="#_Toc138932273">Collaboratory Drive<span style='color:windowtext; | ||
| 552 | display:none;text-decoration:none'>. </span><span | ||
| 553 | style='color:windowtext;display:none;text-decoration:none'>10</span></a></span></span></p> | ||
| 554 | |||
| 555 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 556 | href="#_Toc138932274">Collaboratory IAM<span style='color:windowtext; | ||
| 557 | display:none;text-decoration:none'>... </span><span | ||
| 558 | style='color:windowtext;display:none;text-decoration:none'>10</span></a></span></span></p> | ||
| 559 | |||
| 560 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 561 | href="#_Toc138932275">Collaboratory Lab<span style='color:windowtext; | ||
| 562 | display:none;text-decoration:none'>. </span><span | ||
| 563 | style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p> | ||
| 564 | |||
| 565 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 566 | href="#_Toc138932276">Collaboratory Office<span style='color:windowtext; | ||
| 567 | display:none;text-decoration:none'>. </span><span | ||
| 568 | style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p> | ||
| 569 | |||
| 570 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 571 | href="#_Toc138932277">Collaboratory Wiki<span style='color:windowtext; | ||
| 572 | display:none;text-decoration:none'> </span><span | ||
| 573 | style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p> | ||
| 574 | |||
| 575 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 576 | href="#_Toc138932278">CoreNEURON<span style='color:windowtext;display:none; | ||
| 577 | text-decoration:none'>.. </span><span | ||
| 578 | style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p> | ||
| 579 | |||
| 580 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 581 | href="#_Toc138932279">CxSystem2<span style='color:windowtext;display:none; | ||
| 582 | text-decoration:none'>. </span><span | ||
| 583 | style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p> | ||
| 584 | |||
| 585 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 586 | href="#_Toc138932280">DeepSlice<span style='color:windowtext;display:none; | ||
| 587 | text-decoration:none'>. </span><span | ||
| 588 | style='color:windowtext;display:none;text-decoration:none'>11</span></a></span></span></p> | ||
| 589 | |||
| 590 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 591 | href="#_Toc138932281">EBRAINS Ethics & Society Toolkit<span | ||
| 592 | style='color:windowtext;display:none;text-decoration:none'> </span><span | ||
| 593 | style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p> | ||
| 594 | |||
| 595 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 596 | href="#_Toc138932282">EBRAINS Image Service<span style='color:windowtext; | ||
| 597 | display:none;text-decoration:none'>. </span><span | ||
| 598 | style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p> | ||
| 599 | |||
| 600 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 601 | href="#_Toc138932283">EBRAINS Knowledge Graph<span style='color:windowtext; | ||
| 602 | display:none;text-decoration:none'>. </span><span | ||
| 603 | style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p> | ||
| 604 | |||
| 605 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 606 | href="#_Toc138932284">EDI Toolkit<span style='color:windowtext;display:none; | ||
| 607 | text-decoration:none'> </span><span | ||
| 608 | style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p> | ||
| 609 | |||
| 610 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 611 | href="#_Toc138932285">eFEL<span style='color:windowtext;display:none; | ||
| 612 | text-decoration:none'>. </span><span | ||
| 613 | style='color:windowtext;display:none;text-decoration:none'>12</span></a></span></span></p> | ||
| 614 | |||
| 615 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 616 | href="#_Toc138932286">Electrophysiology Analysis Toolkit<span style='color: | ||
| 617 | windowtext;display:none;text-decoration:none'> </span><span | ||
| 618 | style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p> | ||
| 619 | |||
| 620 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 621 | href="#_Toc138932287">FAConstructor<span style='color:windowtext;display:none; | ||
| 622 | text-decoration:none'> </span><span | ||
| 623 | style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p> | ||
| 624 | |||
| 625 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 626 | href="#_Toc138932288">fairgraph<span style='color:windowtext;display:none; | ||
| 627 | text-decoration:none'>. </span><span | ||
| 628 | style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p> | ||
| 629 | |||
| 630 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 631 | href="#_Toc138932289">Fast sampling with neuromorphic hardware<span | ||
| 632 | style='color:windowtext;display:none;text-decoration:none'>. </span><span | ||
| 633 | style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p> | ||
| 634 | |||
| 635 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 636 | href="#_Toc138932290">fastPLI<span style='color:windowtext;display:none; | ||
| 637 | text-decoration:none'> </span><span | ||
| 638 | style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p> | ||
| 639 | |||
| 640 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 641 | href="#_Toc138932291">Feed-forward LFP-MEG estimator from mean-field models<span | ||
| 642 | style='color:windowtext;display:none;text-decoration:none'>. </span><span | ||
| 643 | style='color:windowtext;display:none;text-decoration:none'>13</span></a></span></span></p> | ||
| 644 | |||
| 645 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 646 | href="#_Toc138932292">FIL<span style='color:windowtext;display:none;text-decoration: | ||
| 647 | none'>. </span><span | ||
| 648 | style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p> | ||
| 649 | |||
| 650 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 651 | href="#_Toc138932293">FMRALIGN<span style='color:windowtext;display:none; | ||
| 652 | text-decoration:none'>.. </span><span | ||
| 653 | style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p> | ||
| 654 | |||
| 655 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 656 | href="#_Toc138932294">Foa3D<span style='color:windowtext;display:none; | ||
| 657 | text-decoration:none'>.. </span><span | ||
| 658 | style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p> | ||
| 659 | |||
| 660 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 661 | href="#_Toc138932295">Frites<span style='color:windowtext;display:none; | ||
| 662 | text-decoration:none'>. </span><span | ||
| 663 | style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p> | ||
| 664 | |||
| 665 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 666 | href="#_Toc138932296">gridspeccer<span style='color:windowtext;display:none; | ||
| 667 | text-decoration:none'> </span><span | ||
| 668 | style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p> | ||
| 669 | |||
| 670 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 671 | href="#_Toc138932297">Hal-Cgp<span style='color:windowtext;display:none; | ||
| 672 | text-decoration:none'>. </span><span | ||
| 673 | style='color:windowtext;display:none;text-decoration:none'>14</span></a></span></span></p> | ||
| 674 | |||
| 675 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 676 | href="#_Toc138932298">Health Data Cloud<span style='color:windowtext; | ||
| 677 | display:none;text-decoration:none'>. </span><span | ||
| 678 | style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p> | ||
| 679 | |||
| 680 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 681 | href="#_Toc138932299">Hodgkin-Huxley Neuron Builder<span style='color:windowtext; | ||
| 682 | display:none;text-decoration:none'> </span><span | ||
| 683 | style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p> | ||
| 684 | |||
| 685 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 686 | href="#_Toc138932300">HPC Job Proxy<span style='color:windowtext;display:none; | ||
| 687 | text-decoration:none'>. </span><span | ||
| 688 | style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p> | ||
| 689 | |||
| 690 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 691 | href="#_Toc138932301">HPC Status Monitor<span style='color:windowtext; | ||
| 692 | display:none;text-decoration:none'> </span><span | ||
| 693 | style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p> | ||
| 694 | |||
| 695 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 696 | href="#_Toc138932302">Human Intracerebral EEG Platform<span style='color:windowtext; | ||
| 697 | display:none;text-decoration:none'>.. </span><span | ||
| 698 | style='color:windowtext;display:none;text-decoration:none'>15</span></a></span></span></p> | ||
| 699 | |||
| 700 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 701 | href="#_Toc138932303">Hybrid MM/CG Webserver<span style='color:windowtext; | ||
| 702 | display:none;text-decoration:none'> </span><span | ||
| 703 | style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p> | ||
| 704 | |||
| 705 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 706 | href="#_Toc138932304">Insite<span style='color:windowtext;display:none; | ||
| 707 | text-decoration:none'>. </span><span | ||
| 708 | style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p> | ||
| 709 | |||
| 710 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 711 | href="#_Toc138932305">Interactive Brain Atlas Viewer<span style='color:windowtext; | ||
| 712 | display:none;text-decoration:none'> </span><span | ||
| 713 | style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p> | ||
| 714 | |||
| 715 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 716 | href="#_Toc138932306">JuGEx<span style='color:windowtext;display:none; | ||
| 717 | text-decoration:none'>. </span><span | ||
| 718 | style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p> | ||
| 719 | |||
| 720 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 721 | href="#_Toc138932307">KnowledgeSpace<span style='color:windowtext;display:none; | ||
| 722 | text-decoration:none'>. </span><span | ||
| 723 | style='color:windowtext;display:none;text-decoration:none'>16</span></a></span></span></p> | ||
| 724 | |||
| 725 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 726 | href="#_Toc138932308">L2L<span style='color:windowtext;display:none;text-decoration: | ||
| 727 | none'>. </span><span | ||
| 728 | style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p> | ||
| 729 | |||
| 730 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 731 | href="#_Toc138932309">Leveltlab/SpectralSegmentation<span style='color:windowtext; | ||
| 732 | display:none;text-decoration:none'>. </span><span | ||
| 733 | style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p> | ||
| 734 | |||
| 735 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 736 | href="#_Toc138932310">LFPy<span style='color:windowtext;display:none; | ||
| 737 | text-decoration:none'>. </span><span | ||
| 738 | style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p> | ||
| 739 | |||
| 740 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 741 | href="#_Toc138932311">libsonata<span style='color:windowtext;display:none; | ||
| 742 | text-decoration:none'>. </span><span | ||
| 743 | style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p> | ||
| 744 | |||
| 745 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 746 | href="#_Toc138932312">Live Papers<span style='color:windowtext;display:none; | ||
| 747 | text-decoration:none'>. </span><span | ||
| 748 | style='color:windowtext;display:none;text-decoration:none'>17</span></a></span></span></p> | ||
| 749 | |||
| 750 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 751 | href="#_Toc138932313">Livre<span style='color:windowtext;display:none; | ||
| 752 | text-decoration:none'>. </span><span | ||
| 753 | style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p> | ||
| 754 | |||
| 755 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 756 | href="#_Toc138932314">LocaliZoom<span style='color:windowtext;display:none; | ||
| 757 | text-decoration:none'>.. </span><span | ||
| 758 | style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p> | ||
| 759 | |||
| 760 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 761 | href="#_Toc138932315">MD-IFP<span style='color:windowtext;display:none; | ||
| 762 | text-decoration:none'>. </span><span | ||
| 763 | style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p> | ||
| 764 | |||
| 765 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 766 | href="#_Toc138932316">MEDUSA<span style='color:windowtext;display:none; | ||
| 767 | text-decoration:none'>. </span><span | ||
| 768 | style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p> | ||
| 769 | |||
| 770 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 771 | href="#_Toc138932317">MeshView<span style='color:windowtext;display:none; | ||
| 772 | text-decoration:none'>.. </span><span | ||
| 773 | style='color:windowtext;display:none;text-decoration:none'>18</span></a></span></span></p> | ||
| 774 | |||
| 775 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 776 | href="#_Toc138932318">MIP<span style='color:windowtext;display:none;text-decoration: | ||
| 777 | none'>. </span><span | ||
| 778 | style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p> | ||
| 779 | |||
| 780 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 781 | href="#_Toc138932319">Model Validation Service<span style='color:windowtext; | ||
| 782 | display:none;text-decoration:none'>. </span><span | ||
| 783 | style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p> | ||
| 784 | |||
| 785 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 786 | href="#_Toc138932320">Model Validation Test Suites<span style='color:windowtext; | ||
| 787 | display:none;text-decoration:none'>. </span><span | ||
| 788 | style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p> | ||
| 789 | |||
| 790 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 791 | href="#_Toc138932321">MoDEL-CNS<span style='color:windowtext;display:none; | ||
| 792 | text-decoration:none'>. </span><span | ||
| 793 | style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p> | ||
| 794 | |||
| 795 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 796 | href="#_Toc138932322">Modular Science<span style='color:windowtext;display: | ||
| 797 | none;text-decoration:none'>. </span><span | ||
| 798 | style='color:windowtext;display:none;text-decoration:none'>19</span></a></span></span></p> | ||
| 799 | |||
| 800 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 801 | href="#_Toc138932323">Monsteer<span style='color:windowtext;display:none; | ||
| 802 | text-decoration:none'> </span><span | ||
| 803 | style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p> | ||
| 804 | |||
| 805 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 806 | href="#_Toc138932324">MorphIO<span style='color:windowtext;display:none; | ||
| 807 | text-decoration:none'>.. </span><span | ||
| 808 | style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p> | ||
| 809 | |||
| 810 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 811 | href="#_Toc138932325">Morphology alignment tool<span style='color:windowtext; | ||
| 812 | display:none;text-decoration:none'> </span><span | ||
| 813 | style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p> | ||
| 814 | |||
| 815 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 816 | href="#_Toc138932326">MorphTool<span style='color:windowtext;display:none; | ||
| 817 | text-decoration:none'> </span><span | ||
| 818 | style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p> | ||
| 819 | |||
| 820 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 821 | href="#_Toc138932327">Multi-Brain<span style='color:windowtext;display:none; | ||
| 822 | text-decoration:none'>. </span><span | ||
| 823 | style='color:windowtext;display:none;text-decoration:none'>20</span></a></span></span></p> | ||
| 824 | |||
| 825 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 826 | href="#_Toc138932328">Multi-Image-OSD<span style='color:windowtext;display: | ||
| 827 | none;text-decoration:none'>.. </span><span | ||
| 828 | style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p> | ||
| 829 | |||
| 830 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 831 | href="#_Toc138932329">MUSIC<span style='color:windowtext;display:none; | ||
| 832 | text-decoration:none'>. </span><span | ||
| 833 | style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p> | ||
| 834 | |||
| 835 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 836 | href="#_Toc138932330">NEAT<span style='color:windowtext;display:none; | ||
| 837 | text-decoration:none'>. </span><span | ||
| 838 | style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p> | ||
| 839 | |||
| 840 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 841 | href="#_Toc138932331">Neo<span style='color:windowtext;display:none;text-decoration: | ||
| 842 | none'>. </span><span | ||
| 843 | style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p> | ||
| 844 | |||
| 845 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 846 | href="#_Toc138932332">Neo Viewer<span style='color:windowtext;display:none; | ||
| 847 | text-decoration:none'> </span><span | ||
| 848 | style='color:windowtext;display:none;text-decoration:none'>21</span></a></span></span></p> | ||
| 849 | |||
| 850 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 851 | href="#_Toc138932333">NEST Desktop<span style='color:windowtext;display:none; | ||
| 852 | text-decoration:none'>. </span><span | ||
| 853 | style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p> | ||
| 854 | |||
| 855 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 856 | href="#_Toc138932334">NEST Simulator<span style='color:windowtext;display:none; | ||
| 857 | text-decoration:none'> </span><span | ||
| 858 | style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p> | ||
| 859 | |||
| 860 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 861 | href="#_Toc138932335">NESTML<span style='color:windowtext;display:none; | ||
| 862 | text-decoration:none'>. </span><span | ||
| 863 | style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p> | ||
| 864 | |||
| 865 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 866 | href="#_Toc138932336">NetPyNE<span style='color:windowtext;display:none; | ||
| 867 | text-decoration:none'>. </span><span | ||
| 868 | style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p> | ||
| 869 | |||
| 870 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 871 | href="#_Toc138932337">NEURO-CONNECT<span style='color:windowtext;display:none; | ||
| 872 | text-decoration:none'>. </span><span | ||
| 873 | style='color:windowtext;display:none;text-decoration:none'>22</span></a></span></span></p> | ||
| 874 | |||
| 875 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 876 | href="#_Toc138932338">NeuroFeatureExtract<span style='color:windowtext; | ||
| 877 | display:none;text-decoration:none'> </span><span | ||
| 878 | style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p> | ||
| 879 | |||
| 880 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 881 | href="#_Toc138932339">NeurogenPy<span style='color:windowtext;display:none; | ||
| 882 | text-decoration:none'>. </span><span | ||
| 883 | style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p> | ||
| 884 | |||
| 885 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 886 | href="#_Toc138932340">NeuroM<span style='color:windowtext;display:none; | ||
| 887 | text-decoration:none'>... </span><span | ||
| 888 | style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p> | ||
| 889 | |||
| 890 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 891 | href="#_Toc138932341">Neuromorphic Computing Job Queue<span style='color:windowtext; | ||
| 892 | display:none;text-decoration:none'>. </span><span | ||
| 893 | style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p> | ||
| 894 | |||
| 895 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 896 | href="#_Toc138932342">Neuronize v2<span style='color:windowtext;display:none; | ||
| 897 | text-decoration:none'>. </span><span | ||
| 898 | style='color:windowtext;display:none;text-decoration:none'>23</span></a></span></span></p> | ||
| 899 | |||
| 900 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 901 | href="#_Toc138932343">NeuroR<span style='color:windowtext;display:none; | ||
| 902 | text-decoration:none'>. </span><span | ||
| 903 | style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p> | ||
| 904 | |||
| 905 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 906 | href="#_Toc138932344">Neurorobotics Platform<span style='color:windowtext; | ||
| 907 | display:none;text-decoration:none'>.. </span><span | ||
| 908 | style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p> | ||
| 909 | |||
| 910 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 911 | href="#_Toc138932345">Neurorobotics Platform Robot Designer<span | ||
| 912 | style='color:windowtext;display:none;text-decoration:none'> </span><span | ||
| 913 | style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p> | ||
| 914 | |||
| 915 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 916 | href="#_Toc138932346">NeuroScheme<span style='color:windowtext;display:none; | ||
| 917 | text-decoration:none'>. </span><span | ||
| 918 | style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p> | ||
| 919 | |||
| 920 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 921 | href="#_Toc138932347">NeuroSuites<span style='color:windowtext;display:none; | ||
