Warning:  Due to planned infrastructure maintenance, the EBRAINS Wiki and EBRAINS Support system will be unavailable for up to three days starting Monday, 14 July. During this period, both services will be inaccessible, and any emails sent to the support address will not be received.

Attention: We are currently experiencing some issues with the EBRAINS Drive. Please bear with us as we fix this issue. We apologise for any inconvenience caused.


Version 10.1 by petkoski on 2024/05/21 11:06

Show last authors
1 (% class="jumbotron" %)
2 (((
3 (% class="container" %)
4 (((
5 = Building personalized brain network models with TVB =
6
7 Spase Petkoski, Damien Depannemaecker and Pierpaolo Sorrentino
8 )))
9 )))
10
11 (% class="row" %)
12 (((
13 (% class="col-xs-12 col-sm-8" %)
14 (((
15 = What can I find here? =
16
17 * A current topic in system neuroscience literature is the presence of brain activity in the absence of a task condition. These task-negative, spontaneous fluctuations occur in the so-called **rest state**, and a recurring theme of these fluctuations is that they have a network structure. Because TVB uses the structural connectivity of the brain as the backbone for simulating spontaneous activity, resting state activity and its network structure is a prime candidate for modeling in TVB.
18
19 = Other tutorials =
20
21 In addition to these noptebooks, we also refer to the readers to the collab for the Showcase 1 of HBP: "Degeneracy in neuroscience - when is Big Data big enough"
22
23 [[https:~~/~~/wiki.ebrains.eu/bin/view/Collabs/sga3-d1-5-showcase-1/>>url:https://wiki.ebrains.eu/bin/view/Collabs/sga3-d1-5-showcase-1/]]
24
25 = References =
26
27 * (((
28 Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK. [[Mathematical framework for large-scale brain network modeling in The Virtual Brain>>https://www.sciencedirect.com/science/article/pii/S1053811915000051]]. Neuroimage. 2015 May 1;111:385-430.
29 )))
30 * (((
31 Schirner M, Domide L, Perdikis D, Triebkorn P, Stefanovski L, Pai R, Prodan P, Valean B, Palmer J, Langford C, Blickensdörfer A. [[Brain simulation as a cloud service: The Virtual Brain on EBRAINS>>https://www.sciencedirect.com/science/article/pii/S1053811922001021]]. NeuroImage. 2022 May 1;251:118973.
32 )))
33 * (((
34 Lavanga M, Stumme J, Yalcinkaya BH, Fousek J, Jockwitz C, Sheheitli H, Bittner N, Hashemi M, Petkoski S, Caspers S, Jirsa V. [[The virtual aging brain: Causal inference supports interhemispheric dedifferentiation in healthy aging>>https://www.sciencedirect.com/science/article/pii/S1053811923005542]]. NeuroImage. 2023 Dec 1;283:120403.
35 )))
36 * (((
37 Wang HE, Triebkorn P, Breyton M, Dollomaja B, Lemarechal JD, Petkoski S, Sorrentino P, Depannemaecker D, Hashemi M, Jirsa VK. [[Virtual brain twins: from basic neuroscience to clinical use>>https://academic.oup.com/nsr/article/11/5/nwae079/7616087]]. National Science Review. 2024 May;11(5):nwae079.
38 )))
39 )))
40
41
42 (% class="col-xs-12 col-sm-4" %)
43 (((
44 {{box title="**Contents**"}}
45 {{toc/}}
46 {{/box}}
47
48
49 )))
50 )))