Wiki source code of TVB synthetic resting state dataset
Last modified by fousekjan on 2022/05/23 22:36
Show last authors
author | version | line-number | content |
---|---|---|---|
1 | (% class="jumbotron" %) | ||
2 | ((( | ||
3 | (% class="container" %) | ||
4 | ((( | ||
5 | = TVB resting state dataset = | ||
6 | |||
7 | Synthetic resting state recordings of simultaneous fMRI + EEG | ||
8 | ))) | ||
9 | ))) | ||
10 | |||
11 | (% class="row" %) | ||
12 | ((( | ||
13 | (% class="col-xs-12 col-sm-8" %) | ||
14 | ((( | ||
15 | This dataset contains 10 minutes of resting state fMRI and EEG time series simulated with brain network model (Sanz-Leon et al., 2015, 2013) implemented in [[The Virtual Brain>>url:https://www.thevirtualbrain.org/]]. More precise information on the model used to generate these data is deliberately not provided here. The data will be available for a period of time without the model description to get unbiased feedback from the community analyzing empirical data. The model description will be published in a separate document. | ||
16 | |||
17 | == Parcellation and Structural Connectivity == | ||
18 | |||
19 | {{code}} | ||
20 | sub-<label>/connectivity/ | ||
21 | ├── sub-<label>_atlas-dk_conndata-network_connectivity.json | ||
22 | ├── sub-<label>_atlas-dk_desc-distance_conndata-network_connectivity.tsv | ||
23 | └── sub-<label>_atlas-dk_desc-weight_conndata-network_connectivity.tsv | ||
24 | {{/code}} | ||
25 | |||
26 | The structural connectivity is stored in two separate .tsv files containing the weights (au) and tract lengths (mm) matrices ordered as sources x targets. The 84 regions are defined by the FreeSurfer parcellation by Desikan-Killiany Atlas (Desikan et al, 2006). Mapping of region labels to names is defined in **dk_atlas.tsv**. | ||
27 | |||
28 | (% style="text-align:center" %) | ||
29 | [[image:sub-001_connectome.png||alt="connectome"]] | ||
30 | |||
31 | == BOLD fMRI == | ||
32 | |||
33 | {{code}} | ||
34 | sub-<label>/func/ | ||
35 | ├── sub-<label>_task-rest_atlas-dk_desc-sim_timeseries.json | ||
36 | └── sub-<label>_task-rest_atlas-dk_desc-sim_timeseries.tsv.gz | ||
37 | {{/code}} | ||
38 | |||
39 | The simulated BOLD (TR=2) time series for the ROIs is stored as compressed **.tsv** file with columns defined in the json sidecar. | ||
40 | |||
41 | (% style="text-align:center" %) | ||
42 | [[image:sub-001_bold_with_fc.png||alt="bold"]] | ||
43 | |||
44 | == EEG == | ||
45 | |||
46 | {{code}} | ||
47 | sub-<label>/eeg | ||
48 | ├── sub-<label>_task-rest_desc-sim_coordsystem.json | ||
49 | ├── sub-<label>_task-rest_desc-sim_eeg.eeg | ||
50 | ├── sub-<label>_task-rest_desc-sim_eeg.json | ||
51 | ├── sub-<label>_task-rest_desc-sim_eeg.vhdr | ||
52 | ├── sub-<label>_task-rest_desc-sim_eeg.vmrk | ||
53 | └── sub-<label>_task-rest_desc-sim_electrodes.tsv | ||
54 | {{/code}} | ||
55 | |||
56 | The EEG was simulated using a montage for HydroCel Geodesic Sensor Net with 256 electrodes. The raw data sampled at 256Hz was only high-pass filtered (FIR window length 845 samples, 1Hz cutoff), and stored in the [[BrainVision triplet format>>url:https://mne.tools/stable/generated/mne.io.read_raw_brainvision.html]] (**.eeg**, **.vmrk**, **.vhdr**). The electrode labels and locations are listed in the ***_electrodes.tsv** file. | ||
57 | |||
58 | (% style="text-align:center" %) | ||
59 | [[image:sub-001_eeg_traces.png||alt="eeg traces"]] | ||
60 | |||
61 | (% style="text-align:center" %) | ||
62 | [[image:sub-002_eeg_psd.png||alt="eeg psd"]] | ||
63 | |||
64 | == [[image:sub-002_sensors.png||alt="eeg sensors"]] == | ||
65 | |||
66 | == References == | ||
67 | |||
68 | Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980. | ||
69 | |||
70 | Sanz-Leon, P., Knock, S. A., Woodman, M. M., Domide, L., Mersmann, J., McIntosh, A. R., & Jirsa, V. (2013). The Virtual Brain: a simulator of primate brain network dynamics. Frontiers in neuroinformatics, 7. | ||
71 | |||
72 | Sanz-Leon, P., Knock, S. A., Spiegler, A., & Jirsa, V. K. (2015). Mathematical framework for large-scale brain network modeling in The Virtual Brain. NeuroImage, 111, 385–430. | ||
73 | ))) | ||
74 | |||
75 | (% class="col-xs-12 col-sm-4" %) | ||
76 | ((( | ||
77 | {{box title="**Contents**"}} | ||
78 | {{toc/}} | ||
79 | {{/box}} | ||
80 | |||
81 | |||
82 | ))) | ||
83 | ))) |