Wiki source code of Widget TimeSeries
Hide last authors
author | version | line-number | content |
---|---|---|---|
![]() |
22.1 | 1 | Source code: [[https:~~/~~/github.com/the-virtual-brain/tvb-widgets>>url:https://github.com/the-virtual-brain/tvb-widgets]] |
![]() |
21.1 | 2 | |
![]() |
22.1 | 3 | Immediate testing here: [[https:~~/~~/lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/TVB%20Widgets/REPO/tvb-widgets/notebooks>>url:https://lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/TVB%20Widgets/REPO/tvb-widgets/notebooks]] |
![]() |
21.1 | 4 | |
![]() |
22.1 | 5 | === Purpose === |
![]() |
1.1 | 6 | |
![]() |
22.1 | 7 | It is a Jupyter Widget intended for the visualization of brain signals represented as time series. |
![]() |
5.1 | 8 | |
9 | == Inputs == | ||
10 | |||
![]() |
17.1 | 11 | Time series can be given as inputs in two forms: |
![]() |
6.1 | 12 | |
13 | * TVB TimeSeries datatype | ||
14 | * Numpy arrays | ||
15 | |||
![]() |
17.1 | 16 | This widget supports 2D, 3D, and 4D arrays. In all three cases, there is a fixed shape that the TimeSeries widget expects: |
![]() |
6.1 | 17 | |
18 | * for **2D**: (no_timepoints, no_channels) | ||
19 | * for **3D**: (no_timepoints, state_variable/mode, no_channels) | ||
20 | * for **4D**: (no_timepoints, state_variable, no_channels, mode) | ||
21 | |||
![]() |
17.1 | 22 | ~* Note that the TVB TimeSeries datatype is always 4D and already has the expected shape. |
![]() |
7.1 | 23 | |
24 | == Requirements and installation == | ||
25 | |||
![]() |
17.1 | 26 | Before installing the tvb-widgets library containing the TimeSeries widget, the following python libraries and Jupyter extensions should be installed: |
![]() |
7.1 | 27 | |
28 | * **Libraries:** | ||
![]() |
20.1 | 29 | ** [[mne>>https://mne.tools/0.24/install/index.html]] version 0.24 |
30 | ** [[ipympl>>https://github.com/matplotlib/ipympl#installation]] | ||
![]() |
7.1 | 31 | * ((( |
![]() |
11.1 | 32 | **Extensions:** |
![]() |
7.1 | 33 | |
34 | (% class="box" %) | ||
35 | ((( | ||
![]() |
8.1 | 36 | jupyter labextension install @jupyter-widgets/jupyterlab-manager |
![]() |
7.1 | 37 | |
![]() |
8.1 | 38 | jupyter labextension install jupyter-matplotlib |
![]() |
7.1 | 39 | ))) |
40 | ))) | ||
41 | |||
![]() |
12.1 | 42 | Then, to install the tvb-widgets library, just type: |
![]() |
7.1 | 43 | |
44 | (% class="box" %) | ||
45 | ((( | ||
46 | pip install tvb-widgets | ||
47 | ))) | ||
![]() |
13.1 | 48 | |
49 | == API usage == | ||
50 | |||
51 | First, the correct matplotlib backend must be set, which enables the interaction with the TimeSeries widget, by running the following command: | ||
52 | |||
53 | (% class="box" %) | ||
54 | ((( | ||
55 | %matplotlib widget | ||
56 | ))) | ||
57 | |||
![]() |
17.1 | 58 | Then, the **TimeSeriesWidget** (from the tvb-widgets API) and the **//display//** function should be imported: |
![]() |
13.1 | 59 | |
60 | (% class="box" %) | ||
61 | ((( | ||
62 | from tvbwidgets.api import TimeSeriesWidget | ||
63 | from IPython.core.display_functions import display | ||
64 | ))) | ||
65 | |||
66 | Assuming that the user has already created or imported a valid input, this is how the widget can be initialized and how an input can be assigned to it, using the //**add_datatype** //method (example below assumes that **//tsr// **is a TVB TimeSeries datatype): | ||
67 | |||
68 | (% class="box" %) | ||
69 | ((( | ||
70 | tsw = TimeSeriesWidget() | ||
71 | tsw.add_datatype(tsr) | ||
72 | ))) | ||
73 | |||
74 | Finally, to display and interact with the TimeSeries widget, the **//get_widget//**// //method is used inside the //**display **//function: | ||
75 | |||
76 | (% class="box" %) | ||
77 | ((( | ||
![]() |
19.1 | 78 | display(tsw) |
![]() |
13.1 | 79 | ))) |
![]() |
15.1 | 80 | |
81 | {{html}} | ||
82 | <iframe src="https://drive.google.com/file/d/1g4ryY1VIFMUD14Mb6Dq_KVb0b2_XU4VX/preview" width="840" height="480" allow="autoplay"></iframe> | ||
83 | {{/html}} |