Wiki source code of Widget TimeSeries
Version 20.1 by rominabaila on 2022/04/14 16:30
Hide last authors
| author | version | line-number | content |
|---|---|---|---|
| |
4.1 | 1 | == Purpose == |
| |
1.1 | 2 | |
| |
4.1 | 3 | It is a Jupyter widget intended for the visualization of brain signals represented as time series. |
| |
5.1 | 4 | |
| 5 | == Inputs == | ||
| 6 | |||
| |
17.1 | 7 | Time series can be given as inputs in two forms: |
| |
6.1 | 8 | |
| 9 | * TVB TimeSeries datatype | ||
| 10 | * Numpy arrays | ||
| 11 | |||
| |
17.1 | 12 | This widget supports 2D, 3D, and 4D arrays. In all three cases, there is a fixed shape that the TimeSeries widget expects: |
| |
6.1 | 13 | |
| 14 | * for **2D**: (no_timepoints, no_channels) | ||
| 15 | * for **3D**: (no_timepoints, state_variable/mode, no_channels) | ||
| 16 | * for **4D**: (no_timepoints, state_variable, no_channels, mode) | ||
| 17 | |||
| |
17.1 | 18 | ~* Note that the TVB TimeSeries datatype is always 4D and already has the expected shape. |
| |
7.1 | 19 | |
| 20 | == Requirements and installation == | ||
| 21 | |||
| |
17.1 | 22 | Before installing the tvb-widgets library containing the TimeSeries widget, the following python libraries and Jupyter extensions should be installed: |
| |
7.1 | 23 | |
| 24 | * **Libraries:** | ||
| |
20.1 | 25 | ** [[mne>>https://mne.tools/0.24/install/index.html]] version 0.24 |
| 26 | ** [[ipympl>>https://github.com/matplotlib/ipympl#installation]] | ||
| |
7.1 | 27 | * ((( |
| |
11.1 | 28 | **Extensions:** |
| |
7.1 | 29 | |
| 30 | (% class="box" %) | ||
| 31 | ((( | ||
| |
8.1 | 32 | jupyter labextension install @jupyter-widgets/jupyterlab-manager |
| |
7.1 | 33 | |
| |
8.1 | 34 | jupyter labextension install jupyter-matplotlib |
| |
7.1 | 35 | ))) |
| 36 | ))) | ||
| 37 | |||
| |
12.1 | 38 | Then, to install the tvb-widgets library, just type: |
| |
7.1 | 39 | |
| 40 | (% class="box" %) | ||
| 41 | ((( | ||
| 42 | pip install tvb-widgets | ||
| 43 | ))) | ||
| |
13.1 | 44 | |
| 45 | == API usage == | ||
| 46 | |||
| 47 | First, the correct matplotlib backend must be set, which enables the interaction with the TimeSeries widget, by running the following command: | ||
| 48 | |||
| 49 | (% class="box" %) | ||
| 50 | ((( | ||
| 51 | %matplotlib widget | ||
| 52 | ))) | ||
| 53 | |||
| |
17.1 | 54 | Then, the **TimeSeriesWidget** (from the tvb-widgets API) and the **//display//** function should be imported: |
| |
13.1 | 55 | |
| 56 | (% class="box" %) | ||
| 57 | ((( | ||
| 58 | from tvbwidgets.api import TimeSeriesWidget | ||
| 59 | from IPython.core.display_functions import display | ||
| 60 | ))) | ||
| 61 | |||
| 62 | Assuming that the user has already created or imported a valid input, this is how the widget can be initialized and how an input can be assigned to it, using the //**add_datatype** //method (example below assumes that **//tsr// **is a TVB TimeSeries datatype): | ||
| 63 | |||
| 64 | (% class="box" %) | ||
| 65 | ((( | ||
| 66 | tsw = TimeSeriesWidget() | ||
| 67 | tsw.add_datatype(tsr) | ||
| 68 | ))) | ||
| 69 | |||
| 70 | Finally, to display and interact with the TimeSeries widget, the **//get_widget//**// //method is used inside the //**display **//function: | ||
| 71 | |||
| 72 | (% class="box" %) | ||
| 73 | ((( | ||
| |
19.1 | 74 | display(tsw) |
| |
13.1 | 75 | ))) |
| |
15.1 | 76 | |
| 77 | {{html}} | ||
| 78 | <iframe src="https://drive.google.com/file/d/1g4ryY1VIFMUD14Mb6Dq_KVb0b2_XU4VX/preview" width="840" height="480" allow="autoplay"></iframe> | ||
| 79 | {{/html}} |