| 922 | text-decoration:none'>. </span><span | ||
| 923 | style='color:windowtext;display:none;text-decoration:none'>24</span></a></span></span></p> | ||
| 924 | |||
| 925 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 926 | href="#_Toc138932348">NeuroTessMesh<span style='color:windowtext;display:none; | ||
| 927 | text-decoration:none'>. </span><span | ||
| 928 | style='color:windowtext;display:none;text-decoration:none'>25</span></a></span></span></p> | ||
| 929 | |||
| 930 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 931 | href="#_Toc138932349">NMODL Framework<span style='color:windowtext;display: | ||
| 932 | none;text-decoration:none'>. </span><span | ||
| 933 | style='color:windowtext;display:none;text-decoration:none'>25</span></a></span></span></p> | ||
| 934 | |||
| 935 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 936 | href="#_Toc138932350">NSuite<span style='color:windowtext;display:none; | ||
| 937 | text-decoration:none'>. </span><span | ||
| 938 | style='color:windowtext;display:none;text-decoration:none'>25</span></a></span></span></p> | ||
| 939 | |||
| 940 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 941 | href="#_Toc138932351">ODE-toolbox<span style='color:windowtext;display:none; | ||
| 942 | text-decoration:none'>. </span><span | ||
| 943 | style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> | ||
| 944 | |||
| 945 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 946 | href="#_Toc138932352">openMINDS<span style='color:windowtext;display:none; | ||
| 947 | text-decoration:none'>. </span><span | ||
| 948 | style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> | ||
| 949 | |||
| 950 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 951 | href="#_Toc138932353">openMINDS metadata for TVB-ready data<span | ||
| 952 | style='color:windowtext;display:none;text-decoration:none'>. </span><span | ||
| 953 | style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> | ||
| 954 | |||
| 955 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 956 | href="#_Toc138932354">PCI<span style='color:windowtext;display:none;text-decoration: | ||
| 957 | none'> </span><span | ||
| 958 | style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> | ||
| 959 | |||
| 960 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 961 | href="#_Toc138932355">PIPSA<span style='color:windowtext;display:none; | ||
| 962 | text-decoration:none'>. </span><span | ||
| 963 | style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> | ||
| 964 | |||
| 965 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 966 | href="#_Toc138932356">PoSCE<span style='color:windowtext;display:none; | ||
| 967 | text-decoration:none'>. </span><span | ||
| 968 | style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> | ||
| 969 | |||
| 970 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 971 | href="#_Toc138932357">Provenance API<span style='color:windowtext;display:none; | ||
| 972 | text-decoration:none'> </span><span | ||
| 973 | style='color:windowtext;display:none;text-decoration:none'>26</span></a></span></span></p> | ||
| 974 | |||
| 975 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 976 | href="#_Toc138932358">PyNN<span style='color:windowtext;display:none; | ||
| 977 | text-decoration:none'>.. </span><span | ||
| 978 | style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p> | ||
| 979 | |||
| 980 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 981 | href="#_Toc138932359">Pyramidal Explorer<span style='color:windowtext; | ||
| 982 | display:none;text-decoration:none'> </span><span | ||
| 983 | style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p> | ||
| 984 | |||
| 985 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 986 | href="#_Toc138932360">QCAlign software<span style='color:windowtext;display: | ||
| 987 | none;text-decoration:none'>. </span><span | ||
| 988 | style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p> | ||
| 989 | |||
| 990 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 991 | href="#_Toc138932361">QuickNII<span style='color:windowtext;display:none; | ||
| 992 | text-decoration:none'> </span><span | ||
| 993 | style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p> | ||
| 994 | |||
| 995 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 996 | href="#_Toc138932362">Quota Manager<span style='color:windowtext;display:none; | ||
| 997 | text-decoration:none'> </span><span | ||
| 998 | style='color:windowtext;display:none;text-decoration:none'>27</span></a></span></span></p> | ||
| 999 | |||
| 1000 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1001 | href="#_Toc138932363">RateML<span style='color:windowtext;display:none; | ||
| 1002 | text-decoration:none'>. </span><span | ||
| 1003 | style='color:windowtext;display:none;text-decoration:none'>28</span></a></span></span></p> | ||
| 1004 | |||
| 1005 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1006 | href="#_Toc138932364">Region-wise CBPP using the Julich BrainÊCytoarchitectonic | ||
| 1007 | Atlas<span style='color:windowtext;display:none;text-decoration:none'>. </span><span | ||
| 1008 | style='color:windowtext;display:none;text-decoration:none'>28</span></a></span></span></p> | ||
| 1009 | |||
| 1010 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1011 | href="#_Toc138932365">RRI Capacity Development Resources<span style='color: | ||
| 1012 | windowtext;display:none;text-decoration:none'>. </span><span | ||
| 1013 | style='color:windowtext;display:none;text-decoration:none'>28</span></a></span></span></p> | ||
| 1014 | |||
| 1015 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1016 | href="#_Toc138932366">rsHRF<span style='color:windowtext;display:none; | ||
| 1017 | text-decoration:none'>. </span><span | ||
| 1018 | style='color:windowtext;display:none;text-decoration:none'>28</span></a></span></span></p> | ||
| 1019 | |||
| 1020 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1021 | href="#_Toc138932367">RTNeuron<span style='color:windowtext;display:none; | ||
| 1022 | text-decoration:none'>. </span><span | ||
| 1023 | style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p> | ||
| 1024 | |||
| 1025 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1026 | href="#_Toc138932368">sbs: Spike-based Sampling<span style='color:windowtext; | ||
| 1027 | display:none;text-decoration:none'>. </span><span | ||
| 1028 | style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p> | ||
| 1029 | |||
| 1030 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1031 | href="#_Toc138932369">SDA 7<span style='color:windowtext;display:none; | ||
| 1032 | text-decoration:none'>. </span><span | ||
| 1033 | style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p> | ||
| 1034 | |||
| 1035 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1036 | href="#_Toc138932370">Shape & Appearance Modelling<span style='color:windowtext; | ||
| 1037 | display:none;text-decoration:none'>. </span><span | ||
| 1038 | style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p> | ||
| 1039 | |||
| 1040 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1041 | href="#_Toc138932371">siibra-api<span style='color:windowtext;display:none; | ||
| 1042 | text-decoration:none'> </span><span | ||
| 1043 | style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p> | ||
| 1044 | |||
| 1045 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1046 | href="#_Toc138932372">siibra-explorer<span style='color:windowtext;display: | ||
| 1047 | none;text-decoration:none'> </span><span | ||
| 1048 | style='color:windowtext;display:none;text-decoration:none'>29</span></a></span></span></p> | ||
| 1049 | |||
| 1050 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1051 | href="#_Toc138932373">siibra-python<span style='color:windowtext;display:none; | ||
| 1052 | text-decoration:none'>. </span><span | ||
| 1053 | style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p> | ||
| 1054 | |||
| 1055 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1056 | href="#_Toc138932374">Single Cell Model (Re)builder Notebook<span | ||
| 1057 | style='color:windowtext;display:none;text-decoration:none'>. </span><span | ||
| 1058 | style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p> | ||
| 1059 | |||
| 1060 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1061 | href="#_Toc138932375">Slurm Plugin for Co-allocation of Compute and Data | ||
| 1062 | Resources<span style='color:windowtext;display:none;text-decoration:none'>. </span><span | ||
| 1063 | style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p> | ||
| 1064 | |||
| 1065 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1066 | href="#_Toc138932376">Snudda<span style='color:windowtext;display:none; | ||
| 1067 | text-decoration:none'>. </span><span | ||
| 1068 | style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p> | ||
| 1069 | |||
| 1070 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1071 | href="#_Toc138932377">SomaSegmenter<span style='color:windowtext;display:none; | ||
| 1072 | text-decoration:none'> </span><span | ||
| 1073 | style='color:windowtext;display:none;text-decoration:none'>30</span></a></span></span></p> | ||
| 1074 | |||
| 1075 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1076 | href="#_Toc138932378">SpiNNaker<span style='color:windowtext;display:none; | ||
| 1077 | text-decoration:none'> </span><span | ||
| 1078 | style='color:windowtext;display:none;text-decoration:none'>31</span></a></span></span></p> | ||
| 1079 | |||
| 1080 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1081 | href="#_Toc138932379">SSB toolkit<span style='color:windowtext;display:none; | ||
| 1082 | text-decoration:none'> </span><span | ||
| 1083 | style='color:windowtext;display:none;text-decoration:none'>31</span></a></span></span></p> | ||
| 1084 | |||
| 1085 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1086 | href="#_Toc138932380">Subcellular model building and calibration tool set<span | ||
| 1087 | style='color:windowtext;display:none;text-decoration:none'> </span><span | ||
| 1088 | style='color:windowtext;display:none;text-decoration:none'>31</span></a></span></span></p> | ||
| 1089 | |||
| 1090 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1091 | href="#_Toc138932381">Synaptic Events Fitting<span style='color:windowtext; | ||
| 1092 | display:none;text-decoration:none'>. </span><span | ||
| 1093 | style='color:windowtext;display:none;text-decoration:none'>31</span></a></span></span></p> | ||
| 1094 | |||
| 1095 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1096 | href="#_Toc138932382">Synaptic Plasticity Explorer<span style='color:windowtext; | ||
| 1097 | display:none;text-decoration:none'> </span><span | ||
| 1098 | style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p> | ||
| 1099 | |||
| 1100 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1101 | href="#_Toc138932383">Synaptic proteome database (SQLite)<span | ||
| 1102 | style='color:windowtext;display:none;text-decoration:none'> </span><span | ||
| 1103 | style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p> | ||
| 1104 | |||
| 1105 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1106 | href="#_Toc138932384">Synaptome.db<span style='color:windowtext;display:none; | ||
| 1107 | text-decoration:none'>. </span><span | ||
| 1108 | style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p> | ||
| 1109 | |||
| 1110 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1111 | href="#_Toc138932385">Tide<span style='color:windowtext;display:none; | ||
| 1112 | text-decoration:none'>. </span><span | ||
| 1113 | style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p> | ||
| 1114 | |||
| 1115 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1116 | href="#_Toc138932386">TVB EBRAINS<span style='color:windowtext;display:none; | ||
| 1117 | text-decoration:none'>. </span><span | ||
| 1118 | style='color:windowtext;display:none;text-decoration:none'>32</span></a></span></span></p> | ||
| 1119 | |||
| 1120 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1121 | href="#_Toc138932387">TVB Image Processing Pipeline<span style='color:windowtext; | ||
| 1122 | display:none;text-decoration:none'>. </span><span | ||
| 1123 | style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p> | ||
| 1124 | |||
| 1125 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1126 | href="#_Toc138932388">TVB Inversion<span style='color:windowtext;display:none; | ||
| 1127 | text-decoration:none'>. </span><span | ||
| 1128 | style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p> | ||
| 1129 | |||
| 1130 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1131 | href="#_Toc138932389">TVB Web App<span style='color:windowtext;display:none; | ||
| 1132 | text-decoration:none'>. </span><span | ||
| 1133 | style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p> | ||
| 1134 | |||
| 1135 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1136 | href="#_Toc138932390">TVB Widgets<span style='color:windowtext;display:none; | ||
| 1137 | text-decoration:none'>. </span><span | ||
| 1138 | style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p> | ||
| 1139 | |||
| 1140 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1141 | href="#_Toc138932391">TVB-Multiscale<span style='color:windowtext;display:none; | ||
| 1142 | text-decoration:none'>. </span><span | ||
| 1143 | style='color:windowtext;display:none;text-decoration:none'>33</span></a></span></span></p> | ||
| 1144 | |||
| 1145 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1146 | href="#_Toc138932392">VIOLA<span style='color:windowtext;display:none; | ||
| 1147 | text-decoration:none'>. </span><span | ||
| 1148 | style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p> | ||
| 1149 | |||
| 1150 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1151 | href="#_Toc138932393">Vishnu 1.0<span style='color:windowtext;display:none; | ||
| 1152 | text-decoration:none'>. </span><span | ||
| 1153 | style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p> | ||
| 1154 | |||
| 1155 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1156 | href="#_Toc138932394">ViSimpl<span style='color:windowtext;display:none; | ||
| 1157 | text-decoration:none'> </span><span | ||
| 1158 | style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p> | ||
| 1159 | |||
| 1160 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1161 | href="#_Toc138932395">VisuAlign<span style='color:windowtext;display:none; | ||
| 1162 | text-decoration:none'>. </span><span | ||
| 1163 | style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p> | ||
| 1164 | |||
| 1165 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1166 | href="#_Toc138932396">VMetaFlow<span style='color:windowtext;display:none; | ||
| 1167 | text-decoration:none'>.. </span><span | ||
| 1168 | style='color:windowtext;display:none;text-decoration:none'>34</span></a></span></span></p> | ||
| 1169 | |||
| 1170 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1171 | href="#_Toc138932397">Voluba<span style='color:windowtext;display:none; | ||
| 1172 | text-decoration:none'>. </span><span | ||
| 1173 | style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p> | ||
| 1174 | |||
| 1175 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1176 | href="#_Toc138932398">WebAlign<span style='color:windowtext;display:none; | ||
| 1177 | text-decoration:none'>. </span><span | ||
| 1178 | style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p> | ||
| 1179 | |||
| 1180 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1181 | href="#_Toc138932399">Webilastik<span style='color:windowtext;display:none; | ||
| 1182 | text-decoration:none'>. </span><span | ||
| 1183 | style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p> | ||
| 1184 | |||
| 1185 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1186 | href="#_Toc138932400">WebWarp<span style='color:windowtext;display:none; | ||
| 1187 | text-decoration:none'>. </span><span | ||
| 1188 | style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p> | ||
| 1189 | |||
| 1190 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1191 | href="#_Toc138932401">ZetaStitcher<span style='color:windowtext;display:none; | ||
| 1192 | text-decoration:none'> </span><span | ||
| 1193 | style='color:windowtext;display:none;text-decoration:none'>35</span></a></span></span></p> | ||
| 1194 | |||
| 1195 | <p class=MsoToc2><span class=MsoHyperlink><span lang=en-DE><a | ||
| 1196 | href="#_Toc138932402">TauRAMD<span style='color:windowtext;display:none; | ||
| 1197 | text-decoration:none'>.. </span><span | ||
| 1198 | style='color:windowtext;display:none;text-decoration:none'>36</span></a></span></span></p> | ||
| 1199 | |||
| 1200 | <p class=MsoNormal><span lang=en-DE> </span></p> | ||
| 1201 | |||
| 1202 | <h2><a name="_Toc138932248"><span lang=en-DE>AngoraPy</span></a></h2> | ||
| 1203 | |||
| 1204 | <p class=MsoNormal><span lang=en-DE>AngoraPy is an open-source Python library | ||
| 1205 | that helps neuroscientists build and train goal-driven models of the sensorimotor | ||
| 1206 | system. The toolbox comprises state-of-the-art machine learning techniques | ||
| 1207 | under the hood of an easy-to-use API. With the help of deep reinforcement | ||
| 1208 | learning, the connectivity required for solving complex, ecologically valid | ||
| 1209 | tasks, can be learned autonomously, obviating the need for hand-engineered or | ||
| 1210 | hypothesis-driven connectivity patterns. With AngoraPy, neuroscientists can | ||
| 1211 | train custom deep neural networks on custom sensorimotor tasks.</span></p> | ||
| 1212 | |||
| 1213 | <h2></h2> | ||
| 1214 | |||
| 1215 | <h2><a name="_Toc138932249"><span lang=en-DE>AnonyMI</span></a></h2> | ||
| 1216 | |||
| 1217 | <p class=MsoNormal><span lang=en-DE>AnonyMI is an MRI de-identification tool | ||
| 1218 | that uses 3D surface modelling in order to de-identify MRIs while retaining as | ||
| 1219 | much geometrical information as possible. It can be run automatically or | ||
| 1220 | manually, which allows precise tailoring for specific needs. AnonyMI is | ||
| 1221 | distributed as a plug-in of 3D Slicer, a widely used, open-source, stable and | ||
| 1222 | reliable image-processing software. It leverages the power of this platform for | ||
| 1223 | reading and saving images, which makes it applicable on almost any MRI file | ||
| 1224 | type, including all the most commonly used formats (e.g., DICOM, Nifti, Analyze | ||
| 1225 | etc.).</span></p> | ||
| 1226 | |||
| 1227 | <h2></h2> | ||
| 1228 | |||
| 1229 | <h2><a name="_Toc138932250"><span lang=en-DE>Arbor</span></a></h2> | ||
| 1230 | |||
| 1231 | <p class=MsoNormal><span lang=en-DE>Arbor is a simulation software library for | ||
| 1232 | neuron models with complex morphologies Ñ from single cells to large | ||
| 1233 | distributed networks. Developed entirely inside HBP, it enables running | ||
| 1234 | large-scale simulations on any HPC, including those available through EBRAINS. | ||
| 1235 | Arbor provides performance portability for native execution on all HPC | ||
| 1236 | architectures. Optimized vectorized code is generated for Intel, AMD and ARM | ||
| 1237 | CPUs, NVIDIA and AMD GPUs, and support will be added for new architectures as | ||
| 1238 | they become available. Model portability is easier due to an interface for | ||
| 1239 | model description independent of how Arbor represents models internally. | ||
| 1240 | Interoperability with other simulation engines is enabled via API for spike | ||
| 1241 | exchange and the output of voltages, currents and model state.</span></p> | ||
| 1242 | |||
| 1243 | <h2></h2> | ||
| 1244 | |||
| 1245 | <h2><a name="_Toc138932251"><span lang=en-DE>Arbor GUI</span></a></h2> | ||
| 1246 | |||
| 1247 | <p class=MsoNormal><span lang=en-DE>Arbor GUI strives to be self-contained, | ||
| 1248 | fast and easy to use. Design morphologically detailed cells for simulation in | ||
| 1249 | Arbor. Load morphologies from SWC .swc, NeuroML .nml, NeuroLucida .asc. Define | ||
| 1250 | and highlight Arbor regions and locsets. Paint ion dynamics and bio-physical | ||
| 1251 | properties onto morphologies. Place spike detectors and probes. Export cable | ||
| 1252 | cells to Arbor's internal format (ACC) for direct simulation. Import cable | ||
| 1253 | cells in ACC format. This project is under active development and welcomes | ||
| 1254 | early feedback.</span></p> | ||
| 1255 | |||
| 1256 | <h2></h2> | ||
| 1257 | |||
| 1258 | <h2><a name="_Toc138932252"><span lang=en-DE>Bayesian Virtual Epileptic Patient | ||
| 1259 | (BVEP)</span></a></h2> | ||
| 1260 | |||
| 1261 | <p class=MsoNormal><span lang=en-DE>BVEP relies on the fusion of structural | ||
| 1262 | data of individuals, a generative model of epileptiform discharges, and the | ||
| 1263 | state-of-the-art probabilistic machine learning algorithms. It uses self-tuning | ||
| 1264 | Monte Carlo sampling algorithm, and the deep neural density estimators for | ||
| 1265 | reliable and efficient model-based inference at source and sensor levels data. | ||
| 1266 | The Bayesian framework provides an appropriate patient-specific strategy for | ||
| 1267 | estimating the extent of epileptogenic and propagation zones of the brain | ||
| 1268 | regions to improve outcome after epilepsy surgery.</span></p> | ||
| 1269 | |||
| 1270 | <h2></h2> | ||
| 1271 | |||
| 1272 | <h2><a name="_Toc138932253"><span lang=en-DE>BIDS Extension Proposal | ||
| 1273 | Computational Model Specifications</span></a></h2> | ||
| 1274 | |||
| 1275 | <p class=MsoNormal><span lang=en-DE>A data structure schema for neural network | ||
