Version 15.1 by spreizer on 2025/07/29 11:53

Hide last authors
spreizer 1.1 1 (% class="jumbotron" %)
2 (((
3 (% class="container" %)
4 (((
spreizer 11.1 5 = NEST Tutorials =
spreizer 1.1 6
spreizer 11.1 7 EBRAINS Swedish Node, Stockholm, 25/08/25 - 27/08/25
spreizer 1.1 8 )))
9 )))
10
11 (% class="row" %)
12 (((
13 (% class="col-xs-12 col-sm-8" %)
14 (((
spreizer 14.1 15 == From single-cell modeling to large-scale network dynamics with NEST Simulator ==
spreizer 13.1 16
spreizer 14.2 17 **Instructor**: Sebastian Spreizer, PhD, University of Trier and Research Center Jülich
spreizer 13.1 18
spreizer 14.2 19 - [[Abstract>>url:https://wiki.ebrains.eu/bin/view/Collabs/swedish-node-nest-tutorials/About/]]
spreizer 13.1 20
21
spreizer 14.2 22 The tutorial is composed of three parts in which the user learns to model neuronal networks step by step.
23
24
25 |(% style="width:84px" %)9 - 11|(% style="width:235px" %)NEST Desktop|(% style="width:541px" %)[[https:~~/~~/nest-desktop.readthedocs.org/>>https://nest-desktop.readthedocs.org/]]
26 |(% style="width:84px" %)12 - 15|(% style="width:235px" %)NEST in Jupyter Lab|(% style="width:541px" %)[[https:~~/~~/nest-simulator.readthedocs.org/>>https://nest-simulator.readthedocs.org/]]
27 |(% style="width:84px" %)15 - 17|(% style="width:235px" %)NESTML|(% style="width:541px" %)[[https:~~/~~/nestml.readthedocs.org/>>https://nestml.readthedocs.org/]]
28
29
30 1) The first part of the tutorial, we look at NEST Desktop.  As a goal we will create and analyze a balanced two-population network.
31
32
33 2) The tutorial will then turn to Jupyter (Python) notebooks where we will start by creating a spiking network. Here, we learn advanced steps to write code with NEST Simulation syntax. The scripting codes allow us to customize sophisticated use cases with NEST simulations. Examples are:
34
35 - large scale networks,
36 - networks of spatial neurons
37 - using plasticity
38
39
40 3) The last part is using NESTML to create custom neuron and synapse models for NEST Simulator. A functional plasticity rule will then be introduced into the balanced E/I network to implement a biologically realistic version of reinforcement learning. This will be done by formulating the learning model in the NESTML language syntax, and using the associated toolchain to generate code for NEST [4].
41
42
spreizer 10.1 43
spreizer 1.1 44 )))
45
46
47 (% class="col-xs-12 col-sm-4" %)
48 (((
49 {{box title="**Contents**"}}
50 {{toc/}}
51 {{/box}}
52
53
54 )))
55 )))