Changes for page TVB PIPELINE
Last modified by ldomide on 2024/05/20 08:56
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -38,11 +38,21 @@ 38 38 == What can I find here? == 39 39 40 40 * an IPython notebook that describes how to 41 -** use the TVB pipeline on one of the associated supercomputers using PyUnicore 42 -** upload modeldata to the supercomputer41 +** use the TVB processing pipeline on one of the associated supercomputers using PyUnicore 42 +** upload MRI data to the supercomputer 43 43 ** set up and run the pipeline 44 44 ** download processing results 45 45 46 +== What does the TVB processing pipeline do? == 47 + 48 +After uploading MRI data to the supercomputer, the pipeline runs the three containers 49 + 50 +* [[bids/mrtrix3_connectome>>https://hub.docker.com/r/bids/mrtrix3_connectome||rel="noopener noreferrer" target="_blank"]] 51 +* [[poldracklab/fmriprep>>https://hub.docker.com/r/poldracklab/fmriprep||rel="noopener noreferrer" target="_blank"]], and 52 +* [[thevirtualbrain/tvb_converter>>https://hub.docker.com/r/thevirtualbrain/tvb_converter||rel="noopener noreferrer" target="_blank"]] 53 + 54 +The TVB Processing Pipeline takes multimodal MRI data sets (anatomical, functional and diffusion-weighted MRI) as input and generates SCs, region-average fMRI time series, FCs, brain surfaces, electrode positions, lead field matrices, and atlas parcellations as output. The pipeline performs preprocessing and distortion-correction on MRI data as well as white matter fiber bundle tractography on diffusion data. Outputs are formatted according to two data standards: a TVB-ready data set that can be directly used to simulate brain network models and the same output in BIDS format. 55 + 46 46 == How do I use it? == 47 47 48 48 * the pipeline is implemented by three Docker containers (mrtrix3_connectome, fmriprep and tvb_converter) ... ... @@ -99,8 +99,27 @@ 99 99 100 100 * [[https:~~/~~/www.ncbi.nlm.nih.gov/pubmed/25837600>>url:https://www.ncbi.nlm.nih.gov/pubmed/25837600]] 101 101 * [[https:~~/~~/www.ncbi.nlm.nih.gov/pubmed/27480624>>url:https://www.ncbi.nlm.nih.gov/pubmed/27480624]] 112 + 113 +== Citing this work == 114 + 115 + 116 +When using this pipeline for published work, please acknowledge MRtrix3, MRtrix3_connectome (R. Smith & Connelly, 2019; Tournier et al., 2019) and fmriprep (Esteban et al., 2019). 117 + 118 + 119 +Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., Kent, J. D., Goncalves, M., DuPre, E., Snyder, M., Oya, H., Ghosh, S. S., Wright, J., Durnez, J., Poldrack, R. A., & Gorgolewski, K. J. (2019). fMRIPrep: a robust preprocessing pipeline for functional MRI. //Nature Methods//. [[https:~~/~~/doi.org/10.1038/s41592-018-0235-4>>https://doi.org/10.1038/s41592-018-0235-4]] 120 + 121 + 122 +Schirner, M., Rothmeier, S., Jirsa, V. K., McIntosh, A. R., & Ritter, P. (2015). An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data. NeuroImage, 117, 343-357. 123 + 124 + 125 + 126 +Smith, R., & Connelly, A. (2019). MRtrix3_connectome: A BIDS Application for quantitative structural connectome construction. //OHBM//, W610. 127 + 128 + 129 +Tournier, J. D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., Christiaens, D., Jeurissen, B., Yeh, C. H., & Connelly, A. (2019). MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. In //NeuroImage//. https:~/~/doi.org/10.1016/j.neuroimage.2019.116137 102 102 ))) 103 103 132 +== == 104 104 105 105 (% class="col-xs-12 col-sm-4" %) 106 106 (((