Changes for page TVB PIPELINE
Last modified by ldomide on 2024/05/20 08:56
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -2,8 +2,10 @@ 2 2 ((( 3 3 (% class="container" %) 4 4 ((( 5 -= TVBImageProcessing PipelineWith MINDSannotatedOutputs=5 += From MRI to Functional and Structural Connectivity = 6 6 7 +Neuroimaging data preprocessing pipeline 8 + 7 7 == [[Pipeline Video Tutorial>>https://drive.google.com/file/d/1VcXf3GX3KoihF4UzJQXzuGL4XWoqj5Jr/view||rel="noopener noreferrer" target="_blank"]] == 8 8 9 9 == [[Direct link to notebook>>https://drive.ebrains.eu/#my-libs/lib/42ac27a5-981e-4cf6-8ec5-d67b0c24bf09/notebooks||rel="noopener noreferrer" target="_blank"]] == ... ... @@ -36,21 +36,11 @@ 36 36 == What can I find here? == 37 37 38 38 * an IPython notebook that describes how to 39 -** use the TVB p rocessingpipeline on one of the associated supercomputers using PyUnicore40 -** upload MRIdata to the supercomputer41 +** use the TVB pipeline on one of the associated supercomputers using PyUnicore 42 +** upload model data to the supercomputer 41 41 ** set up and run the pipeline 42 42 ** download processing results 43 43 44 -== What does the TVB processing pipeline do? == 45 - 46 -After uploading MRI data to the supercomputer, the pipeline runs the three containers 47 - 48 -* [[bids/mrtrix3_connectome>>https://hub.docker.com/r/bids/mrtrix3_connectome||rel="noopener noreferrer" target="_blank"]] 49 -* [[poldracklab/fmriprep>>https://hub.docker.com/r/poldracklab/fmriprep||rel="noopener noreferrer" target="_blank"]], and 50 -* [[thevirtualbrain/tvb_converter>>https://hub.docker.com/r/thevirtualbrain/tvb_converter||rel="noopener noreferrer" target="_blank"]] 51 - 52 -The TVB Processing Pipeline takes multimodal MRI data sets (anatomical, functional and diffusion-weighted MRI) as input and generates SCs, region-average fMRI time series, FCs, brain surfaces, electrode positions, lead field matrices, and atlas parcellations as output. The pipeline performs preprocessing and distortion-correction on MRI data as well as white matter fiber bundle tractography on diffusion data. Outputs are formatted according to two data standards: a TVB-ready data set that can be directly used to simulate brain network models and the same output in BIDS format. 53 - 54 54 == How do I use it? == 55 55 56 56 * the pipeline is implemented by three Docker containers (mrtrix3_connectome, fmriprep and tvb_converter) ... ... @@ -107,26 +107,8 @@ 107 107 108 108 * [[https:~~/~~/www.ncbi.nlm.nih.gov/pubmed/25837600>>url:https://www.ncbi.nlm.nih.gov/pubmed/25837600]] 109 109 * [[https:~~/~~/www.ncbi.nlm.nih.gov/pubmed/27480624>>url:https://www.ncbi.nlm.nih.gov/pubmed/27480624]] 110 - 111 -== Citing this work == 112 - 113 - 114 -When using this pipeline for published work, please acknowledge MRtrix3, MRtrix3_connectome (R. Smith & Connelly, 2019; Tournier et al., 2019) and fmriprep (Esteban et al., 2019). 115 - 116 - 117 -Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., Kent, J. D., Goncalves, M., DuPre, E., Snyder, M., Oya, H., Ghosh, S. S., Wright, J., Durnez, J., Poldrack, R. A., & Gorgolewski, K. J. (2019). fMRIPrep: a robust preprocessing pipeline for functional MRI. //Nature Methods//. [[https:~~/~~/doi.org/10.1038/s41592-018-0235-4>>https://doi.org/10.1038/s41592-018-0235-4]] 118 - 119 - 120 -Schirner, M., Rothmeier, S., Jirsa, V. K., McIntosh, A. R., & Ritter, P. (2015). An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data. NeuroImage, 117, 343-357. 121 - 122 - 123 -Smith, R., & Connelly, A. (2019). MRtrix3_connectome: A BIDS Application for quantitative structural connectome construction. //OHBM//, W610. 124 - 125 - 126 -Tournier, J. D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., Christiaens, D., Jeurissen, B., Yeh, C. H., & Connelly, A. (2019). MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. In //NeuroImage//. https:~/~/doi.org/10.1016/j.neuroimage.2019.116137 127 127 ))) 128 128 129 -== == 130 130 131 131 (% class="col-xs-12 col-sm-4" %) 132 132 (((