Last modified by spreizer on 2025/08/26 09:19

From version 20.1
edited by spreizer
on 2025/07/30 11:06
Change comment: There is no comment for this version
To version 19.1
edited by spreizer
on 2025/07/30 11:06
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -28,6 +28,7 @@
28 28  |(% style="width:84px" %)12 - 15|(% style="width:235px" %)NEST Simulator|(% style="width:541px" %)[[https:~~/~~/nest-simulator.readthedocs.org/>>https://nest-simulator.readthedocs.org/]]
29 29  |(% style="width:84px" %)15 - 18|(% style="width:235px" %)NESTML|(% style="width:541px" %)[[https:~~/~~/nestml.readthedocs.org/>>https://nestml.readthedocs.org/]]
30 30  
31 +=== ===
31 31  
32 32  === 1) NEST Desktop ===
33 33  
... ... @@ -35,6 +35,7 @@
35 35  
36 36  * [[https:~~/~~/wiki.ebrains.eu/bin/view/Collabs/nest-desktop>>https://wiki.ebrains.eu/bin/view/Collabs/nest-desktop]]
37 37  
39 +
38 38  === 2) NEST Simulator ===
39 39  
40 40  The tutorial will then turn to Jupyter (Python) notebooks where we will start by creating a spiking neurons. Here, we learn advanced steps to write code with NEST Simulation syntax. The scripting codes allow us to customize sophisticated use cases with NEST simulations. Examples are:
... ... @@ -44,6 +44,7 @@
44 44  * networks of spatial neurons
45 45  * using plasticity
46 46  
49 +
47 47  === 3) NESTML ===
48 48  
49 49  The last part is using NESTML to create custom neuron and synapse models for NEST Simulator. A functional plasticity rule will then be introduced into the balanced E/I network to implement a biologically realistic version of reinforcement learning. This will be done by formulating the learning model in the NESTML language syntax, and using the associated toolchain to generate code for NEST [4].