| 1276 | computational models that aims to be generically applicable to all kinds of | ||
| 1277 | neural network simulation software, mathematical models, computational models, | ||
| 1278 | and data models, but with a focus on dynamic circuit models of brain activity. </span></p> | ||
| 1279 | |||
| 1280 | <h2></h2> | ||
| 1281 | |||
| 1282 | <h2><a name="_Toc138932254"><span lang=en-DE>BioBB</span></a></h2> | ||
| 1283 | |||
| 1284 | <p class=MsoNormal><span lang=en-DE>The BioExcel Building Blocks (BioBB) | ||
| 1285 | software library is a collection of Python wrappers on top of popular | ||
| 1286 | biomolecular simulation tools. The library offers a layer of interoperability | ||
| 1287 | between the wrapped tools, which make them compatible and prepared to be | ||
| 1288 | directly interconnected to build complex biomolecular workflows. Building and | ||
| 1289 | sharing complex biomolecular simulation workflows just requires joining and | ||
| 1290 | connecting BioExcelBuilding Blocks together. Biomolecular simulation workflows | ||
| 1291 | built using the BioBB library are integrated in the Collaboratory Jupyter lab | ||
| 1292 | infrastructure, allowing the exploration of dynamics and flexibility of | ||
| 1293 | proteins related to the Central Nervous Systems.</span></p> | ||
| 1294 | |||
| 1295 | <h2></h2> | ||
| 1296 | |||
| 1297 | <h2><a name="_Toc138932255"><span lang=en-DE>BioExcel-CV19</span></a></h2> | ||
| 1298 | |||
| 1299 | <p class=MsoNormal><span lang=en-DE>BioExcel-CV19 is a platform designed to | ||
| 1300 | provide web access to atomistic-MD trajectories for macromolecules involved in | ||
| 1301 | the COVID-19 disease. The project is part of the open access initiatives | ||
| 1302 | promoted by the world-wide scientific community to share information about | ||
| 1303 | COVID-19 research. BioExcel-CV19 web server interface presents the resulting | ||
| 1304 | trajectories, with a set of quality control analyses and system information. | ||
| 1305 | All data produced by the project is available to download from an associated | ||
| 1306 | programmatic access API.</span></p> | ||
| 1307 | |||
| 1308 | <h2></h2> | ||
| 1309 | |||
| 1310 | <h2><a name="_Toc138932256"><span lang=en-DE>BioNAR</span></a></h2> | ||
| 1311 | |||
| 1312 | <p class=MsoNormal><span lang=en-DE>BioNAR combines a selection of | ||
| 1313 | existing R protocols for network analysis with newly designed original | ||
| 1314 | methodological features to support step-by-step analysis of | ||
| 1315 | biological/biomedical networks. BioNAR supports a pipeline approach where many | ||
| 1316 | networks and iterative analyses can be performed. BioNAR helps to achieve a | ||
| 1317 | number of network analysis goals that are difficult to achieve anywhere else, | ||
| 1318 | e.g., choose the optimal clustering algorithm from a range of options based on | ||
| 1319 | independent annotation enrichment</span><span lang=en-DE style='font-family: | ||
| 1320 | "Times New Roman",serif'> </span><span lang=en-DE>predict a proteins influence | ||
| 1321 | within and across multiple sub-complexes in the network and estimate the | ||
| 1322 | co-occurrence or linkage between meta-data at the network level.</span></p> | ||
| 1323 | |||
| 1324 | <h2></h2> | ||
| 1325 | |||
| 1326 | <h2><a name="_Toc138932257"><span lang=en-DE>BlueNaaS-single cell</span></a></h2> | ||
| 1327 | |||
| 1328 | <p class=MsoNormal><span lang=en-DE>BlueNaaS-SingleCell is an open-source web | ||
| 1329 | application. It enables users to quickly visualize single cell model | ||
| 1330 | morphologies in 3D or as a dendrogram. Using a simple web user interface, single | ||
| 1331 | cell simulations can be easily configured and launched, producing voltage | ||
| 1332 | traces from selected compartments.</span></p> | ||
| 1333 | |||
| 1334 | <h2></h2> | ||
| 1335 | |||
| 1336 | <h2><a name="_Toc138932258"><span lang=en-DE>BlueNaaS-subcellular</span></a></h2> | ||
| 1337 | |||
| 1338 | <p class=MsoNormal><span lang=en-DE>BlueNaaS-Subcellular is a web-based | ||
| 1339 | environment for creation and simulation of reaction-diffusion models. It allows | ||
| 1340 | the user to import, combine and simulate existing models derived from other | ||
| 1341 | parts of the pipeline. It is integrated with a number of solvers for | ||
| 1342 | reaction-diffusion systems of equations and can represent rule-based systems | ||
| 1343 | using BioNetGen. Additionally, it supports simulation of spatially distributed | ||
| 1344 | systems using STEPS (stochastic engine for pathway simulation), providing | ||
| 1345 | spatial stochastic and deterministic solvers for simulation of reactions and | ||
| 1346 | diffusion on tetrahedral meshes. It includes some visualisation tools such as a | ||
| 1347 | geometry viewer, a contact map and a reactivity network graph.</span></p> | ||
| 1348 | |||
| 1349 | <h2></h2> | ||
| 1350 | |||
| 1351 | <h2><a name="_Toc138932259"><span lang=en-DE>BluePyEfe</span></a></h2> | ||
| 1352 | |||
| 1353 | <p class=MsoNormal><span lang=en-DE>BluePyEfe eases the process of reading | ||
| 1354 | experimental recordings and extracting batches of electrical features from | ||
| 1355 | these recordings. It combines trace reading functions and features extraction | ||
| 1356 | functions from the eFel library. BluePyEfe outputs protocols and features files | ||
| 1357 | in the format used by BluePyOpt for neuron electrical model building.</span></p> | ||
| 1358 | |||
| 1359 | <h2></h2> | ||
| 1360 | |||
| 1361 | <h2><a name="_Toc138932260"><span lang=en-DE>BluePyMM</span></a></h2> | ||
| 1362 | |||
| 1363 | <p class=MsoNormal><span lang=en-DE>When building a network simulation, | ||
| 1364 | biophysically detailed electrical models (e-models) need to be tested for every | ||
| 1365 | morphology that is possibly used in the circuit. With current resources, | ||
| 1366 | e-models are not re-optimised for every morphology in the network. In a process | ||
| 1367 | called Cell Model Management (MM), we test if an existing e-model matches a | ||
| 1368 | particular morphology 'well enough'. It takes as input a morphology release, a | ||
| 1369 | circuit recipe and a set of e-models, then finds all possible (morphology, | ||
| 1370 | e-model)-combinations (me-combos) based on e-type, m-type, and layer as | ||
| 1371 | described by the circuit recipe, then calculates the scores for every | ||
| 1372 | combination. Finally, it writes out the resulting accepted me-combos to a | ||
| 1373 | database and produces a report with information on the number of matches.</span></p> | ||
| 1374 | |||
| 1375 | <h2></h2> | ||
| 1376 | |||
| 1377 | <h2><a name="_Toc138932261"><span lang=en-DE>BluePyOpt</span></a></h2> | ||
| 1378 | |||
| 1379 | <p class=MsoNormal><span lang=en-DE>BluePyOpt simplifies the task of creating | ||
| 1380 | and sharing these optimisations, and the associated techniques and knowledge. | ||
| 1381 | This is achieved by abstracting the optimisation and evaluation tasks into | ||
| 1382 | various reusable and flexible discrete elements according to established best | ||
| 1383 | practices. Further, BluePyOpt provides methods for setting up both small- and | ||
| 1384 | large-scale optimisations on a variety of platforms, ranging from laptops to | ||
| 1385 | Linux clusters and cloud-based computer infrastructures.</span></p> | ||
| 1386 | |||
| 1387 | <h2></h2> | ||
| 1388 | |||
| 1389 | <h2><a name="_Toc138932262"><span lang=en-DE>Brain Cockpit</span></a></h2> | ||
| 1390 | |||
| 1391 | <p class=MsoNormal><span lang=en-DE>Brain Cockpit is a web app comprising a | ||
| 1392 | Typescript front-end and a Python back-end. It is meant to help explore large | ||
| 1393 | surface fMRI datasets projected on surface meshes and alignments computed | ||
| 1394 | between brains, such as those computed with Fused Unbalanced Gromov-Wasserstein | ||
| 1395 | (fugw) for Python.</span></p> | ||
| 1396 | |||
| 1397 | <h2></h2> | ||
| 1398 | |||
| 1399 | <h2><a name="_Toc138932263"><span lang=en-DE>BrainScaleS</span></a></h2> | ||
| 1400 | |||
| 1401 | <p class=MsoNormal><span lang=en-DE>Emulate spiking neural networks in | ||
| 1402 | continuous time on the BrainScaleS analog neuromorphic computing system. Models | ||
| 1403 | and experiments can be described in Python using the PyNN modelling language, | ||
| 1404 | or in hxtorch, a PyTorch-based machine-learning-friendly API. The platform can | ||
| 1405 | be used interactively via the EBRAINS JupyterLab service or EBRAINS HPC</span><span | ||
| 1406 | lang=en-DE style='font-family:"Times New Roman",serif'> </span><span | ||
| 1407 | lang=en-DE>in addition, the NMPI web service provides batch-style access. The | ||
| 1408 | modelling APIs employ common data formats for input and output data, e.g., | ||
| 1409 | neo.</span></p> | ||
| 1410 | |||
| 1411 | <h2></h2> | ||
| 1412 | |||
| 1413 | <h2><a name="_Toc138932264"><span lang=en-DE>Brayns</span></a></h2> | ||
| 1414 | |||
| 1415 | <p class=MsoNormal><span lang=en-DE>Brayns is a large-scale scientific | ||
| 1416 | visualization platform based on Intel OSPRAY to perform CPU Ray-tracing and | ||
| 1417 | uses an extension-plugin architecture. The core provides basic functionalities | ||
| 1418 | that can be reused and/or extended on plugins, which are independent and can be | ||
| 1419 | loaded or disabled at start-up. This simplifies the process of adding support | ||
| 1420 | for new scientific visualization use cases, without compromising the | ||
| 1421 | reliability of the rest of the software. Brayns counts with braynsService, a | ||
| 1422 | rendering backend which can be accessed over the internet and streams images to | ||
| 1423 | connected clients. Already-made plugins include CircuitExplorer, DTI, | ||
| 1424 | AtlasExplorer, CylindricCamera and MoleculeExplorer.</span></p> | ||
| 1425 | |||
| 1426 | <p class=MsoNormal></p> | ||
| 1427 | |||
| 1428 | <h2><a name="_Toc138932265"><span lang=en-DE>Brion</span></a></h2> | ||
| 1429 | |||
| 1430 | <p class=MsoNormal><span lang=en-DE>Brion is a C++ project for read and write | ||
| 1431 | access to Blue Brain data structures, including BlueConfig/CircuitConfig, | ||
| 1432 | Circuit, CompartmentReport, Mesh, Morphology, Synapse and Target files. It also | ||
| 1433 | offers an interface in Python.</span></p> | ||
| 1434 | |||
| 1435 | <h2></h2> | ||
| 1436 | |||
| 1437 | <h2><a name="_Toc138932266"><span lang=en-DE>BSB</span></a></h2> | ||
| 1438 | |||
| 1439 | <p class=MsoNormal><span lang=en-DE>The BSB reconstructs realistic neural | ||
| 1440 | circuits by placing and connecting fibres and neurons with detailed | ||
| 1441 | morphologies or only simplified geometrical features. Configure your model the | ||
| 1442 | way you need. Interfaces with several simulators (CoreNEURON, Arbor, NEST) | ||
| 1443 | allow simulation of the reconstructed network and investigation of the | ||
| 1444 | structure-function-dynamics relationships at different levels of resolution. | ||
| 1445 | The 'scaffold' design allows an easy model reconfiguration reflecting variants | ||
| 1446 | across brain regions, animal species and physio-pathological conditions without | ||
| 1447 | dismounting the basic network structure. The BSB provides effortless parallel | ||
| 1448 | computing both for the reconstruction and simulation phase.</span></p> | ||
| 1449 | |||
| 1450 | <h2></h2> | ||
| 1451 | |||
| 1452 | <h2><a name="_Toc138932267"><span lang=en-DE>BSP Service Account</span></a></h2> | ||
| 1453 | |||
| 1454 | <p class=MsoNormal><span lang=en-DE>The BSP Service Account is a rest API | ||
| 1455 | service that allows developers to submit user's jobs on HPC systems and | ||
| 1456 | retrieve results using the EBRAINS authentication, even if users don't have a | ||
| 1457 | personal account on the available HPC facilities.</span></p> | ||
| 1458 | |||
| 1459 | <h2></h2> | ||
| 1460 | |||
| 1461 | <h2><a name="_Toc138932268"><span lang=en-DE>bsp-usecase-wizard</span></a></h2> | ||
| 1462 | |||
| 1463 | <p class=MsoNormal><span lang=en-DE>The CLS interactive workflows and use cases | ||
| 1464 | application guides the users through the resolution of realistic scientific | ||
| 1465 | problems. They are implemented as either front-end or full stack web | ||
| 1466 | applications or Python-based Jupyter Notebooks that allow the user to | ||
| 1467 | interactively build, reconstruct or simulate data-driven brain models and | ||
| 1468 | perform data analysis visualisation. Web applications are freely accessible and | ||
| 1469 | only require authentication to EBRAINS when specific actions are required | ||
| 1470 | (e.g., submitting a simulation job to an HBP HPC system). Jupyter Notebooks are | ||
| 1471 | cloned to the lab.ebrains.eu platform and require authentication via an EBRAINS | ||
| 1472 | account.</span></p> | ||
| 1473 | |||
| 1474 | <h2></h2> | ||
| 1475 | |||
| 1476 | <h2><a name="_Toc138932269"><span lang=en-DE>CGMD Platform</span></a></h2> | ||
| 1477 | |||
| 1478 | <p class=MsoNormal><span lang=en-DE>Recent advances in CGMD simulations have | ||
| 1479 | allowed longer and larger molecular dynamics simulations of biological | ||
| 1480 | macromolecules and their interactions. The CGMD platform is dedicated to the | ||
| 1481 | preparation, running, and analysis of CGMD simulations, and built on a | ||
| 1482 | completely revisited version of the Martini coarsE gRained MembrAne proteIn | ||
| 1483 | Dynamics (MERMAID) web server. In its current version, the platform expands the | ||
| 1484 | existing implementation of the Martini force field for membrane proteins to | ||
| 1485 | also allow the simulation of soluble proteins using the Martini and SIRAH force | ||
| 1486 | fields. Moreover, it offers an automated protocol for carrying out the | ||
| 1487 | backmapping of the coarse-grained description of the system into an atomistic | ||
| 1488 | one.</span></p> | ||
| 1489 | |||
| 1490 | <h2></h2> | ||
| 1491 | |||
| 1492 | <h2><a name="_Toc138932270"><span lang=en-DE>CNS-ligands</span></a></h2> | ||
| 1493 | |||
| 1494 | <p class=MsoNormal><span lang=en-DE>The project is part of the Parameter | ||
| 1495 | generation and mechanistic studies of neuronal cascades using multi-scale | ||
| 1496 | molecular simulations of the HBP. CNS conformers are generated using a powerful | ||
| 1497 | multilevel strategy that combines a low-level (LL) method for sampling the | ||
| 1498 | conformational minima and high-level (HL) ab initio calculations for estimating | ||
| 1499 | their relative stability. CNS database presents the results in a graphical user | ||
| 1500 | interface, displaying small molecule properties, analyses and generated 3D | ||
| 1501 | conformers. All data produced by the project is available to download.</span></p> | ||
| 1502 | |||
| 1503 | <h2></h2> | ||
| 1504 | |||
| 1505 | <h2><a name="_Toc138932271"><span lang=en-DE>Cobrawap</span></a></h2> | ||
| 1506 | |||
| 1507 | <p class=MsoNormal><span lang=en-DE>Cobrawap is an adaptable and reusable | ||
| 1508 | software tool to study wave-like activity propagation in the cortex. It allows for | ||
| 1509 | the integration of heterogeneous data from different measurement techniques and | ||
| 1510 | simulations through alignment to common wave descriptions. Cobrawap provides an | ||
| 1511 | extendable collection of processing and analysis methods that can be combined | ||
| 1512 | and adapted to specific input data and research applications. It enables broad | ||
| 1513 | and rigorous comparisons of wave characteristics across multiple datasets, | ||
| 1514 | model calibration and validation applications, and its modular building blocks | ||
| 1515 | may serve to construct related analysis pipelines.</span></p> | ||
| 1516 | |||
| 1517 | <h2></h2> | ||
| 1518 | |||
| 1519 | <h2><a name="_Toc138932272"><span lang=en-DE>Collaboratory Bucket service</span></a></h2> | ||
| 1520 | |||
| 1521 | <p class=MsoNormal><span lang=en-DE>The Bucket service provides object storage | ||
| 1522 | to EBRAINS users without them having to request an account on Fenix (the | ||
| 1523 | EBRAINS infrastructure provider) and storage resources there. This is the | ||
| 1524 | recommended storage for datasets that are shared by data providers, on the | ||
| 1525 | condition that these do not contain sensitive personal data. For sharing | ||
| 1526 | datasets with personal data, users should refer to the Health Data Cloud. The | ||
| 1527 | Bucket service is better suited for larger files that are usually not edited, | ||
| 1528 | such as datasets and videos. For Docker images, users should refer to the | ||
| 1529 | EBRAINS Docker registry. For smaller files and files which are more likely to | ||
| 1530 | be edited, users should consider the Collaboratory Drive service.</span></p> | ||
| 1531 | |||
| 1532 | <h2></h2> | ||
| 1533 | |||
| 1534 | <h2><a name="_Toc138932273"><span lang=en-DE>Collaboratory Drive</span></a></h2> | ||
| 1535 | |||
| 1536 | <p class=MsoNormal><span lang=en-DE>The Drive service offers users cloud | ||
| 1537 | storage space for their files in each collab (workspace). The Drive storage is | ||
| 1538 | mounted in the Collaboratory Lab to provide persistent storage (as opposed to | ||
| 1539 | the Lab containers which are deleted after a few hours of inactivity). All | ||
| 1540 | files are under version control. The Drive is intended for smaller files | ||
| 1541 | (currently limited to 1 GB) that change more often. Users must not save files | ||
| 1542 | containing personal information in the Drive (i.e. data of living human subjects). | ||
| 1543 | The Drive is also integrated with the Collaboratory Office service to offer | ||
| 1544 | easy collaborative editing of Office files online.</span></p> | ||
| 1545 | |||
| 1546 | <h2></h2> | ||
| 1547 | |||
| 1548 | <h2><a name="_Toc138932274"><span lang=en-DE>Collaboratory IAM</span></a></h2> | ||
| 1549 | |||
| 1550 | <p class=MsoNormal><span lang=en-DE>The EBRAINS Collaboratory IAM allows the | ||
| 1551 | developers of different EBRAINS services to benefit from a single sign-on | ||
| 1552 | solution. End users will benefit from a seamless experience, whereby they can | ||
| 1553 | access a specific service and have direct access from it to resources in other | ||
| 1554 | EBRAINS services without re-authentication. For the developer, it is a good way | ||
| 1555 | for separating concerns and offloading much of the identification and | ||
| 1556 | authentication to a central service. The EBRAINS IAM is recognised as an | ||
| 1557 | identity provider at Fenix supercomputing sites. The IAM service also provides | ||
| 1558 | three ways of managing groups of users: Units, Groups and Teams.</span></p> | ||
| 1559 | |||
| 1560 | <h2></h2> | ||
| 1561 | |||
| 1562 | <h2><a name="_Toc138932275"><span lang=en-DE>Collaboratory Lab</span></a></h2> | ||
| 1563 | |||
| 1564 | <p class=MsoNormal><span lang=en-DE>The Collaboratory Lab provides EBRAINS | ||
| 1565 | users with a user-friendly programming environment for reproducible science. | ||
| 1566 | EBRAINS tools are pre-installed for the user. The latest release is selected by | ||
| 1567 | default, but users can choose to run an older release to reuse an older | ||
| 1568 | notebook, or try out the very latest features in the weekly experimental | ||
| 1569 | deployment. Official releases are produced by EBRAINS every few months. End | ||
| 1570 | users do not need to build and install the tools, and, more importantly, they | ||
| 1571 | do not need to resolve dependency conflicts among tools as this has been | ||
| 1572 | handled for them.</span></p> | ||
| 1573 | |||
| 1574 | <h2></h2> | ||
| 1575 | |||
| 1576 | <h2><a name="_Toc138932276"><span lang=en-DE>Collaboratory Office</span></a></h2> | ||
| 1577 | |||
| 1578 | <p class=MsoNormal><span lang=en-DE>With the Office service, EBRAINS users can | ||
| 1579 | collaboratively edit Office documents (Word, PowerPoint or Excel) with most of | ||
| 1580 | the key features of the MS Office tools. It uses the open standard formats | ||
| 1581 | .docx, .pptx and .xlsx so that files can alternately be edited in the | ||
| 1582 | Collaboratory Office service and in other compatible tools including the MS | ||
| 1583 | Office suite.</span></p> | ||
| 1584 | |||
| 1585 | <h2></h2> | ||
| 1586 | |||
| 1587 | <h2><a name="_Toc138932277"><span lang=en-DE>Collaboratory Wiki</span></a></h2> | ||
| 1588 | |||
| 1589 | <p class=MsoNormal><span lang=en-DE>The Wiki service offers the user-friendly | ||
| 1590 | wiki functionality for publishing web content. It acts as central user | ||
| 1591 | interface and API to access the other Collaboratory services. EBRAINS | ||
| 1592 | developers can integrate their services as app which can be instantiated by | ||
| 1593 | users in their collabs. The Wiki is a good place to create tutorials and | ||
| 1594 | documentation and it is also the place to publish your work on the internet if | ||
| 1595 | you choose to do so.</span></p> | ||
| 1596 | |||
| 1597 | <h2></h2> | ||
| 1598 | |||
| 1599 | <h2><a name="_Toc138932278"><span lang=en-DE>CoreNEURON</span></a></h2> | ||
| 1600 | |||
| 1601 | <p class=MsoNormal><span lang=en-DE>In order to adapt NEURON to evolving | ||
| 1602 | computer architectures, the compute engine of the NEURON simulator was | ||
| 1603 | extracted and optimised as a library called CoreNEURON. CoreNEURON is a compute | ||
| 1604 | engine library for the NEURON simulator optimised for both memory usage and | ||
| 1605 | computational speed on modern CPU/GPU architectures. Some of its key goals are | ||
