Last modified by teodoramisan on 2026/02/13 10:11

From version 81.1
edited by teodoramisan
on 2026/02/13 10:11
Change comment: There is no comment for this version
To version 77.1
edited by teodoramisan
on 2026/02/13 09:33
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -193,14 +193,8 @@
193 193  
194 194  === 2. Full VBI Inference workflow ===
195 195  
196 -Contains all VBI components required to run an inference workflow, from __prior sampling__ and __simulation__ to __posterior training__ and __posterior sampling__.
196 +Contains all VBI components required to run an inference workflow (e.g., inference configuration, model, simulator, train posterior, sample posterior).
197 197  
198 -The workflow starts with **ConfigInference**, which builds the configuration inputs needed by the workflow. It samples parameter values from the prior distribution to generate __theta__ and prepares the feature-extraction configuration (__cfg__) used later in the pipeline.
199 -
200 -Next, **SimulationRunner** executes the selected **VBI model** for a batch of parameter samples (theta) using the chosen backend (//cpp//, //cupy// or //numba//). It selects the requested output signal from the model result and extracts the summary features defined in cfg, producing the __feature matrix__ used for training.
201 -
202 -The resulting features and parameter samples are then passed to **TrainPosterior**, which standardizes the feature matrix with //StandardScaler //and trains a posterior distribution using an SBI method (//SNPE//, //SNLE//, or //SNRE//). In the last step, **SamplePosterior** draws parameter samples from the trained posterior distribution, conditioned on the selected observed feature vector.
203 -
204 204  [[image:vbi_workflow.png||height="590" width="1100"]]
205 205  
206 206  === 3. Configuring model parameters using the PhasePlaneWidget: ===
Public

TVB Widgets