Wiki source code of Widget TimeSeries
Version 16.1 by rominabaila on 2022/04/12 13:13
Hide last authors
author | version | line-number | content |
---|---|---|---|
![]() |
4.1 | 1 | == Purpose == |
![]() |
1.1 | 2 | |
![]() |
4.1 | 3 | It is a Jupyter widget intended for the visualization of brain signals represented as time series. |
![]() |
5.1 | 4 | |
5 | |||
6 | == Inputs == | ||
7 | |||
![]() |
6.1 | 8 | It supports time series inputs of two types: |
9 | |||
10 | * TVB TimeSeries datatype | ||
11 | * Numpy arrays | ||
12 | |||
13 | The widget supports 2-, 3-, and 4-dimensional arrays. In all three cases, there is a fixed shape that the TimeSeries widget expects: | ||
14 | |||
15 | * for **2D**: (no_timepoints, no_channels) | ||
16 | * for **3D**: (no_timepoints, state_variable/mode, no_channels) | ||
17 | * for **4D**: (no_timepoints, state_variable, no_channels, mode) | ||
18 | |||
![]() |
16.1 | 19 | ~* Note that the TVB TimeSeries datatype is always 4D and already has the expected shape. |
![]() |
7.1 | 20 | |
21 | == Requirements and installation == | ||
22 | |||
23 | Before installing the tvb-widgets library containing the TimeSeries widget, the following python libraries and Jupyter Notebook extensions should be installed: | ||
24 | |||
25 | * **Libraries:** | ||
26 | ** [[ipympl>>https://github.com/matplotlib/ipympl#installation]] | ||
27 | * ((( | ||
![]() |
11.1 | 28 | **Extensions:** |
![]() |
7.1 | 29 | |
30 | (% class="box" %) | ||
31 | ((( | ||
![]() |
8.1 | 32 | jupyter labextension install @jupyter-widgets/jupyterlab-manager |
![]() |
7.1 | 33 | |
![]() |
8.1 | 34 | jupyter labextension install jupyter-matplotlib |
![]() |
7.1 | 35 | ))) |
36 | ))) | ||
37 | |||
![]() |
12.1 | 38 | Then, to install the tvb-widgets library, just type: |
![]() |
7.1 | 39 | |
40 | (% class="box" %) | ||
41 | ((( | ||
42 | pip install tvb-widgets | ||
43 | ))) | ||
![]() |
13.1 | 44 | |
45 | |||
46 | == API usage == | ||
47 | |||
48 | First, the correct matplotlib backend must be set, which enables the interaction with the TimeSeries widget, by running the following command: | ||
49 | |||
50 | (% class="box" %) | ||
51 | ((( | ||
52 | %matplotlib widget | ||
53 | ))) | ||
54 | |||
55 | Then, the TimeSeries widget (from the tvb-widgets API) and the display function should be imported: | ||
56 | |||
57 | (% class="box" %) | ||
58 | ((( | ||
59 | from tvbwidgets.api import TimeSeriesWidget | ||
60 | from IPython.core.display_functions import display | ||
61 | ))) | ||
62 | |||
63 | Assuming that the user has already created or imported a valid input, this is how the widget can be initialized and how an input can be assigned to it, using the //**add_datatype** //method (example below assumes that **//tsr// **is a TVB TimeSeries datatype): | ||
64 | |||
65 | (% class="box" %) | ||
66 | ((( | ||
67 | tsw = TimeSeriesWidget() | ||
68 | tsw.add_datatype(tsr) | ||
69 | ))) | ||
70 | |||
71 | Finally, to display and interact with the TimeSeries widget, the **//get_widget//**// //method is used inside the //**display **//function: | ||
72 | |||
73 | (% class="box" %) | ||
74 | ((( | ||
75 | display(tsw.get_widget()) | ||
76 | ))) | ||
![]() |
15.1 | 77 | |
78 | {{html}} | ||
79 | <iframe src="https://drive.google.com/file/d/1g4ryY1VIFMUD14Mb6Dq_KVb0b2_XU4VX/preview" width="840" height="480" allow="autoplay"></iframe> | ||
80 | {{/html}} |