| 1606 | to: 1) Efficiently simulate large network models, 2) Support execution on | ||
| 1607 | accelerators such as GPU, 3) Support optimisations such as vectorisation and | ||
| 1608 | cache-efficient memory layout.</span></p> | ||
| 1609 | |||
| 1610 | <h2></h2> | ||
| 1611 | |||
| 1612 | <h2><a name="_Toc138932279"><span lang=en-DE>CxSystem2</span></a></h2> | ||
| 1613 | |||
| 1614 | <p class=MsoNormal><span lang=en-DE>CxSystem is a cerebral cortex simulation | ||
| 1615 | framework, which operates on personal computers. The CxSystem enables easy | ||
| 1616 | testing and build-up of diverse models at single-cell resolution and it is | ||
| 1617 | implemented on the top of the Python-based Brain2 simulator. The CxSystem | ||
| 1618 | interface comprises two csv files - one for anatomy and technical details, the | ||
| 1619 | other for physiological parameters.</span></p> | ||
| 1620 | |||
| 1621 | <h2></h2> | ||
| 1622 | |||
| 1623 | <h2><a name="_Toc138932280"><span lang=en-DE>DeepSlice</span></a></h2> | ||
| 1624 | |||
| 1625 | <p class=MsoNormal><span lang=en-DE>DeepSlice is a deep neural network that | ||
| 1626 | aligns histological sections of mouse brain to the Allen Mouse Brain Common | ||
| 1627 | Coordinate Framework, adjusting for anterior-posterior position, angle, | ||
| 1628 | rotation and scale. At present, DeepSlice only works with tissue cut in the | ||
| 1629 | coronal plane, although future versions will be compatible with sagittal and | ||
| 1630 | horizontal sections.</span></p> | ||
| 1631 | |||
| 1632 | <h2></h2> | ||
| 1633 | |||
| 1634 | <h2><a name="_Toc138932281"><span lang=en-DE>EBRAINS Ethics & Society | ||
| 1635 | Toolkit</span></a></h2> | ||
| 1636 | |||
| 1637 | <p class=MsoNormal><span lang=en-DE>The aim of the toolkit is to offer | ||
| 1638 | researchers who carry out cross-disciplinary brain research a possibility to | ||
| 1639 | engage with ethical and societal issues within brain health and brain disease. | ||
| 1640 | The user is presented with short introductory texts, scenario-based dilemmas, | ||
| 1641 | animations and quizzes, all tailored to specific areas of ethics and society in | ||
| 1642 | a setting of brain research. All exercises are reflection-oriented, with an | ||
| 1643 | interactive approach to inspire users to incorporate these reflections into | ||
| 1644 | their own research practices. Moreover, it is possible to gain further | ||
| 1645 | knowledge by utilising the links for relevant publications, teaching modules | ||
| 1646 | and the EBRAINS Community Space.</span></p> | ||
| 1647 | |||
| 1648 | <h2></h2> | ||
| 1649 | |||
| 1650 | <h2><a name="_Toc138932282"><span lang=en-DE>EBRAINS Image Service</span></a></h2> | ||
| 1651 | |||
| 1652 | <p class=MsoNormal><span lang=en-DE>The Image Service takes large 2D (and 3D) | ||
| 1653 | images and preprocesses them to generate small 2D tiles (or 3D chunks). | ||
| 1654 | Applications consuming image data (viewers or other) can then access regions of | ||
| 1655 | interest by downloading a few tiles rather than the entire large image. Tiles | ||
| 1656 | are also generated at coarser resolutions to support zooming out of large | ||
| 1657 | images. The service supports multiple input image formats. The serving of tiles | ||
| 1658 | to apps is provided by the Collaboratory Bucket (based on OpenStack Swift | ||
| 1659 | object storage), which provides significantly higher network bandwidth than | ||
| 1660 | could be provided by any VM.</span></p> | ||
| 1661 | |||
| 1662 | <h2></h2> | ||
| 1663 | |||
| 1664 | <h2><a name="_Toc138932283"><span lang=en-DE>EBRAINS Knowledge Graph</span></a></h2> | ||
| 1665 | |||
| 1666 | <p class=MsoNormal><span lang=en-DE>The EBRAINS Knowledge Graph (KG) is the | ||
| 1667 | metadata management system of the EBRAINS Data and Knowledge services. It | ||
| 1668 | provides fundamental services and tools to make neuroscientific data, models | ||
| 1669 | and related software FAIR. The KG Editor and API (incl. Python SDKs) allow to | ||
| 1670 | annotate scientific resources in a semantically correct way. The KG Search | ||
| 1671 | exposes the research information via an intuitive user interface and makes the | ||
| 1672 | information publicly available to any user. For advanced users, the KG Query | ||
| 1673 | Builder and KG Core API provide the necessary means to execute detailed queries | ||
| 1674 | on the graph database whilst enforcing fine-grained permission control.</span></p> | ||
| 1675 | |||
| 1676 | <h2></h2> | ||
| 1677 | |||
| 1678 | <h2><a name="_Toc138932284"><span lang=en-DE>EDI Toolkit</span></a></h2> | ||
| 1679 | |||
| 1680 | <p class=MsoNormal><span lang=en-DE>The EDI Toolkit supports projects in | ||
| 1681 | integrating EDI in their research content and as guiding principles for team | ||
| 1682 | collaboration. It is designed for everyday usage by offering: Basic information | ||
| 1683 | Guiding questions, templates and tools to design responsible research Quick | ||
| 1684 | checklists, guidance for suitable structures and standard procedures Measures | ||
| 1685 | to support EDI-based leadership, fair teams and events</span></p> | ||
| 1686 | |||
| 1687 | <h2></h2> | ||
| 1688 | |||
| 1689 | <h2><a name="_Toc138932285"><span lang=en-DE>eFEL</span></a></h2> | ||
| 1690 | |||
| 1691 | <p class=MsoNormal><span lang=en-DE>eFEL allows neuroscientists to | ||
| 1692 | automatically extract features from time series data recorded from neurons | ||
| 1693 | (both in vitro and in silico). Examples include action potential width and | ||
| 1694 | amplitude in voltage traces recorded during whole-cell patch clamp experiments. | ||
| 1695 | Users can provide a set of traces and select which features to calculate. The | ||
| 1696 | library will then extract the requested features and return the values.</span></p> | ||
| 1697 | |||
| 1698 | <h2></h2> | ||
| 1699 | |||
| 1700 | <h2><a name="_Toc138932286"><span lang=en-DE>Electrophysiology Analysis Toolkit</span></a></h2> | ||
| 1701 | |||
| 1702 | <p class=MsoNormal><span lang=en-DE>The Electrophysiology Analysis Toolkit | ||
| 1703 | (Elephant) is a Python library that provides a modular framework for the | ||
| 1704 | analysis of experimental and simulated neuronal activity data, such as spike | ||
| 1705 | trains, local field potentials, and intracellular data. Elephant builds on the | ||
| 1706 | Neo data model to facilitate usability, enable interoperability, and support | ||
| 1707 | data from dozens of file formats and network simulation tools. Its analysis | ||
| 1708 | functions are continuously validated against reference implementations and | ||
| 1709 | reports in the literature. Visualisations of analysis results are made | ||
| 1710 | available via the Viziphant companion library. Elephant aims to act as a | ||
| 1711 | platform for sharing analysis methods across the field.</span></p> | ||
| 1712 | |||
| 1713 | <h2></h2> | ||
| 1714 | |||
| 1715 | <h2><a name="_Toc138932287"><span lang=en-DE>FAConstructor</span></a></h2> | ||
| 1716 | |||
| 1717 | <p class=MsoNormal><span lang=en-DE>FAConstructor allows a simple and effective | ||
| 1718 | creation of fibre models based on mathematical functions or the manual input of | ||
| 1719 | data points. Models are visualised during creation and can be interacted with | ||
| 1720 | by translating them in 3D space.</span></p> | ||
| 1721 | |||
| 1722 | <h2></h2> | ||
| 1723 | |||
| 1724 | <h2><a name="_Toc138932288"><span lang=en-DE>fairgraph</span></a></h2> | ||
| 1725 | |||
| 1726 | <p class=MsoNormal><span lang=en-DE>fairgraph is a Python library for working | ||
| 1727 | with metadata in the EBRAINS Knowledge Graph (KG), with a particular focus on | ||
| 1728 | data reuse, although it is also useful in registering and curating metadata. | ||
| 1729 | The library represents metadata nodes (also known as openMINDS instances) from | ||
| 1730 | the KG as Python objects. fairgraph supports querying the KG, following links | ||
| 1731 | in the graph, downloading data and metadata, and creating new nodes in the KG. | ||
| 1732 | It builds on openMINDS and on the KG Core Python library.</span></p> | ||
| 1733 | |||
| 1734 | <h2></h2> | ||
| 1735 | |||
| 1736 | <h2><a name="_Toc138932289"><span lang=en-DE>Fast sampling with neuromorphic | ||
| 1737 | hardware</span></a></h2> | ||
| 1738 | |||
| 1739 | <p class=MsoNormal><span lang=en-DE>Compared to conventional neural networks, | ||
| 1740 | physical model devices offer a fast, efficient, and inherently parallel | ||
| 1741 | substrate capable of related forms of Markov chain Monte Carlo sampling. This | ||
| 1742 | software suite enables the use of a neuromorphic chip to replicate the | ||
| 1743 | properties of quantum systems through spike-based sampling.</span></p> | ||
| 1744 | |||
| 1745 | <h2></h2> | ||
| 1746 | |||
| 1747 | <h2><a name="_Toc138932290"><span lang=en-DE>fastPLI</span></a></h2> | ||
| 1748 | |||
| 1749 | <p class=MsoNormal><span lang=en-DE>fastPLI is an open-source toolbox based on | ||
| 1750 | Python and C++ for modelling myelinated axons, i.e., nerve fibres, and | ||
| 1751 | simulating the results of measurement of fibre orientations with a polarisation | ||
| 1752 | microscope using 3D-PLI. The fastPLI package includes the following modules: | ||
| 1753 | nerve fibre modelling, simulation, and analysis. All computationally intensive | ||
| 1754 | calculations are optimised either with Numba on the Python side or with | ||
| 1755 | multithreading C++ algorithms, which can be accessed via pybind11 inside the | ||
| 1756 | Python package. Additionally, the simulation module supports the Message | ||
| 1757 | Passing Interface (MPI) to facilitate the simulation of very large volumes on | ||
| 1758 | multiple computer nodes.</span></p> | ||
| 1759 | |||
| 1760 | <h2></h2> | ||
| 1761 | |||
| 1762 | <h2><a name="_Toc138932291"><span lang=en-DE>Feed-forward LFP-MEG estimator | ||
| 1763 | from mean-field models</span></a></h2> | ||
| 1764 | |||
| 1765 | <p class=MsoNormal><span lang=en-DE>This tool was developed to calculate the | ||
| 1766 | local field potentials (LFP) and magnetoencephalogram (MEG) signals generated | ||
| 1767 | by a population of neurons described by a mean-field model. The calculation of | ||
| 1768 | LFP is done via a kernel method based on unitary LFP's (the LFP generated by a | ||
| 1769 | single axon) which was recently introduced for spiking-networks simulations and | ||
| 1770 | that we adapt here for mean-field models. The calculation of the magnetic field | ||
| 1771 | is based on current-dipole and volume-conductor models, where the secondary | ||
| 1772 | currents (due to the conducting extracellular medium) are estimated using the | ||
| 1773 | LFP calculated via the kernel method and where the effects of | ||
| 1774 | medium-inhomogeneities are incorporated.</span></p> | ||
| 1775 | |||
| 1776 | <h2></h2> | ||
| 1777 | |||
| 1778 | <h2><a name="_Toc138932292"><span lang=en-DE>FIL</span></a></h2> | ||
| 1779 | |||
| 1780 | <p class=MsoNormal><span lang=en-DE>This is a scheme for training and applying | ||
| 1781 | the FIL framework. Some functionality from SPM12 is required for handling | ||
| 1782 | images. After training, labelling a new image is relatively fast because | ||
| 1783 | optimising the latent variables can be formulated within a scheme similar to a recurrent | ||
| 1784 | Residual Network (ResNet).</span></p> | ||
| 1785 | |||
| 1786 | <h2></h2> | ||
| 1787 | |||
| 1788 | <h2><a name="_Toc138932293"><span lang=en-DE>FMRALIGN</span></a></h2> | ||
| 1789 | |||
| 1790 | <p class=MsoNormal><span lang=en-DE>This library is meant to be a light-weight | ||
| 1791 | Python library that handles functional alignment tasks (also known as | ||
| 1792 | hyperalignment). It is compatible with and inspired by Nilearn. Alternative | ||
| 1793 | implementations of these ideas can be found in the pymvpa or brainiak packages.</span></p> | ||
| 1794 | |||
| 1795 | <h2></h2> | ||
| 1796 | |||
| 1797 | <h2><a name="_Toc138932294"><span lang=en-DE>Foa3D</span></a></h2> | ||
| 1798 | |||
| 1799 | <p class=MsoNormal><span lang=en-DE>Foa3D is a tool for multiscale nerve fibre | ||
| 1800 | enhancement and orientation analysis in high-resolution volume images acquired | ||
| 1801 | by two-photon scanning or light-sheet fluorescence microscopy, exploiting the | ||
| 1802 | brain tissue autofluorescence or exogenous myelin stains. Its image processing | ||
| 1803 | pipeline is built around a 3D Frangi filter that enables the enhancement of | ||
| 1804 | fibre structures of varying diameters, and the generation of accurate 3D | ||
| 1805 | orientation maps in both grey and white matter. Foa3D features the computation | ||
| 1806 | of multiscale orientation distribution functions that facilitate the comparison | ||
| 1807 | with orientations assessed via 3D-PLI or 3D PS-OCT, and the validation of | ||
| 1808 | mesoscale dMRI-based connectivity information.</span></p> | ||
| 1809 | |||
| 1810 | <h2></h2> | ||
| 1811 | |||
| 1812 | <h2><a name="_Toc138932295"><span lang=en-DE>Frites</span></a></h2> | ||
| 1813 | |||
| 1814 | <p class=MsoNormal><span lang=en-DE>Frites allows the characterisation of | ||
| 1815 | task-related cognitive brain networks. Neural correlates of cognitive functions | ||
| 1816 | can be extracted both at the single brain area (or channel) and network level. | ||
| 1817 | The toolbox includes time-resolved directed (e.g., Granger causality) and | ||
| 1818 | undirected (e.g., Mutual Information) functional connectivity metrics. In | ||
| 1819 | addition, it includes cluster-based and permutation-based statistical methods | ||
| 1820 | for single-subject and group-level inference.</span></p> | ||
| 1821 | |||
| 1822 | <h2></h2> | ||
| 1823 | |||
| 1824 | <h2><a name="_Toc138932296"><span lang=en-DE>gridspeccer</span></a></h2> | ||
| 1825 | |||
| 1826 | <p class=MsoNormal><span lang=en-DE>Plotting tool to make plotting with many | ||
| 1827 | subfigures easier, especially for publications. After installation, gridspeccer | ||
| 1828 | can be used from the command line to create plots.</span></p> | ||
| 1829 | |||
| 1830 | <h2></h2> | ||
| 1831 | |||
| 1832 | <h2><a name="_Toc138932297"><span lang=en-DE>Hal-Cgp</span></a></h2> | ||
| 1833 | |||
| 1834 | <p class=MsoNormal><span lang=en-DE>Hal-Cgp is an extensible pure Python | ||
| 1835 | library implementing Cgp to represent, mutate and evaluate populations of | ||
| 1836 | individuals encoding symbolic expressions targeting applications with | ||
| 1837 | computationally expensive fitness evaluations. It supports the translation from | ||
| 1838 | a CGP genotype, a two-dimensional Cartesian graph, into the corresponding | ||
| 1839 | phenotype, a computational graph implementing a particular mathematical expression. | ||
| 1840 | These computational graphs can be exported as pure Python functions, in a | ||
| 1841 | NumPy-compatible format, SymPy expressions or PyTorch modules. The library | ||
| 1842 | implements a mu + lambda evolution strategy to evolve a population of | ||
| 1843 | individuals to optimise an objective function.</span></p> | ||
| 1844 | |||
| 1845 | <h2></h2> | ||
| 1846 | |||
| 1847 | <h2><a name="_Toc138932298"><span lang=en-DE>Health Data Cloud</span></a></h2> | ||
| 1848 | |||
| 1849 | <p class=MsoNormal><span lang=en-DE>The Health Data Cloud (HDC) provides | ||
| 1850 | EBRAINS services for sensitive data as a federated research data ecosystem that | ||
| 1851 | enables scientists across Europe and beyond to collect, process and share | ||
| 1852 | sensitive data in compliance with EU General Data Protection Regulations | ||
| 1853 | (GDPR). The HDC is a federation of interoperable nodes. Nodes share a common | ||
| 1854 | system architecture based on CharitŽ Virtual Research Environment (VRE), | ||
| 1855 | enabling research consortia to manage and process data, and making data | ||
| 1856 | discoverable and sharable via the EBRAINS Knowledge Graph.</span></p> | ||
| 1857 | |||
| 1858 | <p class=MsoNormal></p> | ||
| 1859 | |||
| 1860 | <p class=MsoNormal><a name="_Toc138932299"><span class=Heading2Char><span | ||
| 1861 | lang=en-DE style='font-size:14.0pt;line-height:120%'>Hodgkin-Huxley Neuron | ||
| 1862 | Builder</span></span></a></p> | ||
| 1863 | |||
| 1864 | <p class=MsoNormal><span lang=en-DE>The Hodgkin-Huxley Neuron Builder is a | ||
| 1865 | web-application that allows users to interactively go through an entire NEURON | ||
| 1866 | model building pipeline of individual biophysically detailed cells. 2. Model | ||
| 1867 | parameter optimisation via HPC systems. 3. In silico experiments using the | ||
| 1868 | optimised model cell. </span></p> | ||
| 1869 | |||
| 1870 | <h2></h2> | ||
| 1871 | |||
| 1872 | <h2><a name="_Toc138932300"><span lang=en-DE>HPC Job Proxy</span></a></h2> | ||
| 1873 | |||
| 1874 | <p class=MsoNormal><span lang=en-DE>The HPC Job Proxy provides a simplified way | ||
| 1875 | for EBRAINS service providers to launch jobs on Fenix supercomputers on behalf | ||
| 1876 | of EBRAINS end users. The proxy offers a wrapper over the Unicore service which | ||
| 1877 | adds logging, access to stdout/stderr/status, verification of user quota, and | ||
| 1878 | updating of user quota at the end of the job.</span></p> | ||
| 1879 | |||
| 1880 | <h2></h2> | ||
| 1881 | |||
| 1882 | <h2><a name="_Toc138932301"><span lang=en-DE>HPC Status Monitor</span></a></h2> | ||
| 1883 | |||
| 1884 | <p class=MsoNormal><span lang=en-DE>The HPC Status Monitor allows a real-time | ||
| 1885 | check of the availability status of the HPC Systems accessible from HBP tools | ||
| 1886 | and services and provides an instant snapshot of the resource quotas available | ||
| 1887 | to individual users on each system.</span></p> | ||
| 1888 | |||
| 1889 | <h2></h2> | ||
| 1890 | |||
| 1891 | <h2><a name="_Toc138932302"><span lang=en-DE>Human Intracerebral EEG Platform</span></a></h2> | ||
| 1892 | |||
| 1893 | <p class=MsoNormal><span lang=en-DE>The HIP is an open-source platform designed | ||
| 1894 | for collecting, managing, analysing and sharing multi-scale iEEG data at an | ||
| 1895 | international level. Its mission is to assist clinicians and researchers in | ||
| 1896 | improving research capabilities by simplifying iEEG data analysis and | ||
| 1897 | interpretation. The HIP integrates different software, modules and services | ||
| 1898 | necessary for investigating spatio-temporal dynamics of neural processes in a | ||
| 1899 | secure and optimised fashion. The interface is browser-based and allows | ||
| 1900 | selecting sets of tools according to specific research needs.</span></p> | ||
| 1901 | |||
| 1902 | <h2></h2> | ||
| 1903 | |||
| 1904 | <h2><a name="_Toc138932303"><span lang=en-DE>Hybrid MM/CG Webserver</span></a></h2> | ||
| 1905 | |||
| 1906 | <p class=MsoNormal><span lang=en-DE>MM/CG simulations help predict ligand poses | ||
| 1907 | in hGPCRs for pharmacological applications. This approach allows for the | ||
| 1908 | description of the ligand, the binding cavity and the surrounding water | ||
| 1909 | molecules at atomistic resolution, while coarse-graining the rest of the | ||
| 1910 | receptor. The webserver automatises and speeds up the simulation set-up of | ||
| 1911 | hGPCR/ligand complexes. It also allows for equilibration of the systems, either | ||
| 1912 | fully automatically or interactively. The results are visualised online, | ||
| 1913 | helping the user identify possible issues and modify the set-up parameters. | ||
| 1914 | This framework allows for the automatic preparation and running of hybrid | ||
| 1915 | molecular dynamics simulations of molecules and their cognate receptors.</span></p> | ||
| 1916 | |||
| 1917 | <h2></h2> | ||
| 1918 | |||
| 1919 | <h2><a name="_Toc138932304"><span lang=en-DE>Insite</span></a></h2> | ||
| 1920 | |||
| 1921 | <p class=MsoNormal><span lang=en-DE>Insite enables users to access data via the | ||
| 1922 | in transit paradigm for NEST, TVB and Arbor simulations. Compared to the | ||
| 1923 | traditional approach of offline processing, in transit paradigms allow | ||
| 1924 | accessing of data while the simulation runs. This is especially useful for | ||
| 1925 | simulations that produce large amounts of data and are running for a long time. | ||
| 1926 | In transit allows the user to access only parts of the data and prevents the | ||
| 1927 | need for storing all data. It also allows the user early insights into the data | ||
| 1928 | even before the simulation finishes. Insite provides an easy-to-use and | ||
| 1929 | easy-to-integrate architecture to enable in transit features in other tools.</span></p> | ||
| 1930 | |||
| 1931 | <h2></h2> | ||
| 1932 | |||
| 1933 | <h2><a name="_Toc138932305"><span lang=en-DE>Interactive Brain Atlas Viewer</span></a></h2> | ||
| 1934 | |||
| 1935 | <p class=MsoNormal><span lang=en-DE>The Interactive Brain Atlas Viewer provides | ||
| 1936 | various kinds of interactive visualisations for multi-modal brain and head | ||
| 1937 | image data: different parcellations, degrees of transparency and overlays. The | ||
| 1938 | Viewer provides the following functions and supports data from the following | ||
| 1939 | sources: EEG, white matter tracts, MRI and PET 3D volumes, 2D slices, | ||
| 1940 | intracranial electrodes, brain activity, multiscale brain network models, | ||
| 1941 | supplementary information for brain regions and functional brain networks in | ||
| 1942 | multiple languages. It comes as a web app, mobile app and desktop app.</span></p> | ||
| 1943 | |||
| 1944 | <h2></h2> | ||
| 1945 | |||
