Version 19.2 by spreizer on 2025/07/30 11:06

Show last authors
1 (% class="jumbotron" %)
2 (((
3 (% class="container" %)
4 (((
5 = NEST Tutorials =
6
7 EBRAINS Swedish Node, Stockholm, 25/08/25 - 27/08/25
8 )))
9 )))
10
11 (% class="row" %)
12 (((
13 (% class="col-xs-12 col-sm-8" %)
14 (((
15 == From single-cell modeling to large-scale network dynamics with NEST Simulator ==
16
17 **Instructor**: Sebastian Spreizer, PhD, University of Trier and Research Center Jülich
18
19 - [[Abstract>>url:https://wiki.ebrains.eu/bin/view/Collabs/swedish-node-nest-tutorials/About/]]
20
21
22 The tutorial is composed of three parts in which the user learns to simulate with NEST step by step.
23
24
25 === Time schedule ===
26
27 |(% style="width:84px" %)9 - 11|(% style="width:235px" %)NEST Desktop|(% style="width:541px" %)[[https:~~/~~/nest-desktop.readthedocs.org/>>https://nest-desktop.readthedocs.org/]]
28 |(% style="width:84px" %)12 - 15|(% style="width:235px" %)NEST Simulator|(% style="width:541px" %)[[https:~~/~~/nest-simulator.readthedocs.org/>>https://nest-simulator.readthedocs.org/]]
29 |(% style="width:84px" %)15 - 18|(% style="width:235px" %)NESTML|(% style="width:541px" %)[[https:~~/~~/nestml.readthedocs.org/>>https://nestml.readthedocs.org/]]
30
31
32 === 1) NEST Desktop ===
33
34 The first part of the tutorial, we look at NEST Desktop.  As a goal we will create and analyze a balanced two-population network.
35
36 * [[https:~~/~~/wiki.ebrains.eu/bin/view/Collabs/nest-desktop>>https://wiki.ebrains.eu/bin/view/Collabs/nest-desktop]]
37
38 === 2) NEST Simulator ===
39
40 The tutorial will then turn to Jupyter (Python) notebooks where we will start by creating a spiking neurons. Here, we learn advanced steps to write code with NEST Simulation syntax. The scripting codes allow us to customize sophisticated use cases with NEST simulations. Examples are:
41
42 * neuronal dynamics
43 * large scale networks,
44 * networks of spatial neurons
45 * using plasticity
46
47 === 3) NESTML ===
48
49 The last part is using NESTML to create custom neuron and synapse models for NEST Simulator. A functional plasticity rule will then be introduced into the balanced E/I network to implement a biologically realistic version of reinforcement learning. This will be done by formulating the learning model in the NESTML language syntax, and using the associated toolchain to generate code for NEST [4].
50
51 * [[https:~~/~~/wiki.ebrains.eu/bin/view/Collabs/nestml-tutorials>>https://wiki.ebrains.eu/bin/view/Collabs/nestml-tutorials]]
52
53
54 )))
55
56
57 (% class="col-xs-12 col-sm-4" %)
58 (((
59 {{box title="**Contents**"}}
60 {{toc/}}
61 {{/box}}
62
63
64 )))
65 )))