Wiki source code of Widget TimeSeries
Version 20.1 by rominabaila on 2022/04/14 16:30
Hide last authors
author | version | line-number | content |
---|---|---|---|
![]() |
4.1 | 1 | == Purpose == |
![]() |
1.1 | 2 | |
![]() |
4.1 | 3 | It is a Jupyter widget intended for the visualization of brain signals represented as time series. |
![]() |
5.1 | 4 | |
5 | == Inputs == | ||
6 | |||
![]() |
17.1 | 7 | Time series can be given as inputs in two forms: |
![]() |
6.1 | 8 | |
9 | * TVB TimeSeries datatype | ||
10 | * Numpy arrays | ||
11 | |||
![]() |
17.1 | 12 | This widget supports 2D, 3D, and 4D arrays. In all three cases, there is a fixed shape that the TimeSeries widget expects: |
![]() |
6.1 | 13 | |
14 | * for **2D**: (no_timepoints, no_channels) | ||
15 | * for **3D**: (no_timepoints, state_variable/mode, no_channels) | ||
16 | * for **4D**: (no_timepoints, state_variable, no_channels, mode) | ||
17 | |||
![]() |
17.1 | 18 | ~* Note that the TVB TimeSeries datatype is always 4D and already has the expected shape. |
![]() |
7.1 | 19 | |
20 | == Requirements and installation == | ||
21 | |||
![]() |
17.1 | 22 | Before installing the tvb-widgets library containing the TimeSeries widget, the following python libraries and Jupyter extensions should be installed: |
![]() |
7.1 | 23 | |
24 | * **Libraries:** | ||
![]() |
20.1 | 25 | ** [[mne>>https://mne.tools/0.24/install/index.html]] version 0.24 |
26 | ** [[ipympl>>https://github.com/matplotlib/ipympl#installation]] | ||
![]() |
7.1 | 27 | * ((( |
![]() |
11.1 | 28 | **Extensions:** |
![]() |
7.1 | 29 | |
30 | (% class="box" %) | ||
31 | ((( | ||
![]() |
8.1 | 32 | jupyter labextension install @jupyter-widgets/jupyterlab-manager |
![]() |
7.1 | 33 | |
![]() |
8.1 | 34 | jupyter labextension install jupyter-matplotlib |
![]() |
7.1 | 35 | ))) |
36 | ))) | ||
37 | |||
![]() |
12.1 | 38 | Then, to install the tvb-widgets library, just type: |
![]() |
7.1 | 39 | |
40 | (% class="box" %) | ||
41 | ((( | ||
42 | pip install tvb-widgets | ||
43 | ))) | ||
![]() |
13.1 | 44 | |
45 | == API usage == | ||
46 | |||
47 | First, the correct matplotlib backend must be set, which enables the interaction with the TimeSeries widget, by running the following command: | ||
48 | |||
49 | (% class="box" %) | ||
50 | ((( | ||
51 | %matplotlib widget | ||
52 | ))) | ||
53 | |||
![]() |
17.1 | 54 | Then, the **TimeSeriesWidget** (from the tvb-widgets API) and the **//display//** function should be imported: |
![]() |
13.1 | 55 | |
56 | (% class="box" %) | ||
57 | ((( | ||
58 | from tvbwidgets.api import TimeSeriesWidget | ||
59 | from IPython.core.display_functions import display | ||
60 | ))) | ||
61 | |||
62 | Assuming that the user has already created or imported a valid input, this is how the widget can be initialized and how an input can be assigned to it, using the //**add_datatype** //method (example below assumes that **//tsr// **is a TVB TimeSeries datatype): | ||
63 | |||
64 | (% class="box" %) | ||
65 | ((( | ||
66 | tsw = TimeSeriesWidget() | ||
67 | tsw.add_datatype(tsr) | ||
68 | ))) | ||
69 | |||
70 | Finally, to display and interact with the TimeSeries widget, the **//get_widget//**// //method is used inside the //**display **//function: | ||
71 | |||
72 | (% class="box" %) | ||
73 | ((( | ||
![]() |
19.1 | 74 | display(tsw) |
![]() |
13.1 | 75 | ))) |
![]() |
15.1 | 76 | |
77 | {{html}} | ||
78 | <iframe src="https://drive.google.com/file/d/1g4ryY1VIFMUD14Mb6Dq_KVb0b2_XU4VX/preview" width="840" height="480" allow="autoplay"></iframe> | ||
79 | {{/html}} |