| 1946 | <h2><a name="_Toc138932306"><span lang=en-DE>JuGEx</span></a></h2> | ||
| 1947 | |||
| 1948 | <p class=MsoNormal><span lang=en-DE>Decoding the chain from genes to cognition | ||
| 1949 | requires detailed insights into how areas with specific gene activities and | ||
| 1950 | microanatomical architectures contribute to brain function and dysfunction. The | ||
| 1951 | Allen Human Brain Atlas contains regional gene expression data, while the | ||
| 1952 | Julich Brain Atlas, which can be accessed via siibra, offers 3D | ||
| 1953 | cytoarchitectonic maps reflecting the interindividual variability. JuGEx offers | ||
| 1954 | an integrated framework that combines the analytical benefits of both | ||
| 1955 | repositories towards a multilevel brain atlas of adult humans. JuGEx is a new | ||
| 1956 | method for integrating tissue transcriptome and cytoarchitectonic segregation.</span></p> | ||
| 1957 | |||
| 1958 | <h2></h2> | ||
| 1959 | |||
| 1960 | <h2><a name="_Toc138932307"><span lang=en-DE>KnowledgeSpace</span></a></h2> | ||
| 1961 | |||
| 1962 | <p class=MsoNormal><span lang=en-DE>KnowledgeSpace (KS) is a globally-used, | ||
| 1963 | data-driven encyclopaedia and search engine for the neuroscience community. As | ||
| 1964 | an encyclopaedia, KS provides curated definitions of brain research concepts | ||
| 1965 | found in different neuroscience community ontologies, Wikipedia and | ||
| 1966 | dictionaries. The dataset discovery in KS makes research datasets across many | ||
| 1967 | large-scale brain initiatives universally accessible and useful. It also | ||
| 1968 | promotes FAIR data principles that will help data publishers to follow best | ||
| 1969 | practices for data storage and publication. As more and more data publishers | ||
| 1970 | follow data standards like OpenMINDS or DATS, the quality of data discovery | ||
| 1971 | through KS will improve. The related publications are also curated from PubMed | ||
| 1972 | and linked to the concepts in KS to provide an improved search capability.</span></p> | ||
| 1973 | |||
| 1974 | <h2></h2> | ||
| 1975 | |||
| 1976 | <h2><a name="_Toc138932308"><span lang=en-DE>L2L</span></a></h2> | ||
| 1977 | |||
| 1978 | <p class=MsoNormal><span lang=en-DE>L2L is an easy-to-use and flexible | ||
| 1979 | framework to perform parameter and hyper-parameter space exploration of | ||
| 1980 | mathematical models on HPC infrastructure. L2L is an implementation of the | ||
| 1981 | learning-to-learn concept written in Python. This open-source software allows | ||
| 1982 | several instances of an optimisation target to be executed with different | ||
| 1983 | parameters in an massively parallel fashion on HPC. L2L provides a set of | ||
| 1984 | built-in optimiser algorithms, which make adaptive and efficient exploration of | ||
| 1985 | parameter spaces possible. Different from other optimisation toolboxes, L2L | ||
| 1986 | provides maximum flexibility for the way the optimisation target can be | ||
| 1987 | executed.</span></p> | ||
| 1988 | |||
| 1989 | <h2></h2> | ||
| 1990 | |||
| 1991 | <h2><a name="_Toc138932309"><span lang=en-DE>Leveltlab/SpectralSegmentation</span></a></h2> | ||
| 1992 | |||
| 1993 | <p class=MsoNormal><span lang=en-DE>SpecSeg is a toolbox that segments neurons | ||
| 1994 | and neurites in chronic calcium imaging datasets based on low-frequency | ||
| 1995 | cross-spectral power. The pipeline includes a graphical user interface to edit | ||
| 1996 | the automatically extracted ROIs, to add new ones or delete ROIs by further | ||
| 1997 | constraining their properties.</span></p> | ||
| 1998 | |||
| 1999 | <h2></h2> | ||
| 2000 | |||
| 2001 | <h2><a name="_Toc138932310"><span lang=en-DE>LFPy</span></a></h2> | ||
| 2002 | |||
| 2003 | <p class=MsoNormal><span lang=en-DE>LFPy is an open-source Python module linking | ||
| 2004 | simulated neural activity with measurable brain signals. This is done by | ||
| 2005 | enabling calculation of brain signals from neural activity simulated with | ||
| 2006 | multi-compartment neuron models (single cells or networks). LFPy can be used to | ||
| 2007 | simulate brain signals like extracellular action potentials, local field | ||
| 2008 | potentials (LFP), and in vitro MEA recordings, as well as ECoG, EEG, and MEG | ||
| 2009 | signals. LFPy is well-integrated with the NEURON simulator and can, through | ||
| 2010 | LFPykit, also be used with other simulators like Arbor. Through the recently | ||
| 2011 | developed extensions hybridLFPy and LFPykernels, LFPy can also be used to | ||
| 2012 | calculate brain signals directly from point-neuron network models or | ||
| 2013 | population-based models.</span></p> | ||
| 2014 | |||
| 2015 | <h2></h2> | ||
| 2016 | |||
| 2017 | <h2><a name="_Toc138932311"><span lang=en-DE>libsonata</span></a></h2> | ||
| 2018 | |||
| 2019 | <p class=MsoNormal><span lang=en-DE>libsonata allows circuit and simulation | ||
| 2020 | config loading, node set materialisation, and access to node and edge | ||
| 2021 | populations in an efficient manner. It is generally a read-only library, but | ||
| 2022 | support for writing edge indices has been added.</span></p> | ||
| 2023 | |||
| 2024 | <h2></h2> | ||
| 2025 | |||
| 2026 | <h2><a name="_Toc138932312"><span lang=en-DE>Live Papers</span></a></h2> | ||
| 2027 | |||
| 2028 | <p class=MsoNormal><span lang=en-DE>EBRAINS Live Papers are structured and | ||
| 2029 | interactive documents that complement published scientific articles. Live | ||
| 2030 | Papers feature integrated tools and services that allow users to download, | ||
| 2031 | visualise or simulate data, models and results presented in the corresponding | ||
| 2032 | publications: Build interactive documents to showcase your data and the | ||
| 2033 | simulation or data analysis code used in your research. Easily link to | ||
| 2034 | resources in community databases such as EBRAINS, NeuroMorpho.org, ModelDB, and | ||
| 2035 | Allen Brain Atlas. Embedded, interactive visualisation of electrophysiology | ||
| 2036 | data and neuronal reconstructions. Launch EBRAINS simulation tools to explore | ||
| 2037 | single neuron models in your browser. Share live papers pre-publication with | ||
| 2038 | anonymous reviewers during peer review of your manuscript. Explore already | ||
| 2039 | published live papers, or develop your own live paper with our authoring tool.</span></p> | ||
| 2040 | |||
| 2041 | <h2></h2> | ||
| 2042 | |||
| 2043 | <h2><a name="_Toc138932313"><span lang=en-DE>Livre</span></a></h2> | ||
| 2044 | |||
| 2045 | <p class=MsoNormal><span lang=en-DE>Livre is an out-of-core, multi-node, | ||
| 2046 | multi-GPU, OpenGL volume rendering engine to visualise large volumetric | ||
| 2047 | datasets. It provides the following major features to facilitate rendering of | ||
| 2048 | large volumetric datasets: Visualisation of pre-processed UVF format volume | ||
| 2049 | datasets. Real-time voxelisation of different data sources (surface meshes, BBP | ||
| 2050 | morphologies, local field potentials, etc.) through the use of plugins. | ||
| 2051 | Multi-node, multi-GPU rendering (only sort-first rendering).</span></p> | ||
| 2052 | |||
| 2053 | <h2></h2> | ||
| 2054 | |||
| 2055 | <h2><a name="_Toc138932314"><span lang=en-DE>LocaliZoom</span></a></h2> | ||
| 2056 | |||
| 2057 | <p class=MsoNormal><span lang=en-DE>Pan-and-zoom type viewer displaying image | ||
| 2058 | series with overlaid atlas delineations. LocaliZoom is a pan-and-zoom type | ||
| 2059 | viewer displaying high-resolution image series coupled with overlaid atlas | ||
| 2060 | delineations. It has three operating modes: Display series with atlas overlay. | ||
| 2061 | Both linear and nonlinear alignments are supported (created with QuickNII or | ||
| 2062 | VisuAlign). Create or edit nonlinear alignments. Create markup which can be | ||
| 2063 | exported as MeshView point clouds or to Excel for further numerical analysis.</span></p> | ||
| 2064 | |||
| 2065 | <h2></h2> | ||
| 2066 | |||
| 2067 | <h2><a name="_Toc138932315"><span lang=en-DE>MD-IFP</span></a></h2> | ||
| 2068 | |||
| 2069 | <p class=MsoNormal><span lang=en-DE>MD-IFP is a python workflow for the | ||
| 2070 | generation and analysis of protein-ligand interaction fingerprints from | ||
| 2071 | molecular dynamics trajectories. If used for the analysis of Random | ||
| 2072 | Acceleration Molecular Dynamics (RAMD) trajectories, it can help to investigate | ||
| 2073 | dissociation mechanisms by characterising transition states as well as the | ||
| 2074 | determinants and hot-spots for dissociation. As such, the combined use of | ||
| 2075 | RAMD and MD-IFP may assist the early stages of drug discovery campaigns for the | ||
| 2076 | design of new molecules or ligand optimisation.</span></p> | ||
| 2077 | |||
| 2078 | <h2></h2> | ||
| 2079 | |||
| 2080 | <h2><a name="_Toc138932316"><span lang=en-DE>MEDUSA</span></a></h2> | ||
| 2081 | |||
| 2082 | <p class=MsoNormal><span lang=en-DE>Using a spherical meshing technique that | ||
| 2083 | decomposes each microstructural item into a set of overlapping spheres, the | ||
| 2084 | phantom construction is made very fast while reliably avoiding the collisions | ||
| 2085 | between items in the scene. This novel method is applied to the construction of | ||
| 2086 | human brain white matter microstructural components, namely axonal fibers, | ||
| 2087 | oligodendrocytes and astrocytes. The algorithm reaches high values of packing | ||
| 2088 | density and angular dispersion for the axonal fibers, even in the case of | ||
| 2089 | multiple white matter fiber populations and enables the construction of complex | ||
| 2090 | biomimicking geometries including myelinated axons, beaded axons and glial | ||
| 2091 | cells.</span></p> | ||
| 2092 | |||
| 2093 | <h2></h2> | ||
| 2094 | |||
| 2095 | <h2><a name="_Toc138932317"><span lang=en-DE>MeshView</span></a></h2> | ||
| 2096 | |||
| 2097 | <p class=MsoNormal><span lang=en-DE>MeshView is a web application for real-time | ||
| 2098 | 3D display of surface mesh data representing structural parcellations from | ||
| 2099 | volumetric atlases, such as the Waxholm Space atlas of the Sprague Dawley rat | ||
| 2100 | brain. Key features: orbiting view with toggleable opaque/transparent/hidden | ||
| 2101 | parcellation meshes, rendering user-defined cut surface as if meshes were solid | ||
| 2102 | objects, rendering point-clouds (simple type-in, or loaded from JSON). The | ||
| 2103 | coordinate system is compatible with QuickNII.</span></p> | ||
| 2104 | |||
| 2105 | <h2></h2> | ||
| 2106 | |||
| 2107 | <h2><a name="_Toc138932318"><span lang=en-DE>MIP</span></a></h2> | ||
| 2108 | |||
| 2109 | <p class=MsoNormal><span lang=en-DE>MIP is an open-source platform enabling | ||
| 2110 | federated data analysis in a secure environment for centres involved in | ||
| 2111 | collaborative initiatives. It allows users to initiate or join disease-oriented | ||
| 2112 | federations with the aim of analysing large-scale distributed clinical | ||
| 2113 | datasets. For each federation, users can create specific data models based on | ||
| 2114 | well-accepted common data elements, approved by all participating centres. MIP | ||
| 2115 | experts assist in creating the data models and facilitate coordination and | ||
| 2116 | communication among centres. They provide advice and support for data curation, | ||
| 2117 | harmonisation, and anonymisation, as well as data governance, especially with | ||
| 2118 | regards to Data Sharing Agreements and general ethical considerations.</span></p> | ||
| 2119 | |||
| 2120 | <h2></h2> | ||
| 2121 | |||
| 2122 | <h2><a name="_Toc138932319"><span lang=en-DE>Model Validation Service</span></a></h2> | ||
| 2123 | |||
| 2124 | <p class=MsoNormal><span lang=en-DE>The HBP/EBRAINS Model Validation Service is | ||
| 2125 | a set of tools for performing and tracking validation of models with respect to | ||
| 2126 | experimental data. It consists of a web API, a GUI client (the Model Catalog | ||
| 2127 | app) and a Python client. The service enables users to store, query, view and | ||
| 2128 | download: (i) model descriptions/scripts, (ii) validation test definitions and | ||
| 2129 | (iii) validation results. In a typical workflow, users will find models and | ||
| 2130 | validation tests by searching the Model Catalog (or upload their own), run the | ||
| 2131 | tests using the Python client in a Jupyter notebook, with simulations running | ||
| 2132 | locally or on HPC, and then upload the results.</span></p> | ||
| 2133 | |||
| 2134 | <h2></h2> | ||
| 2135 | |||
| 2136 | <h2><a name="_Toc138932320"><span lang=en-DE>Model Validation Test Suites</span></a></h2> | ||
| 2137 | |||
| 2138 | <p class=MsoNormal><span lang=en-DE>As part of the HBP/EBRAINS model validation | ||
| 2139 | framework, we provide a Python Software Development Kit (SDK) for model | ||
| 2140 | validation, which provides: (i) validation test definitions and (ii) interface | ||
| 2141 | definitions intended to decouple model validation from the details of model | ||
| 2142 | implementation. This more formal approach to model validation aims to make it | ||
| 2143 | quicker and easier to compare models, to provide validation test suites for | ||
| 2144 | models and to develop new validations of existing models. The SDK consists of a | ||
| 2145 | collection of Python packages all using the sciunit framework: HippoUnit, | ||
| 2146 | MorphoUnit, NetworkUnit, BasalUnit, CerebUnit, eFELUnit, HippoNetworkUnit.</span></p> | ||
| 2147 | |||
| 2148 | <h2></h2> | ||
| 2149 | |||
| 2150 | <h2><a name="_Toc138932321"><span lang=en-DE>MoDEL-CNS</span></a></h2> | ||
| 2151 | |||
| 2152 | <p class=MsoNormal><span lang=en-DE>MoDEL-CNS is a database and server platform | ||
| 2153 | designed to provide web access to atomistic MD trajectories for relevant signal | ||
| 2154 | transduction proteins. The project is part of the service for providing | ||
| 2155 | molecular simulation-based predictions for systems neurobiology of the HBP. | ||
| 2156 | MoDEL-CNS expands the MD Extended Library database of atomistic MD trajectories | ||
| 2157 | with proteins involved in CNS processes, including membrane proteins. MoDEL-CNS | ||
| 2158 | web server interface presents the resulting trajectories, analyses and protein | ||
| 2159 | properties. All data produced are available to download.</span></p> | ||
| 2160 | |||
| 2161 | <h2></h2> | ||
| 2162 | |||
| 2163 | <h2><a name="_Toc138932322"><span lang=en-DE>Modular Science</span></a></h2> | ||
| 2164 | |||
| 2165 | <p class=MsoNormal><span lang=en-DE>Modular Science is a middleware that | ||
| 2166 | provides robust deployment of complex multi-application workflows. It contains | ||
| 2167 | protocols and interfaces for multi-scale co-simulation workloads on | ||
| 2168 | high-performance computers and local hardware. It allows for synchronisation | ||
| 2169 | and coordination of individual components and contains dedicated and | ||
| 2170 | parallelised modules for data transformations between scales. Modular Science | ||
| 2171 | offers insight into both the system level and the individual subsystems to | ||
| 2172 | steer the execution, to monitor resource usage, and system health & status | ||
| 2173 | with small overheads on performance. Modular Science comes with a number of | ||
| 2174 | neuroscience co-simulation use cases including NEST-TVB, NEST-Arbor, LFPy and neurorobotics.</span></p> | ||
| 2175 | |||
| 2176 | <h2></h2> | ||
| 2177 | |||
| 2178 | <h2><a name="_Toc138932323"><span lang=en-DE>Monsteer</span></a></h2> | ||
| 2179 | |||
| 2180 | <p class=MsoNormal><span lang=en-DE>Monsteer is a library for interactive | ||
| 2181 | supercomputing in the neuroscience domain. It facilitates the coupling of | ||
| 2182 | running simulations (currently NEST) with interactive visualization and | ||
| 2183 | analysis applications. Monsteer supports streaming of simulation data to | ||
| 2184 | clients (currently limited to spikes) as well as control of the simulator from | ||
| 2185 | the clients (also known as computational steering). Monsteer's main components | ||
| 2186 | are a C++ library, a MUSIC-based application and Python helpers.</span></p> | ||
| 2187 | |||
| 2188 | <h2></h2> | ||
| 2189 | |||
| 2190 | <h2><a name="_Toc138932324"><span lang=en-DE>MorphIO</span></a></h2> | ||
| 2191 | |||
| 2192 | <p class=MsoNormal><span lang=en-DE>MorphIO is a library for reading and | ||
| 2193 | writing neuron morphology files. It supports the following formats: SWC, ASC | ||
| 2194 | (also known as neurolucida), H5. There are two APIs: mutable, for creating or | ||
| 2195 | editing morphologies, and immutable, for read-only operations. Both are | ||
| 2196 | represented in C++ and Python. Extended formats include glia, mitochondria and | ||
| 2197 | endoplasmic reticulum.</span></p> | ||
| 2198 | |||
| 2199 | <h2></h2> | ||
| 2200 | |||
| 2201 | <h2><a name="_Toc138932325"><span lang=en-DE>Morphology alignment tool</span></a></h2> | ||
| 2202 | |||
| 2203 | <p class=MsoNormal><span lang=en-DE>Starting with serial sections of a brain in | ||
| 2204 | which a complete single morphology has been labelled, the pieces of neurite | ||
| 2205 | (axons/dendrites) in each section are traced with Neurolucida or similar | ||
| 2206 | microscope-attached software. The slices are then aligned, first using an | ||
| 2207 | automated algorithm that tries to find matching pieces in adjacent sections | ||
| 2208 | (Python script), and second using a GUI-driven tool (web-based, JavaScript). | ||
| 2209 | Finally, the pieces are stitched into a complete neuron (Python script). The | ||
| 2210 | neuron and tissue volume are then registered to one of the EBRAINS-supported | ||
| 2211 | reference templates (Python script). The web-based tool can also be used to align | ||
| 2212 | slices without a neuron being present.</span></p> | ||
| 2213 | |||
| 2214 | <h2></h2> | ||
| 2215 | |||
| 2216 | <h2><a name="_Toc138932326"><span lang=en-DE>MorphTool</span></a></h2> | ||
| 2217 | |||
| 2218 | <p class=MsoNormal><span lang=en-DE>MorphTool is a python toolkit designed for | ||
| 2219 | editing morphological skeletons of cell reconstructions. It has been developed | ||
| 2220 | to provide helper programmes that perform simple tasks such as morphology | ||
| 2221 | diffing, file conversion, soma area calculation, skeleton simplification, | ||
| 2222 | process resampling, morphology repair and spatial transformations. It allows | ||
| 2223 | neuroscientists to curate and manipulate morphological reconstruction and | ||
| 2224 | correct morphological artifacts due to the manual reconstruction process.</span></p> | ||
| 2225 | |||
| 2226 | <h2></h2> | ||
| 2227 | |||
| 2228 | <h2><a name="_Toc138932327"><span lang=en-DE>Multi-Brain</span></a></h2> | ||
| 2229 | |||
| 2230 | <p class=MsoNormal><span lang=en-DE>The Multi-Brain (MB) model has the | ||
| 2231 | general aim of integrating a number of disparate image analysis components | ||
| 2232 | within a single unified generative modelling framework. Its objective is to | ||
| 2233 | achieve diffeomorphic alignment of a wide variety of medical image modalities | ||
| 2234 | into a common anatomical space. This involves the ability to construct a | ||
| 2235 | "tissue probability template" from a population of scans | ||
| 2236 | through group-wise alignment. The MB model has been shown to provide accurate | ||
| 2237 | modelling of the intensity distributions of different imaging modalities.</span></p> | ||
| 2238 | |||
| 2239 | <h2></h2> | ||
| 2240 | |||
| 2241 | <h2><a name="_Toc138932328"><span lang=en-DE>Multi-Image-OSD</span></a></h2> | ||
| 2242 | |||
| 2243 | <p class=MsoNormal><span lang=en-DE>It has browser-based classic pan and zoom | ||
| 2244 | capabilities. A collection of images can be displayed as a filmstrip (Filmstrip | ||
| 2245 | Mode) or as a table (Collection Mode) with adjustable number of rows and | ||
| 2246 | columns. The tool supports keyboard or/and mouse navigation options, as well as | ||
| 2247 | touch devices. Utilising the open standard Deep Zoom Image (DZI) format, it is | ||
| 2248 | able to efficiently visualise very large brain images in the gigapixel range, | ||
| 2249 | allowing to zoom from common, display-sized overview resolutions down to the | ||
| 2250 | microscopic resolution without downloading the underlying, very large image | ||
| 2251 | dataset.</span></p> | ||
| 2252 | |||
| 2253 | <h2></h2> | ||
| 2254 | |||
| 2255 | <h2><a name="_Toc138932329"><span lang=en-DE>MUSIC</span></a></h2> | ||
| 2256 | |||
| 2257 | <p class=MsoNormal><span lang=en-DE>MUSIC is a communication framework in the | ||
| 2258 | domain of computational neuroscience and neuromorphic computing which enables | ||
| 2259 | co-simulations, where components of a model are simulated by different | ||
| 2260 | simulators or hardware. It consists of an API and C++ library which can be | ||
| 2261 | linked into existing software with minor modifications. MUSIC enables the | ||
| 2262 | communication of neuronal spike events, continuous values and text messages | ||
| 2263 | while hiding the complexity of data distribution over ranks, as well as | ||
| 2264 | scheduling of communication in the face of loops. MUSIC is light-weight with a | ||
| 2265 | simple API.</span></p> | ||
| 2266 | |||
| 2267 | <h2></h2> | ||
| 2268 | |||
| 2269 | <h2><a name="_Toc138932330"><span lang=en-DE>NEAT</span></a></h2> | ||
| 2270 | |||
| 2271 | <p class=MsoNormal><span lang=en-DE>NEAT allows for the convenient definition | ||
| 2272 | of morphological neuron models. These models can be simulated through an | ||
| 2273 | interface with the NEURON simulator or analysed with two classical methods: (i) | ||
| 2274 | the separation-of-variables method to obtain impedance kernels as a | ||
| 2275 | superposition of exponentials and (ii) Koch's method to compute impedances with | ||
| 2276 | linearised ion channels analytically in the frequency domain. NEAT also | ||
| 2277 | implements the neural evaluation tree framework and an associated C++ simulator | ||
| 2278 | to analyse sub-unit independence. Finally, NEAT implements a new method to | ||
| 2279 | simplify morphological neuron models into models with few compartments, which | ||
| 2280 | can also be simulated with NEURON.</span></p> | ||
| 2281 | |||
| 2282 | <h2></h2> | ||
| 2283 | |||
| 2284 | <h2><a name="_Toc138932331"><span lang=en-DE>Neo</span></a></h2> | ||
| 2285 | |||
| 2286 | <p class=MsoNormal><span lang=en-DE>Neo implements a hierarchical data model | ||
| 2287 | well adapted to intracellular and extracellular electrophysiology and EEG data. | ||
| 2288 | It improves interoperability between Python tools for analysing, visualising | ||
| 2289 | and generating electrophysiology data by providing a common, shared object | ||
| 2290 | model. It reads a wide range of neurophysiology file formats, including Spike2, | ||
| 2291 | NeuroExplorer, AlphaOmega, Axon, Blackrock, Plexon, Tdt and Igor Pro and writes | ||
| 2292 | to open formats such as NWB and NIX. Neo objects behave just like normal NumPy | ||
| 2293 | arrays, but with additional metadata, checks for dimensional consistency and | ||
| 2294 | automatic unit conversion. Neo has been endorsed as a community standard by the | ||
| 2295 | International Neuroinformatics Coordinating Facility (INCF).</span></p> | ||
| 2296 | |||
| 2297 | <h2></h2> | ||
| 2298 | |||
| 2299 | <h2><a name="_Toc138932332"><span lang=en-DE>Neo Viewer</span></a></h2> | ||
| 2300 | |||
| 2301 | <p class=MsoNormal><span lang=en-DE>Neo Viewer consists of a REST-API and a | ||
| 2302 | Javascript component that can be embedded in any web page. Electrophysiology | ||
| 2303 | traces can be zoomed, scrolled and saved as images. Individual points can be | ||
| 2304 | measured off the graphs. Neo Viewer can visualise data from most of the | ||
| 2305 | widely-used file formats in neurophysiology, including community standards such | ||
| 2306 | as NWB.</span></p> | ||
| 2307 | |||
| 2308 | <h2></h2> | ||
| 2309 | |||
| 2310 | <h2><a name="_Toc138932333"><span lang=en-DE>NEST Desktop</span></a></h2> | ||
| 2311 | |||
| 2312 | <p class=MsoNormal><span lang=en-DE>NEST Desktop comprises of GUI components | ||
| 2313 | for creating and configuring network models, running simulations, and | ||
| 2314 | visualising and analysing simulation results. NEST Desktop allows students to | ||
| 2315 | explore important concepts in computational neuroscience without the need to | ||
| 2316 | first learn a simulator control language. This is done by offering a | ||
| 2317 | server-side NEST simulator, which can also be installed as a package together | ||
| 2318 | with a web server providing NEST Desktop as visual front-end. Besides local | ||
| 2319 | installations, distributed setups can be installed, and direct use through | ||
| 2320 | EBRAINS is possible. NEST Desktop has also been used as a modelling front-end | ||
| 2321 | of the Neurorobotics Platform.</span></p> | ||
| 2322 | |||
| 2323 | <h2></h2> | ||
| 2324 | |||
| 2325 | <h2><a name="_Toc138932334"><span lang=en-DE>NEST Simulator</span></a></h2> | ||
| 2326 | |||
| 2327 | <p class=MsoNormal><span lang=en-DE>NEST is used in computational neuroscience | ||
| 2328 | to model and study behaviour of large networks of neurons. The models describe | ||
| 2329 | single neuron and synapse behaviour and their connections. Different mechanisms | ||
| 2330 | of plasticity can be used to investigate artificial learning and help to shed | ||
| 2331 | light on the fundamental principles of how the brain works. NEST offers | ||
| 2332 | convenient and efficient commands to define and connect large networks, ranging | ||
| 2333 | from algorithmically determined connections to data-driven connectivity. Create | ||
| 2334 | connections between neurons using numerous synapse models from STDP to gap | ||
| 2335 | junctions.</span></p> | ||
| 2336 | |||
| 2337 | <h2></h2> | ||
| 2338 | |||
| 2339 | <h2><a name="_Toc138932335"><span lang=en-DE>NESTML</span></a></h2> | ||
| 2340 | |||
| 2341 | <p class=MsoNormal><span lang=en-DE>NESTML is a domain-specific language for | ||
| 2342 | neuron and synapse models. These dynamical models can be used in simulations of | ||
| 2343 | brain activity on several platforms, in particular NEST Simulator. NESTML | ||
| 2344 | combines an easy to understand, yet powerful syntax with good simulation | ||
| 2345 | performance by means of code generation (C++ for NEST Simulator), but flexibly | ||
| 2346 | supports other simulation engines including neuromorphic hardware.</span></p> | ||
| 2347 | |||
| 2348 | <h2></h2> | ||
| 2349 | |||
| 2350 | <h2><a name="_Toc138932336"><span lang=en-DE>NetPyNE</span></a></h2> | ||
| 2351 | |||
| 2352 | <p class=MsoNormal><span lang=en-DE>NetPyNE provides programmatic and graphical | ||
| 2353 | interfaces to develop data-driven multiscale brain neural circuit models using | ||
| 2354 | Python and NEURON. Users can define models using a standardised | ||
| 2355 | JSON-compatible, rule-based, declarative format. Based on these specifications, | ||
| 2356 | NetPyNE will generate the network in CoreNEURON, enabling users to run | ||
| 2357 | parallel simulations, optimise and explore network parameters through automated | ||
| 2358 | batch runs, and use built-in functions for visualisation and analysis (e.g., | ||
| 2359 | generate connectivity matrices, voltage traces, spike raster plots, local field | ||
| 2360 | potentials and information theoretic measures). NetPyNE also facilitates model | ||
| 2361 | sharing by exporting and importing standardised formats: NeuroML and SONATA.</span></p> | ||
| 2362 | |||
| 2363 | <h2></h2> | ||
| 2364 | |||
| 2365 | <h2><a name="_Toc138932337"><span lang=en-DE>NEURO-CONNECT</span></a></h2> | ||
| 2366 | |||
| 2367 | <p class=MsoNormal><span lang=en-DE>The NEURO-CONNECT platform provides | ||
| 2368 | functions to integrate multimodal brain imaging information in a unifying | ||
| 2369 | feature space. Thus, Surface Based Morphometry (SBM), Functional Magnetic | ||
| 2370 | Resonance Imaging (fMRI) and Diffusion Tensor Imaging (DTI) can be combined and | ||
| 2371 | visualised at the whole-brain scale. Moreover, multiple brain atlases are | ||
| 2372 | aligned to match research outcomes to neuroanatomical entities. The datasets | ||
| 2373 | are appended with openMINDS metadata and thus enable integrative data analysis | ||
| 2374 | and machine learning.</span></p> | ||
| 2375 | |||
| 2376 | <h2></h2> | ||
| 2377 | |||
| 2378 | <h2><a name="_Toc138932338"><span lang=en-DE>NeuroFeatureExtract</span></a></h2> | ||
| 2379 | |||
| 2380 | <p class=MsoNormal><span lang=en-DE>The NeuroFeatureExtract is a web | ||
| 2381 | application that allows the users to extract an ensemble of | ||
| 2382 | electrophysiological properties from voltage traces recorded upon electrical | ||
| 2383 | stimulation of neuronal cells. The main outcome of the application is the | ||
| 2384 | generation of two files Ð features.json and protocol.json Ð that can be used | ||
| 2385 | for later analysis and model parameter optimisations via the Hodgkin-Huxley | ||
| 2386 | Neuron Builder application.</span></p> | ||
| 2387 | |||
| 2388 | <h2></h2> | ||
| 2389 | |||
| 2390 | <h2><a name="_Toc138932339"><span lang=en-DE>NeurogenPy</span></a></h2> | ||
| 2391 | |||
| 2392 | <p class=MsoNormal><span lang=en-DE>NeurogenPy is a Python package for working | ||
| 2393 | with Bayesian networks. It is focused on the analysis of gene expression data | ||
| 2394 | and learning of gene regulatory networks, modelled as Bayesian networks. For | ||
| 2395 | that reason, at the moment, only the Gaussian and fully discrete cases are | ||
| 2396 | supported. The package provides different structure learning algorithms, | ||
| 2397 | parameters estimation and input/output formats. For some of them, already | ||
| 2398 | existing implementations have been used, with bnlearn, pgmpy, networkx and | ||
| 2399 | igraph being the most relevant used packages. This project has been conceived | ||
| 2400 | to be included as a plugin in the EBRAINS interactive atlas viewer, but it may | ||
| 2401 | be used for other purposes.</span></p> | ||
| 2402 | |||
| 2403 | <h2></h2> | ||
| 2404 | |||
| 2405 | <h2><a name="_Toc138932340"><span lang=en-DE>NeuroM</span></a></h2> | ||
| 2406 | |||
| 2407 | <p class=MsoNormal><span lang=en-DE>NeuroM is a Python toolkit for the analysis | ||
| 2408 | and processing of neuron morphologies. It allows the extraction of various | ||
| 2409 | information about morphologies, e.g., the segment lengths of a morphology via | ||
| 2410 | the segment_lengths feature. More than 50 features that can be extracted.</span></p> | ||
| 2411 | |||
| 2412 | <h2></h2> | ||
| 2413 | |||
| 2414 | <h2><a name="_Toc138932341"><span lang=en-DE>Neuromorphic Computing Job Queue</span></a></h2> | ||
| 2415 | |||
| 2416 | <p class=MsoNormal><span lang=en-DE>The Neuromorphic Computing Job Queue allows | ||
| 2417 | users to run simulations/emulations on the SpiNNaker and BrainScaleS systems by | ||
| 2418 | submitting a PyNN script and associated job configuration information to a | ||
| 2419 | central queue. The system consists of a web API, a GUI client (the Job Manager | ||
| 2420 | app) and a Python client. Users can submit scripts stored locally on their own | ||
| 2421 | machine, in a Git repository, in the KG, or in EBRAINS Collaboratory storage | ||
| 2422 | (Drive/Bucket). Users can track the progress of their job, and view and/or | ||
| 2423 | download the results, log files, and provenance information.</span></p> | ||
| 2424 | |||
| 2425 | <h2></h2> | ||
| 2426 | |||
| 2427 | <h2><a name="_Toc138932342"><span lang=en-DE>Neuronize v2</span></a></h2> | ||
| 2428 | |||
| 2429 | <p class=MsoNormal><span lang=en-DE>Neuronize v2 has been developed to generate | ||
| 2430 | a connected neural 3D mesh. If the input is a neuron tracing, it generates a 3D | ||
| 2431 | mesh from it, including the shape of the soma. If the input is data extracted | ||
| 2432 | with Imaris Filament Tracer (a set of unconnected meshes of a neuron), | ||
| 2433 | Neuronize v2 generates a single connected 3D mesh of the whole neuron (also | ||
| 2434 | generating the soma) and provides its neural tracing, which can then be | ||
| 2435 | imported into tools such as Neurolucida, facilitating the interoperability of | ||
| 2436 | two of the most widely used proprietary tools.</span></p> | ||
| 2437 | |||
| 2438 | <h2></h2> | ||
| 2439 | |||
| 2440 | <h2><a name="_Toc138932343"><span lang=en-DE>NeuroR</span></a></h2> | ||
| 2441 | |||
| 2442 | <p class=MsoNormal><span lang=en-DE>NeuroR is a collection of tools to repair | ||
| 2443 | morphologies. This includes cut plane detection, sanitisation (removing | ||
| 2444 | unifurcations, invalid soma counts, short segments) and 'unravelling': the | ||
| 2445 | action of 'stretching' the cell that has been shrunk due to the dehydratation | ||
| 2446 | caused by the slicing.</span></p> | ||
| 2447 | |||
| 2448 | <h2></h2> | ||
| 2449 | |||
| 2450 | <h2><a name="_Toc138932344"><span lang=en-DE>Neurorobotics Platform</span></a></h2> | ||
| 2451 | |||
| 2452 | <p class=MsoNormal><span lang=en-DE>The Neurorobotics Platform (NRP) is an | ||
| 2453 | integrative simulation framework that enables in silico experimentation and | ||
| 2454 | embodiment of brain models inside virtual agents interacting with realistic | ||
| 2455 | simulated environments. Entirely Open Source, it offers a browser-based | ||
| 2456 | graphical user interface for online access. It can be installed locally (Docker | ||
| 2457 | or source install). It can be interfaced with multiple spike-based neuromorphic | ||
| 2458 | chips (SpiNNaker, Intel Loihi). You can download and install the NRP locally | ||
| 2459 | for maximum experimental convenience or access it online in order to leverage | ||
| 2460 | the HBP High Performance Computing infrastructure for large-scale experiments.</span></p> | ||
| 2461 | |||
| 2462 | <h2></h2> | ||
| 2463 | |||
| 2464 | <h2><a name="_Toc138932345"><span lang=en-DE>Neurorobotics Platform Robot | ||
| 2465 | Designer</span></a></h2> | ||
| 2466 | |||
| 2467 | <p class=MsoNormal><span lang=en-DE>The Robot Designer is a plugin for the 3D | ||
| 2468 | modeling suite Blender that enables researchers to design morphologies for | ||
| 2469 | simulation experiments in, particularly but not restricted to, the | ||
| 2470 | Neurorobotics Platform. This plugin helps researchers design and parameterize | ||
| 2471 | models with a Graphical User Interface, simplifying and speeding up the design | ||
| 2472 | process.cess. It includes design capabilities for musculoskeletal bodies as | ||
| 2473 | well as robotic systems, fostering not only the understanding of biological | ||
| 2474 | motions and enabling better robot designs, but also enabling true Neurorobotic | ||
| 2475 | experiments that consist of biomimetic models such as tendon-driven robots or a | ||
| 2476 | transition between biology and technology.</span></p> | ||
| 2477 | |||
| 2478 | <h2></h2> | ||
| 2479 | |||
| 2480 | <h2><a name="_Toc138932346"><span lang=en-DE>NeuroScheme</span></a></h2> | ||
| 2481 | |||
| 2482 | <p class=MsoNormal><span lang=en-DE>NeuroScheme uses schematic | ||
| 2483 | representations, such as icons and glyphs, to encode attributes of neural | ||
| 2484 | structures (neurons, columns, layers, populations, etc.), alleviating problems | ||
| 2485 | with displaying, navigating and analysing large datasets. It manages | ||
| 2486 | hierarchically organised neural structures</span><span lang=en-DE | ||
| 2487 | style='font-family:"Times New Roman",serif'> </span><span lang=en-DE>users can | ||
| 2488 | navigate through the levels of the hierarchy and hone in on and explore the | ||
| 2489 | data at their desired level of detail. NeuroScheme has currently two built-in | ||
| 2490 | "domains", which specify entities, attributes and | ||
| 2491 | relationships used for specific use cases: the 'cortex' domain, designed for | ||
| 2492 | navigating and analysing cerebral cortex structures</span><span lang=en-DE | ||
| 2493 | style='font-family:"Times New Roman",serif'> </span><span lang=en-DE>and the | ||
| 2494 | 'congen' domain, used to define the properties of cells and connections, create | ||
| 2495 | circuits of neurons and build populations.</span></p> | ||
| 2496 | |||
| 2497 | <h2></h2> | ||
| 2498 | |||
| 2499 | <h2><a name="_Toc138932347"><span lang=en-DE>NeuroSuites</span></a></h2> | ||
| 2500 | |||
| 2501 | <p class=MsoNormal><span lang=en-DE>NeuroSuites is a web-based platform | ||
| 2502 | designed to handle large-scale, high-dimensional data in the field of | ||
| 2503 | neuroscience. It offers neuroscience-oriented applications and tools for data | ||
| 2504 | analysis, machine learning and visualisation, while also providing | ||
| 2505 | general-purpose tools for data scientists in other research fields. NeuroSuites | ||
| 2506 | requires no software installation and runs on the backend of a server, making | ||
| 2507 | it accessible from various devices. The platform's main strengths include its | ||
| 2508 | defined architecture, ability to handle complex neuroscience data and the | ||
| 2509 | variety of available tools.</span></p> | ||
| 2510 | |||
| 2511 | <h2></h2> | ||
| 2512 | |||
| 2513 | <h2><a name="_Toc138932348"><span lang=en-DE>NeuroTessMesh</span></a></h2> | ||
| 2514 | |||
| 2515 | <p class=MsoNormal><span lang=en-DE>NeuroTessMesh takes morphological tracings | ||
| 2516 | of cells acquired by neuroscientists and generates 3D models that approximate | ||
| 2517 | the neuronal membrane. The resolution of the models can be adapted at the time | ||
| 2518 | of visualisation. You can colour-code different parts of a morphology, | ||
| 2519 | differentiating relevant morphological variables or even neuronal activity. | ||
| 2520 | NeuroTessMesh copes with many of the problems associated with the visualisation | ||
| 2521 | of neural circuits consisting of large numbers of cells. It facilitates the | ||
| 2522 | recovery and visualisation of the 3D geometry of cells included in databases, | ||
| 2523 | such as NeuroMorpho, and allows to approximate missing information such as the | ||
| 2524 | soma's morphology.</span></p> | ||
| 2525 | |||
| 2526 | <h2></h2> | ||
| 2527 | |||
| 2528 | <h2><a name="_Toc138932349"><span lang=en-DE>NMODL Framework</span></a></h2> | ||
| 2529 | |||
| 2530 | <p class=MsoNormal><span lang=en-DE>NMODL Framework is designed with | ||
| 2531 | modern compiler and code generation techniques. It provides modular tools for | ||
| 2532 | parsing, analysing and transforming NMODL it provides an easy to use, high | ||
| 2533 | level Python API</span><span lang=en-DE style='font-family:"Times New Roman",serif'> | ||
| 2534 | </span><span lang=en-DE> it generates optimised code for modern compute architectures | ||
| 2535 | including CPUs and GPUs</span><span lang=en-DE style='font-family:"Times New Roman",serif'> | ||
| 2536 | </span><span lang=en-DE> it provides flexibility to implement new simulator | ||
| 2537 | backends and it supports full NMODL specification.</span></p> | ||
| 2538 | |||
| 2539 | <h2></h2> | ||
| 2540 | |||
| 2541 | <h2><a name="_Toc138932350"><span lang=en-DE>NSuite</span></a></h2> | ||
| 2542 | |||
| 2543 | <p class=MsoNormal><span lang=en-DE>NSuite is a framework for maintaining and | ||
| 2544 | running benchmarks and validation tests for multi-compartment neural network | ||
| 2545 | simulations on HPC systems. NSuite automates the process of building simulation | ||
| 2546 | engines, and running benchmarks and validation tests. NSuite is specifically | ||
| 2547 | designed to allow easy deployment on HPC systems in testing workflows, such as | ||
| 2548 | benchmark-driven development or continuous integration. The development of | ||
| 2549 | NSuite has been driven by the need (1) for a definitive resource for comparing | ||
| 2550 | performance and correctness of simulation engines on HPC systems, (2) to verify | ||
| 2551 | the performance and correctness of individual simulation engines as they change | ||
| 2552 | over time and (3) to test that changes to an HPC system do not cause | ||
| 2553 | performance or correctness regressions in simulation engines. The framework | ||
| 2554 | currently supports the simulation engines Arbor, NEURON, and CoreNeuron, while | ||
| 2555 | allowing other simulation engines to be added.</span></p> | ||
| 2556 | |||
| 2557 | <p class=MsoNormal></p> | ||
| 2558 | |||
| 2559 | <p class=MsoNormal><span lang=en-DE>Nutil</span></p> | ||
| 2560 | |||
| 2561 | <p class=MsoNormal><span lang=en-DE>Nutil is a pre- and post-processing toolbox | ||
| 2562 | that enables analysis of large collections of histological images of rodent | ||
| 2563 | brain sections. The software is open source and has both a graphical user | ||
| 2564 | interface for specifying the input and output parameters and a command-line | ||
| 2565 | execution option for batch processing. Nutil includes a transformation tool for | ||
| 2566 | automated scaling, rotation, mirroring and renaming of image files, a file | ||
| 2567 | format converter, a simple resize tool and a post-processing method for | ||
| 2568 | quantifying and localising labelled features based on a reference atlas of the | ||
| 2569 | brain (mouse or rat). The quantification method requires input from customised | ||
| 2570 | brain atlas maps generated with the QuickNII software, and segmentations | ||
| 2571 | generated with ilastik or another image analysis tool. The output from Nutil | ||
| 2572 | include csv reports, 3D point cloud coordinate files and atlas map images | ||
| 2573 | superimposed with colour-coded objects.</span></p> | ||
| 2574 | |||
| 2575 | <h2></h2> | ||
| 2576 | |||
| 2577 | <h2><a name="_Toc138932351"><span lang=en-DE>ODE-toolbox</span></a></h2> | ||
| 2578 | |||
| 2579 | <p class=MsoNormal><span lang=en-DE>ODE-toolbox is a Python package that | ||
| 2580 | assists in solver benchmarking, and recommends solvers on the basis of a set of | ||
| 2581 | user-configurable heuristics. For all dynamical equations that admit an | ||
| 2582 | analytic solution, ODE-toolbox generates propagator matrices that allow the | ||
| 2583 | solution to be calculated at machine precision. For all others, first-order | ||
| 2584 | update expressions are returned based on the Jacobian matrix. In addition to | ||
| 2585 | continuous dynamics, discrete events can be used to model instantaneous changes | ||
| 2586 | in system state, such as a neuronal action potential. These can be generated by | ||
| 2587 | the system under test as well as applied as external stimuli, making | ||
| 2588 | ODE-toolbox particularly well-suited for applications in computational | ||
| 2589 | neuroscience.</span></p> | ||
| 2590 | |||
| 2591 | <h2></h2> | ||
| 2592 | |||
| 2593 | <h2><a name="_Toc138932352"><span lang=en-DE>openMINDS</span></a></h2> | ||
| 2594 | |||
| 2595 | <p class=MsoNormal><span lang=en-DE>openMINDS is composed of: (i) integrated | ||
| 2596 | metadata models adoptable by any graph database system (GDBS), (ii) a set of | ||
| 2597 | libraries of serviceable metadata instances with external resource references | ||
| 2598 | for local and global knowledge integration, and (iii) supportive tooling for | ||
| 2599 | handling the metadata models and instances. Moreover, the framework provides | ||
| 2600 | machine-readable mappings to other standardisation efforts (e.g., schema.org). | ||
| 2601 | With this, openMINDS is a unique and powerful metadata framework for flexible | ||
| 2602 | knowledge integration within and beyond any GDBS.</span></p> | ||
| 2603 | |||
| 2604 | <h2></h2> | ||
| 2605 | |||
| 2606 | <h2><a name="_Toc138932353"><span lang=en-DE>openMINDS metadata for TVB-ready | ||
| 2607 | data</span></a></h2> | ||
| 2608 | |||
| 2609 | <p class=MsoNormal><span lang=en-DE>Jupyter Python notebook with code and | ||
| 2610 | commentaries for creating openMINDS metadata version 1.0 in JSON-LD format for | ||
| 2611 | ingestion of TVB-ready data in EBRAINS Knowledge Graph.</span></p> | ||
| 2612 | |||
| 2613 | <h2></h2> | ||
| 2614 | |||
| 2615 | <h2><a name="_Toc138932354"><span lang=en-DE>PCI</span></a></h2> | ||
| 2616 | |||
| 2617 | <p class=MsoNormal><span lang=en-DE>The notebook allows the computation of the | ||
| 2618 | PCI Lempel-Ziv and PCI state transitions. In order to run the examples, a wake | ||
| 2619 | and sleep data set needs to be provided in the Python-MNE format.</span></p> | ||
| 2620 | |||
| 2621 | <h2></h2> | ||
| 2622 | |||
| 2623 | <h2><a name="_Toc138932355"><span lang=en-DE>PIPSA</span></a></h2> | ||
| 2624 | |||
| 2625 | <p class=MsoNormal><span lang=en-DE>PIPSA enables the comparison of the | ||
| 2626 | electrostatic interaction properties of proteins. It permits the classification | ||
| 2627 | of proteins according to their interaction properties. PIPSA may assist in | ||
| 2628 | function assignment, the estimation of binding properties and enzyme kinetic | ||
| 2629 | parameters.</span></p> | ||
| 2630 | |||
| 2631 | <h2></h2> | ||
| 2632 | |||
| 2633 | <h2><a name="_Toc138932356"><span lang=en-DE>PoSCE</span></a></h2> | ||
| 2634 | |||
| 2635 | <p class=MsoNormal><span lang=en-DE>PoSCE is a functional connectivity | ||
| 2636 | estimator of fMRI time-series. It relies on the Riemannian geometry of | ||
| 2637 | covariances and integrates prior knowledge of covariance distribution over a | ||
| 2638 | population.</span></p> | ||
| 2639 | |||
| 2640 | <h2></h2> | ||
| 2641 | |||
| 2642 | <h2><a name="_Toc138932357"><span lang=en-DE>Provenance API</span></a></h2> | ||
| 2643 | |||
| 2644 | <p class=MsoNormal><span lang=en-DE>The EBRAINS Provenance API is a web service | ||
| 2645 | to facilitate working with computational provenance metadata. Metadata are | ||
| 2646 | stored in the EBRAINS Knowledge Graph (KG) using openMINDS schemas. The | ||
| 2647 | Provenance API provides a somewhat simplified interface compared to accessing | ||
| 2648 | the KG directly and performs checks of metadata consistency. The service covers | ||
| 2649 | workflows involving simulation, data analysis, visualisation, optimisation, | ||
| 2650 | data movement and model validation.</span></p> | ||
| 2651 | |||
| 2652 | <h2></h2> | ||
| 2653 | |||
| 2654 | <h2><a name="_Toc138932358"><span lang=en-DE>PyNN</span></a></h2> | ||
| 2655 | |||
| 2656 | <p class=MsoNormal><span lang=en-DE>A model description written with the PyNN | ||
| 2657 | API and the Python programming language runs on any simulator that PyNN | ||
| 2658 | supports (currently NEURON, NEST and Brian 2) as well as on the BrainScaleS | ||
| 2659 | and SpiNNaker neuromorphic hardware systems. PyNN provides a library of | ||
| 2660 | standard neuron, synapse and synaptic plasticity models, verified to work the | ||
| 2661 | same on different simulators. PyNN also provides commonly used connectivity | ||
| 2662 | algorithms (e.g. all-to-all, random, distance-dependent, small-world) but makes | ||
| 2663 | it easy to provide your own connectivity in a simulator-independent way. PyNN | ||
| 2664 | transparently supports distributed simulations using MPI.</span></p> | ||
| 2665 | |||
| 2666 | <h2></h2> | ||
| 2667 | |||
| 2668 | <h2><a name="_Toc138932359"><span lang=en-DE>Pyramidal Explorer</span></a></h2> | ||
| 2669 | |||
| 2670 | <p class=MsoNormal><span lang=en-DE>PyramidalExplorer is a tool to | ||
| 2671 | interactively explore and reveal the detailed organisation of the microanatomy | ||
| 2672 | of pyramidal neurons with functionally related models. Possible regional | ||
| 2673 | differences in the pyramidal cell architecture can be interactively discovered | ||
| 2674 | by combining quantitative morphological information about the structure of the | ||
| 2675 | cell with implemented functional models. The key contribution of this tool is the | ||
| 2676 | morpho-functional oriented design, allowing the user to navigate within the 3D | ||
| 2677 | dataset, filter and perform content-based retrieval operations to find the | ||
| 2678 | spines that are alike and dissimilar within the neuron, according to particular | ||
| 2679 | morphological or functional variables.</span></p> | ||
| 2680 | |||
| 2681 | <h2></h2> | ||
| 2682 | |||
| 2683 | <h2><a name="_Toc138932360"><span lang=en-DE>QCAlign software</span></a></h2> | ||
| 2684 | |||
| 2685 | <p class=MsoNormal><span lang=en-DE>The QUINT workflow enables spatial analysis | ||
| 2686 | of labelling in series of brain sections from mouse and rat based on | ||
| 2687 | registration to a reference brain atlas. The QCAlign software supports the use | ||
| 2688 | of QUINT for high-throughput studies by providing information about: 1. The | ||
| 2689 | quality of the section images used as input to the QUINT workflow. 2. The | ||
| 2690 | quality of the atlas registration performed in the QUINT workflow. 3. QCAlign | ||
| 2691 | also makes it easier for the user to explore the atlas hierarchy and decide on | ||
| 2692 | a customised hierarchy level to use for the investigation</span></p> | ||
| 2693 | |||
| 2694 | <h2></h2> | ||
| 2695 | |||
| 2696 | <h2><a name="_Toc138932361"><span lang=en-DE>QuickNII</span></a></h2> | ||
| 2697 | |||
| 2698 | <p class=MsoNormal><span lang=en-DE>QuickNII is a tool for user-guided affine | ||
| 2699 | registration (anchoring) of 2D experimental image data, typically high | ||
| 2700 | resolution microscopic images, to 3D atlas reference space, facilitating data | ||
| 2701 | integration through standardised coordinate systems. Key features: Generate | ||
| 2702 | user-defined cut planes through the atlas templates, matching the orientation | ||
| 2703 | of the cut plane of the 2D experimental image data, as a first step towards | ||
| 2704 | anchoring of images to the relevant atlas template. Propagate spatial | ||
| 2705 | transformations across series of sections following anchoring of selected | ||
| 2706 | images.</span></p> | ||
| 2707 | |||
| 2708 | <h2></h2> | ||
| 2709 | |||
| 2710 | <h2><a name="_Toc138932362"><span lang=en-DE>Quota Manager</span></a></h2> | ||
| 2711 | |||
| 2712 | <p class=MsoNormal><span lang=en-DE>The Quota Manager enables each EBRAINS | ||
| 2713 | service to manage user quotas for resources EBRAINS users consume in their | ||
| 2714 | respective services. The goal is to encourage the responsible use of resources. | ||
| 2715 | It is recommended that all users (except possibly guest accounts) are provided | ||
| 2716 | with a default quota, and that specific users have the option of receiving | ||
| 2717 | larger quotas based on their affiliation, role or motivated requests.</span></p> | ||
| 2718 | |||
| 2719 | <h2></h2> | ||
| 2720 | |||
| 2721 | <h2><a name="_Toc138932363"><span lang=en-DE>RateML</span></a></h2> | ||
| 2722 | |||
| 2723 | <p class=MsoNormal><span lang=en-DE>RateML enables users to generate | ||
| 2724 | whole-brain network models from a succinct declarative description, in which | ||
| 2725 | the mathematics of the model are described without specifying how their | ||
| 2726 | simulation should be implemented. RateML builds on NeuroML's Low Entropy Model | ||
| 2727 | Specification (LEMS), an XML-based language for specifying models of dynamical systems, | ||
| 2728 | allowing descriptions of neural mass and discretized neural field models, as | ||
| 2729 | implemented by the TVB simulator. The end user describes their model's | ||
| 2730 | mathematics once and generates and runs code for different languages, targeting | ||
| 2731 | both CPUs for fast single simulations and GPUs for parallel ensemble | ||
| 2732 | simulations.</span></p> | ||
| 2733 | |||
| 2734 | <h2></h2> | ||
| 2735 | |||
| 2736 | <h2><a name="_Toc138932364"><span lang=en-DE>Region-wise CBPP using the Julich | ||
| 2737 | BrainÊCytoarchitectonic Atlas</span></a></h2> | ||
| 2738 | |||
| 2739 | <p class=MsoNormal><span lang=en-DE>Many studies have been investigating the | ||
| 2740 | relationships between interindividual variability in brain regions' | ||
| 2741 | connectivity and behavioural phenotypes, by utilising connectivity-based | ||
| 2742 | prediction models. Recently, we demonstrated that an approach based on the | ||
| 2743 | combination of whole-brain and region-wise CBPP can provide important insight | ||
| 2744 | into the predictive model, and hence in brain-behaviour relationships, by | ||
| 2745 | offering interpretable patterns. Here, we applied this approach using the | ||
| 2746 | Julich Brain Cytoarchitectonic Atlas with the resting-state functional | ||
| 2747 | connectivity and psychometric variables from the Human Connectome Project | ||
| 2748 | dataset, illustrating each brain region's predictive power for a range of | ||
| 2749 | psychometric variables. As a result, a psychometric prediction profile was | ||
| 2750 | established for each brain region, which can be validated against brain mapping | ||
| 2751 | literature.</span></p> | ||
| 2752 | |||
| 2753 | <h2></h2> | ||
| 2754 | |||
| 2755 | <h2><a name="_Toc138932365"><span lang=en-DE>RRI Capacity Development Resources</span></a></h2> | ||
| 2756 | |||
| 2757 | <p class=MsoNormal><span lang=en-DE>A series of training resources developed to | ||
| 2758 | enable anticipation, critical reflection and public engagement/deliberation of | ||
| 2759 | societal consequences of brain research and innovation activities. These | ||
| 2760 | resources were designed primarily for HBP researchers and EBRAINS leadership | ||
| 2761 | and management, involving EBRAINS data and infrastructure providers. However, | ||
| 2762 | they are also useful for engaging the wider public with RRI. The resources are | ||
| 2763 | based on the legacy of over 10 years of research and activities of the ethics | ||
| 2764 | and society-team in the HBP. They cover important RRI-related topics on | ||
| 2765 | neuroethics, data governance, dual-use, public engagement and foresight, | ||
| 2766 | diversity, search integrity etc.</span></p> | ||
| 2767 | |||
| 2768 | <h2></h2> | ||
| 2769 | |||
| 2770 | <h2><a name="_Toc138932366"><span lang=en-DE>rsHRF</span></a></h2> | ||
| 2771 | |||
| 2772 | <p class=MsoNormal><span lang=en-DE>This toolbox is aimed to retrieve the | ||
| 2773 | onsets of pseudo-events triggering an hemodynamic response from resting state | ||
| 2774 | fMRI BOLD signals. It is based on point process theory and fits a model to | ||
| 2775 | retrieve the optimal lag between the events and the HRF onset, as well as the | ||
| 2776 | HRF shape, using different shape parameters or combinations of basis functions. | ||
| 2777 | Once the HRF has been retrieved for each voxel/vertex, it can be deconvolved | ||
| 2778 | from the time series (for example, to improve lag-based connectivity | ||
| 2779 | estimates), or one can map the shape parameters everywhere in the brain | ||
| 2780 | (including white matter) and use it as a pathophysiological indicator.</span></p> | ||
| 2781 | |||
| 2782 | <h2></h2> | ||
| 2783 | |||
| 2784 | <h2><a name="_Toc138932367"><span lang=en-DE>RTNeuron</span></a></h2> | ||
| 2785 | |||
| 2786 | <p class=MsoNormal><span lang=en-DE>The main utility of RTNeuron is twofold: | ||
| 2787 | (i) the interactive visual inspection of structural and functional features of | ||
| 2788 | the cortical column model and (ii) the generation of high-quality movies and | ||
| 2789 | images for presentations and publications.RTNeuron provides a C++ library with | ||
| 2790 | an OpenGL-based rendering backend, a Python wrapping and a Python application | ||
| 2791 | called rtneuron. RTNeuron is only supported in GNU/Linux systems. However, it | ||
| 2792 | should also be possible to build it on Windows systems. For OS/X it may be | ||
| 2793 | quite challenging and require changes in OpenGL-related code to get it working.</span></p> | ||
| 2794 | |||
| 2795 | <h2></h2> | ||
| 2796 | |||
| 2797 | <h2><a name="_Toc138932368"><span lang=en-DE>sbs: Spike-based Sampling</span></a></h2> | ||
| 2798 | |||
| 2799 | <p class=MsoNormal><span lang=en-DE>Spike-based sampling, sbs, is a software | ||
| 2800 | suite that takes care of calibrating spiking neurons for given target | ||
| 2801 | distributions and allows the evaluation of these distributions as they are | ||
| 2802 | produced by stochastic spiking networks.</span></p> | ||
| 2803 | |||
| 2804 | <h2></h2> | ||
| 2805 | |||
| 2806 | <h2><a name="_Toc138932369"><span lang=en-DE>SDA 7</span></a></h2> | ||
| 2807 | |||
| 2808 | <p class=MsoNormal><span lang=en-DE>SDA 7 can be used to carry out Brownian | ||
| 2809 | dynamics simulations of the diffusional association in a continuum aqueous | ||
| 2810 | solvent of two solute molecules, e.g., proteins, or of a solute molecule to an | ||
| 2811 | inorganic surface. SDA 7 can also be used to simulate the diffusion of multiple | ||
| 2812 | proteins, in dilute or concentrated solutions, e.g., to study the effects of | ||
| 2813 | macromolecular crowding.</span></p> | ||
| 2814 | |||
| 2815 | <h2></h2> | ||
| 2816 | |||
| 2817 | <h2><a name="_Toc138932370"><span lang=en-DE>Shape & Appearance Modelling</span></a></h2> | ||
| 2818 | |||
| 2819 | <p class=MsoNormal><span lang=en-DE>A framework for automatically learning | ||
| 2820 | shape and appearance models for medical (and certain other) images. The | ||
| 2821 | algorithm was developed with the aim of eventually enabling distributed | ||
| 2822 | privacy-preserving analysis of brain image data, such that shared information | ||
| 2823 | (shape and appearance basis functions) may be passed across sites, whereas | ||
| 2824 | latent variables that encode individual images remain secure within each site. | ||
| 2825 | These latent variables are proposed as features for privacy-preserving data | ||
| 2826 | mining applications.</span></p> | ||
| 2827 | |||
| 2828 | <h2></h2> | ||
| 2829 | |||
| 2830 | <h2><a name="_Toc138932371"><span lang=en-DE>siibra-api</span></a></h2> | ||
| 2831 | |||
| 2832 | <p class=MsoNormal><span lang=en-DE>siibra-api provides an HTTP wrapper around | ||
| 2833 | siibra-python, allowing developers to access atlas (meta)data over HTTP | ||
| 2834 | protocol. Deployed on the EBRAINS infrastructure, developers can access the | ||
| 2835 | centralised (meta)data on atlases, as provided by siibra-python, regardless of | ||
| 2836 | the programming language.</span></p> | ||
| 2837 | |||
| 2838 | <h2></h2> | ||
| 2839 | |||
| 2840 | <h2><a name="_Toc138932372"><span lang=en-DE>siibra-explorer</span></a></h2> | ||
| 2841 | |||
| 2842 | <p class=MsoNormal><span lang=en-DE>The interactive atlas viewer | ||
| 2843 | siibra-explorer allows exploring the different EBRAINS atlases for the human, | ||
| 2844 | monkey and rodent brains together with a comprehensive set of linked multimodal | ||
| 2845 | data features. It provides a 3-planar view of a parcellated reference volume | ||
| 2846 | combined with a rotatable overview of the 3D surface. Several templates can be | ||
| 2847 | selected to navigate through the brain from MRI-scale to microscopic | ||
| 2848 | resolution, allowing inspection of terabyte-size image data. Anatomically | ||
| 2849 | anchored datasets reflecting aspects of cellular and molecular organisation, | ||
| 2850 | fibres, function and connectivity can be discovered by selecting brain regions | ||
| 2851 | from parcellations, or zooming and panning the reference brain. siibra-explorer | ||
| 2852 | also allows annotation of brain locations as points and polygons and is | ||
| 2853 | extensible via interactive plugins.</span></p> | ||
| 2854 | |||
| 2855 | <h2></h2> | ||
| 2856 | |||
| 2857 | <h2><a name="_Toc138932373"><span lang=en-DE>siibra-python</span></a></h2> | ||
| 2858 | |||
| 2859 | <p class=MsoNormal><span lang=en-DE>siibra-python is a Python client to a brain | ||
| 2860 | atlas framework that integrates brain parcellations and reference spaces at | ||
| 2861 | different spatial scales and connects them with a broad range of multimodal | ||
| 2862 | regional data features. It aims to facilitate programmatic and reproducible | ||
| 2863 | incorporation of brain parcellations and brain region features from different | ||
| 2864 | sources into neuroscience workflows. Also, siibra-python provides an easy | ||
| 2865 | access to data features on the EBRAINS Knowledge Graph in a well-structured | ||
| 2866 | manner. Users can preconfigure their own data to use within siibra-python.</span></p> | ||
| 2867 | |||
| 2868 | <h2></h2> | ||
| 2869 | |||
| 2870 | <h2><a name="_Toc138932374"><span lang=en-DE>Single Cell Model (Re)builder | ||
| 2871 | Notebook</span></a></h2> | ||
| 2872 | |||
| 2873 | <p class=MsoNormal><span lang=en-DE>The Single Cell Model (Re)builder Notebook | ||
| 2874 | is a web application, implemented via a Jupyter Notebook on EBRAINS, which | ||
| 2875 | allows users to configure the BluePyOpt to re-run an optimisation with their | ||
| 2876 | own choices for the parameters range. The optimisation jobs are submitted | ||
| 2877 | through Neuroscience Gateway.</span></p> | ||
| 2878 | |||
| 2879 | <h2></h2> | ||
| 2880 | |||
| 2881 | <h2><a name="_Toc138932375"><span lang=en-DE>Slurm Plugin for Co-allocation of | ||
| 2882 | Compute and Data Resources</span></a></h2> | ||
| 2883 | |||
| 2884 | <p class=MsoNormal><span lang=en-DE>This Simple linux utility for resource | ||
| 2885 | management (Slurm) plugin enables the co-allocation of compute and data resources | ||
| 2886 | on a shared multi-tiered storage cluster by estimating waiting times when the | ||
| 2887 | high-performance storage (burst buffers) will become available to submitted | ||
| 2888 | jobs. Based on the current job queue and the estimated waiting time, the plugin | ||
| 2889 | decides whether scheduling the high-performance or lower-performance storage | ||
| 2890 | system (parallel file system) benefits the job's turnaround time. The | ||
| 2891 | estimation depends on additional information the user provides at submission | ||
| 2892 | time.</span></p> | ||
| 2893 | |||
| 2894 | <h2></h2> | ||
| 2895 | |||
| 2896 | <h2><a name="_Toc138932376"><span lang=en-DE>Snudda</span></a></h2> | ||
| 2897 | |||
| 2898 | <p class=MsoNormal><span lang=en-DE>Snudda ('touch' in Swedish) allows the user | ||
| 2899 | to set up and generate microcircuits where the connectivity between neurons is | ||
| 2900 | based on reconstructed neuron morphologies. The touch detection algorithm looks | ||
| 2901 | for overlaps of axons and dendrites, and places putative synapses where they | ||
| 2902 | touch. The putative synapses are pruned, removing a fraction to match | ||
| 2903 | statistics from pairwise connectivity experiments. If needed, Snudda can also | ||
| 2904 | use probability functions to create realistic microcircuits. The Snudda | ||
| 2905 | software is written in Python and includes support for supercomputers. It uses | ||
| 2906 | ipyparallel to parallelise network creation, and NEURON as the backend for | ||
| 2907 | simulations. Install using pip or by directly downloading.</span></p> | ||
| 2908 | |||
| 2909 | <h2></h2> | ||
| 2910 | |||
| 2911 | <h2><a name="_Toc138932377"><span lang=en-DE>SomaSegmenter</span></a></h2> | ||
| 2912 | |||
| 2913 | <p class=MsoNormal><span lang=en-DE>SomaSegmenter allows neuronal soma | ||
| 2914 | segmentation in fluorescence microscopy imaging datasets with the use of a | ||
| 2915 | parametrised version of the U-Net segmentation model, including additional | ||
| 2916 | features such as residual links and tile-based frame reconstruction.</span></p> | ||
| 2917 | |||
| 2918 | <h2></h2> | ||
| 2919 | |||
| 2920 | <h2><a name="_Toc138932378"><span lang=en-DE>SpiNNaker</span></a></h2> | ||
| 2921 | |||
| 2922 | <p class=MsoNormal><span lang=en-DE>SpiNNaker is a neuromorphic computer with | ||
| 2923 | over a million low power, small memory ARM cores arranged in chips, connected | ||
| 2924 | together with a unique brain-like mesh network, and designed to simulate | ||
| 2925 | networks of spiking point neurons. Software is provided to compile networks | ||
| 2926 | described with PyNN into running simulations, and to extract and convert | ||
| 2927 | results into the neo data format, as well as providing support for live | ||
| 2928 | interaction with running simulations. This allows integration with external | ||
| 2929 | devices such as real or virtual robotics as well as live simulation | ||
| 2930 | visualisation. Scripts can be written and executed using Jupyter for | ||
| 2931 | interactive access.</span></p> | ||
| 2932 | |||
| 2933 | <h2></h2> | ||
| 2934 | |||
| 2935 | <h2><a name="_Toc138932379"><span lang=en-DE>SSB toolkit</span></a></h2> | ||
| 2936 | |||
| 2937 | <p class=MsoNormal><span lang=en-DE>The SSB toolkit is an open-source Python | ||
| 2938 | library to simulate mathematical models of the signal transduction pathways of | ||
| 2939 | G-protein coupled receptors (GPCRs). By merging structural macromolecular data | ||
| 2940 | with systems biology simulations, the framework allows simulation of the signal | ||
| 2941 | transduction kinetics induced by ligand-GPCR interactions, as well as the consequent | ||
| 2942 | change of concentration of signalling molecular species, as a function of time | ||
| 2943 | and ligand concentration. Therefore, this tool allows the possibility to | ||
| 2944 | investigate the subcellular effects of ligand binding upon receptor activation, | ||
| 2945 | deepening the understanding of the relationship between the molecular level of | ||
| 2946 | ligand-target interactions and higher-level cellular and physiological or | ||
| 2947 | pathological response mechanisms.</span></p> | ||
| 2948 | |||
| 2949 | <h2></h2> | ||
| 2950 | |||
| 2951 | <h2><a name="_Toc138932380"><span lang=en-DE>Subcellular model building and | ||
| 2952 | calibration tool set</span></a></h2> | ||
| 2953 | |||
| 2954 | <p class=MsoNormal><span lang=en-DE>The toolset includes interoperable modules | ||
| 2955 | for: model building, calibration (parameter estimation) and model analysis. All | ||
| 2956 | information needed to perform these tasks (models, experimental calibration | ||
| 2957 | data and prior assumptions on parameter distributions) are stored in a | ||
| 2958 | structured, human- and machine-readable file format based on SBtab. The toolset | ||
| 2959 | enables simulations of the same model in simulators with different | ||
| 2960 | characteristics, e.g., STEPS, NEURON, MATLAB's Simbiology and R via automatic | ||
| 2961 | code generation. The parameter estimation can include uncertainty | ||
| 2962 | quantification and is done by optimisation or Bayesian approaches. Model | ||
| 2963 | analysis includes global sensitivity analysis and functionality for analysing | ||
| 2964 | thermodynamic constraints and conserved moieties.</span></p> | ||
| 2965 | |||
| 2966 | <h2></h2> | ||
| 2967 | |||
| 2968 | <h2><a name="_Toc138932381"><span lang=en-DE>Synaptic Events Fitting</span></a></h2> | ||
| 2969 | |||
| 2970 | <p class=MsoNormal><span lang=en-DE>The Synaptic Events Fitting is a web | ||
| 2971 | application, implemented in a Jupyter Notebook on EBRAINS that allows users to | ||
| 2972 | fit synaptic events using data and models from the EBRAINS Knowledge Graph | ||
| 2973 | (KG). Select, download and visualise experimental data from the KG and then choose | ||
| 2974 | the data to be fitted. A mod file is then selected (local or default) together | ||
| 2975 | with the corresponding configuration file (including protocol and the name of | ||
| 2976 | the parameters to be fitted, their initial values and allowed variation range, | ||
| 2977 | exclusion rules and an optional set of dependencies). The fitting procedure can | ||
| 2978 | run on Neuroscience Gateway. Fetch the fitting results from the storage of the | ||
| 2979 | HPC system to the storage of the Collab or to analyse the optimised parameters.</span></p> | ||
| 2980 | |||
| 2981 | <h2></h2> | ||
| 2982 | |||
| 2983 | <h2><a name="_Toc138932382"><span lang=en-DE>Synaptic Plasticity Explorer</span></a></h2> | ||
| 2984 | |||
| 2985 | <p class=MsoNormal><span lang=en-DE>The Synaptic Plasticity Explorer is a web | ||
| 2986 | application, implemented via a Jupyter Notebook on EBRAINS, which allows to | ||
| 2987 | configure and test, through an intuitive GUI, different synaptic plasticity | ||
| 2988 | models and protocols on single cell optimised models, available in the EBRAINS | ||
| 2989 | Model Catalog. It consists of two tabs: 'Config', where the user can specify | ||
| 2990 | the plasticity model to use and the synaptic parameters, and 'Sim', where the | ||
| 2991 | recording location, weight's evolution and number of simulations to run are | ||
| 2992 | defined. The results are plotted at the end of the simulation and the traces | ||
| 2993 | are available for download.</span></p> | ||
| 2994 | |||
| 2995 | <h2></h2> | ||
| 2996 | |||
| 2997 | <h2><a name="_Toc138932383"><span lang=en-DE>Synaptic proteome database | ||
| 2998 | (SQLite)</span></a></h2> | ||
| 2999 | |||
| 3000 | <p class=MsoNormal><span lang=en-DE>Integration of 57 published synaptic | ||
| 3001 | proteomic datasets reveals a stunningly complex picture involving over 7000 | ||
| 3002 | proteins. Molecular complexes were reconstructed using evidence-based | ||
| 3003 | protein-protein interaction data available from public databases. The | ||
| 3004 | constructed molecular interaction network model is embedded into an SQLite | ||
| 3005 | implementation, allowing queries that generate custom network models based on | ||
| 3006 | meta-data including species, synaptic compartment, brain region, and method of | ||
| 3007 | extraction.</span></p> | ||
| 3008 | |||
| 3009 | <h2></h2> | ||
| 3010 | |||
| 3011 | <h2><a name="_Toc138932384"><span lang=en-DE>Synaptome.db</span></a></h2> | ||
| 3012 | |||
| 3013 | <p class=MsoNormal><span lang=en-DE>The Synaptome.db bioconductor package | ||
| 3014 | contains a local copy of the Synaptic proteome database. On top of this it | ||
| 3015 | provides a set of utility R functions to query and analyse its content. It | ||
| 3016 | allows for extraction of information for specific genes and building the | ||
| 3017 | protein-protein interaction graph for gene sets, synaptic compartments and | ||
| 3018 | brain regions.</span></p> | ||
| 3019 | |||
| 3020 | <h2></h2> | ||
| 3021 | |||
| 3022 | <h2><a name="_Toc138932385"><span lang=en-DE>Tide</span></a></h2> | ||
| 3023 | |||
| 3024 | <p class=MsoNormal><span lang=en-DE>BlueBrain's Tide provides multi-window, | ||
| 3025 | multi-user touch interaction on large surfaces Ð think of a giant collaborative | ||
| 3026 | wall-mounted tablet. Tide is a distributed application that can run on multiple | ||
| 3027 | machines to power display walls or projection systems of any size. Its user interface | ||
| 3028 | is designed to offer an intuitive experience on touch walls. It works just as | ||
| 3029 | well on non-touch-capable installations by using its web interface from any web | ||
| 3030 | browser.</span></p> | ||
| 3031 | |||
| 3032 | <h2></h2> | ||
| 3033 | |||
| 3034 | <h2><a name="_Toc138932386"><span lang=en-DE>TVB EBRAINS</span></a></h2> | ||
| 3035 | |||
| 3036 | <p class=MsoNormal><span lang=en-DE>TVB EBRAINS is the principal full brain | ||
| 3037 | network simulation engine in EBRAINS and covers every aspect of realising | ||
| 3038 | personalised whole-brain simulations on the EBRAINS platform. It consists of | ||
| 3039 | the simulation tools and adaptors connecting the data, atlas and computing | ||
| 3040 | services to the rest of the TVB ecosystem and Cloud services available in | ||
| 3041 | EBRAINS. As such it allows the user to find and fetch relevant datasets through | ||
| 3042 | the EBRAINS Knowledge Graph and Atlas services, construct the personalised TVB | ||
| 3043 | models and use the HPC systems to perform parameter exploration, optimisation and | ||
| 3044 | inference studies. The user can orchestrate the workflow from the Jupyterlab | ||
| 3045 | interactive computing environment of the EBRAINS Collaboratory or use the | ||
| 3046 | dedicated web application of TVB.</span></p> | ||
| 3047 | |||
| 3048 | <h2></h2> | ||
| 3049 | |||
| 3050 | <h2><a name="_Toc138932387"><span lang=en-DE>TVB Image Processing Pipeline</span></a></h2> | ||
| 3051 | |||
| 3052 | <p class=MsoNormal><span lang=en-DE>TVB Image Processing Pipeline takes multimodal | ||
| 3053 | MRI data sets (anatomical, functional and diffusion-weighted MRI) as input and | ||
| 3054 | generates structural connectomes, region-average fMRI time series, functional | ||
| 3055 | connectomes, brain surfaces, electrode positions, lead field matrices and atlas | ||
| 3056 | parcellations as output. The pipeline performs preprocessing and | ||
| 3057 | distortion-correction on MRI data as well as white matter fibre bundle | ||
| 3058 | tractography on diffusion data. Outputs are formatted according to two data | ||
| 3059 | standards: a TVB-ready data set that can be directly used to simulate brain | ||
| 3060 | network models and the same output in BIDS format.</span></p> | ||
| 3061 | |||
| 3062 | <h2></h2> | ||
| 3063 | |||
| 3064 | <h2><a name="_Toc138932388"><span lang=en-DE>TVB Inversion</span></a></h2> | ||
| 3065 | |||
| 3066 | <p class=MsoNormal><span lang=en-DE>The TVB Inversion package implements the | ||
| 3067 | machinery required to perform parameter exploration and inference over | ||
| 3068 | parameters of The Virtual Brain simulator. It implements Simulation Based | ||
| 3069 | Inference (SBI) which is a Bayesian inference method for complex models, where | ||
| 3070 | calculation of the likelihood function is either analytically or | ||
| 3071 | computationally intractable. As such, it allows the user to formulate with | ||
| 3072 | great expressive power both the model and the inference scenario in terms of | ||
| 3073 | observed data features and model parameters. Part of the integration with TVB | ||
| 3074 | entails the option to perform numerous simulations in parallel, which can be | ||
| 3075 | used for parameter space exploration.</span></p> | ||
| 3076 | |||
| 3077 | <h2></h2> | ||
| 3078 | |||
| 3079 | <h2><a name="_Toc138932389"><span lang=en-DE>TVB Web App</span></a></h2> | ||
| 3080 | |||
| 3081 | <p class=MsoNormal><span lang=en-DE>TVB Web App provides The Virtual Brain | ||
| 3082 | Simulator as an EBRAINS Cloud Service with an HPC back-end. Scientists can run | ||
| 3083 | intense personalised brain simulations without having to deploy software. Users | ||
| 3084 | can access the service with their EBRAINS credentials (single sign on). TVB Web | ||
| 3085 | App uses private/public key cryptography, sandboxing, and access control to | ||
| 3086 | protect personalised health information contained in digital human brain twins | ||
| 3087 | while being processed on HPC. Users can upload their connectomes or use | ||
| 3088 | TVB-ready image-derived data discoverable via the EBRAINS Knowledge Graph. | ||
| 3089 | Users can also use containerised processing workflows available on EBRAINS to | ||
| 3090 | render image raw data into simulation-ready formats.</span></p> | ||
| 3091 | |||
| 3092 | <h2></h2> | ||
| 3093 | |||
| 3094 | <h2><a name="_Toc138932390"><span lang=en-DE>TVB Widgets</span></a></h2> | ||
| 3095 | |||
| 3096 | <p class=MsoNormal><span lang=en-DE>In order to support the usability of | ||
| 3097 | EBRAINS workflows, TVB-widgets has been developed as a set of modular graphic | ||
| 3098 | components and software solutions, easy to use in the Collaboratory within the | ||
| 3099 | JupyterLab. These GUI components are based on and under open source licence, | ||
| 3100 | supporting open neuroscience and support features like: Setup of models and | ||
| 3101 | region-specific or cohort simulations. Selection of Data sources and their | ||
| 3102 | links to models. Querying data from siibra and the EBRAINS Knowledge Graph. | ||
| 3103 | Deployment and monitoring jobs on HPC resources. Analysis and visualisation. | ||
| 3104 | Visual workflow builder for configuring and launching TVB simulations.</span></p> | ||
| 3105 | |||
| 3106 | <h2></h2> | ||
| 3107 | |||
| 3108 | <h2><a name="_Toc138932391"><span lang=en-DE>TVB-Multiscale</span></a></h2> | ||
| 3109 | |||
| 3110 | <p class=MsoNormal><span lang=en-DE>TVB-Multiscale is a Python toolbox aimed at | ||
| 3111 | facilitating the configuration of multiscale brain models and their | ||
| 3112 | co-simulation with TVB and spiking network simulators (currently NEST, | ||
| 3113 | NetPyNE (NEURON) and ANNarchy). A multiscale brain model consists of a full | ||
| 3114 | brain model formulated at the coarse scale of networks of tens up to thousands | ||
| 3115 | of brain regions, and an additional model of networks of spiking neurons | ||
| 3116 | describing selected brain regions at a finer scale. The toolbox has a | ||
| 3117 | user-friendly interface for configuring different kinds of models for | ||
| 3118 | transforming and exchanging data between the two scales during co-simulation.</span></p> | ||
| 3119 | |||
| 3120 | <h2></h2> | ||
| 3121 | |||
| 3122 | <h2><a name="_Toc138932392"><span lang=en-DE>VIOLA</span></a></h2> | ||
| 3123 | |||
| 3124 | <p class=MsoNormal><span lang=en-DE>VIOLA is an interactive, web-based tool to | ||
| 3125 | visualise activity data in multiple 2D layers such as the simulation output of | ||
| 3126 | neuronal networks with 2D geometry. As a reference implementation for a | ||
| 3127 | developed set of interactive visualisation concepts, the tool combines and | ||
| 3128 | adapts modern interactive visualisation paradigms, such as coordinated multiple | ||
| 3129 | views, for massively parallel neurophysiological data. The software allows for | ||
| 3130 | an explorative and qualitative assessment of the spatiotemporal features of | ||
| 3131 | neuronal activity, which can be performed prior to a detailed quantitative data | ||
| 3132 | analysis of specific aspects of the data.</span></p> | ||
| 3133 | |||
| 3134 | <h2></h2> | ||
| 3135 | |||
| 3136 | <h2><a name="_Toc138932393"><span lang=en-DE>Vishnu 1.0</span></a></h2> | ||
| 3137 | |||
| 3138 | <p class=MsoNormal><span lang=en-DE>DC Explorer, Pyramidal Explorer and Clint | ||
| 3139 | Explorer are the core of an application suite designed to help scientists to | ||
| 3140 | explore their data. Vishnu 1.0 is a communication framework that allows them to | ||
| 3141 | interchange information and cooperate in real time. It provides a unique access | ||
| 3142 | point to the three applications and manages a database with the users' | ||
| 3143 | datasets. Vishnu was originally designed to integrate data for | ||
| 3144 | Espina.Whole-brain-scale tools.</span></p> | ||
| 3145 | |||
| 3146 | <h2></h2> | ||
| 3147 | |||
| 3148 | <h2><a name="_Toc138932394"><span lang=en-DE>ViSimpl</span></a></h2> | ||
| 3149 | |||
| 3150 | <p class=MsoNormal><span lang=en-DE>ViSimpl integrates a set of visualisation | ||
| 3151 | and interaction components that provide a semantic view of brain data with the | ||
| 3152 | aim of improving its analysis procedures. ViSimpl provides 3D particle-based | ||
| 3153 | rendering that visualises simulation data with their associated spatial and | ||
| 3154 | temporal information, enhancing the knowledge extraction process. It also | ||
| 3155 | provides abstract representations of the time-varying magnitudes, supporting | ||
| 3156 | different data aggregation and disaggregation operations and giving focus and | ||
| 3157 | context clues. In addition, ViSimpl provides synchronised playback control of | ||
| 3158 | the simulation being analysed.</span></p> | ||
| 3159 | |||
| 3160 | <h2></h2> | ||
| 3161 | |||
| 3162 | <h2><a name="_Toc138932395"><span lang=en-DE>VisuAlign</span></a></h2> | ||
| 3163 | |||
| 3164 | <p class=MsoNormal><span lang=en-DE>VisuAlign is a tool for user-guided | ||
| 3165 | nonlinear registration after QuickNII of 2D experimental image data, typically | ||
| 3166 | high resolution microscopic images, to 3D atlas reference space, facilitating | ||
| 3167 | data integration through standardised coordinate systems. Key features: | ||
| 3168 | Generate user-defined cut planes through the atlas templates, matching the | ||
| 3169 | orientation of the cut plane of the 2D experimental image data, as a first step | ||
| 3170 | towards anchoring of images to the relevant atlas template. Propagate spatial | ||
| 3171 | transformations across series of sections following anchoring of selected | ||
| 3172 | images.</span></p> | ||
| 3173 | |||
| 3174 | <h2></h2> | ||
| 3175 | |||
| 3176 | <h2><a name="_Toc138932396"><span lang=en-DE>VMetaFlow</span></a></h2> | ||
| 3177 | |||
| 3178 | <p class=MsoNormal><span lang=en-DE>VMetaFlow is an abstraction layer placed | ||
| 3179 | over existing visual grammars and visualisation declarative languages, | ||
| 3180 | providing them with interoperability mechanisms. The main contribution of this | ||
| 3181 | research is to provide a user-friendly system to design visualisation and data | ||
| 3182 | processing operations that can be interconnected to form data analysis | ||
| 3183 | workflows. Visualisations and data processes can be saved as cards. Cards and | ||
| 3184 | workflows can be saved, distributed and reused between users.</span></p> | ||
| 3185 | |||
| 3186 | <h2></h2> | ||
| 3187 | |||
| 3188 | <h2><a name="_Toc138932397"><span lang=en-DE>Voluba</span></a></h2> | ||
| 3189 | |||
| 3190 | <p class=MsoNormal><span lang=en-DE>A common problem in high-resolution brain | ||
| 3191 | atlasing is spatial anchoring of volumes of interest from imaging experiments | ||
| 3192 | into the detailed anatomical context of an ultrahigh-resolution reference model | ||
| 3193 | like BigBrain. The interactive volumetric alignment tool voluba is implemented | ||
| 3194 | as a web service and allows anchoring of volumetric image data to reference | ||
| 3195 | volumes at microscopical spatial resolutions. It enables interactive | ||
| 3196 | manipulation of image position, scale, and orientation, flipping of coordinate | ||
| 3197 | axes, and entering of anatomical point landmarks in 3D. The resulting | ||
| 3198 | transformation parameters can, amongst others, be downloaded or used to view | ||
| 3199 | the anchored image volume in the interactive atlas viewer siibra-explorer.</span></p> | ||
| 3200 | |||
| 3201 | <h2></h2> | ||
| 3202 | |||
| 3203 | <h2><a name="_Toc138932398"><span lang=en-DE>WebAlign</span></a></h2> | ||
| 3204 | |||
| 3205 | <p class=MsoNormal><span lang=en-DE>WebAlign is the web version of QuickNII. | ||
| 3206 | Presently, it is available as a community app in the Collaboratory. Features | ||
| 3207 | include: Spatial registration of sectional image data. Generation of customised | ||
| 3208 | atlas maps for your sectional image data.</span></p> | ||
| 3209 | |||
| 3210 | <h2></h2> | ||
| 3211 | |||
| 3212 | <h2><a name="_Toc138932399"><span lang=en-DE>Webilastik</span></a></h2> | ||
| 3213 | |||
| 3214 | <p class=MsoNormal><span lang=en-DE>webilastik brings the popular machine | ||
| 3215 | learning-based image analysis tool ilastik from the desktop into the browser. | ||
| 3216 | Users can perform semantic segmentation tasks on their data in the cloud. | ||
| 3217 | webilastik runs computations on federated EBRAINS HPC resources and uses | ||
| 3218 | EBRAINS infrastructure for data access and storage. webilastik makes machine | ||
| 3219 | learning-based image analysis workflows accessible to users without deep | ||
| 3220 | knowledge of image analysis and machine learning. webilastik is part of the | ||
| 3221 | QUINT workflow for extraction, quantification and analysis of features from | ||
| 3222 | rodent histological images.</span></p> | ||
| 3223 | |||
| 3224 | <h2></h2> | ||
| 3225 | |||
| 3226 | <h2><a name="_Toc138932400"><span lang=en-DE>WebWarp</span></a></h2> | ||
| 3227 | |||
| 3228 | <p class=MsoNormal><span lang=en-DE>WebWarp is the web version of VisuAlign. | ||
| 3229 | Presently, it is available as a community app in the Collaboratory. Features | ||
| 3230 | include: Nonlinear refinements of atlas registration by WebAlign of sectional | ||
| 3231 | image data. Generation of customised atlas maps for your sectional image data.</span></p> | ||
| 3232 | |||
| 3233 | <h2></h2> | ||
| 3234 | |||
| 3235 | <h2><a name="_Toc138932401"><span lang=en-DE>ZetaStitcher</span></a></h2> | ||
| 3236 | |||
| 3237 | <p class=MsoNormal><span lang=en-DE>ZetaStitcher is a Python package designed | ||
| 3238 | to stitch large volumetric images, such as those produced by Light-Sheet | ||
| 3239 | Fluorescence Microscopes. It is able to quickly compute the optimal alignment | ||
| 3240 | of large mosaics of tiles thanks to its ability to perform a sampling along the | ||
| 3241 | tile depth, i.e., pairwise alignment is computed only at certain depths along | ||
| 3242 | the thickness of the tile. This greatly reduces the amount of data that needs | ||
| 3243 | to be read and transferred, thus, making the process much faster. ZetaStitcher | ||
| 3244 | comes with an API that can be used to programmatically access the aligned | ||
| 3245 | volume in a virtual fashion as if it were a big NumPy array, without having to | ||
| 3246 | produce the fused 3D image of the whole sample.Cellular- and subcellular-scale | ||
| 3247 | tools.</span></p> | ||
| 3248 | |||
| 3249 | <h2></h2> | ||
| 3250 | |||
| 3251 | <h2><a name="_Toc138932402"><span lang=en-DE>TauRAMD</span></a></h2> | ||
| 3252 | |||
| 3253 | <p class=MsoNormal><span lang=en-DE>The TauRAMD technique makes use of RAMD | ||
| 3254 | simulations to compute relative residence times (or dissociation rates) of | ||
| 3255 | protein-ligand complexes. In the RAMD method, the egress of a molecule from a | ||
| 3256 | target receptor is accelerated by the application of an adaptive randomly | ||
| 3257 | oriented force on the ligand. This enables ligand egress events to be observed | ||
| 3258 | in short, nanosecond timescale simulations without imposing any bias regarding | ||
| 3259 | the ligand egress route taken. If coupled to the MD-IFP tool, the TauRAMD | ||
| 3260 | method can be used to investigate dissociation mechanisms and characterize | ||
| 3261 | transition states.</span></p> | ||
| 3262 | |||
| 3263 | </div> | ||
| 3264 | |||
| 3265 | </body> | ||
| 3266 | |||
| 3267 | </html> | ||
| 3268 | |||
| 3269 | {{/html}} |